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Abstract. This paper proposes a compositional operational semantics
for a nontrivial subset of Statecharts and defines an equivalence rela-
tion between Statecharts using bisimulation on configurations. An in-
put/response trace model is also investigated at the level of observable
behaviour.

1 Introduction

Statecharts is a visual synchronous specification language introduced by David
Harel originally in the early 1980s [4], which is an extension of the finite state
machine by hierarchy, concurrency and broadcasting communication. Quoting
the words of D.Harel [4],

Statecharts = state diagram + depth +
orthogonality + broadcast communication

Statecharts was invented originally for the development of the avionics system
for an Israeli aircraft, and has seen widespread use since then (e.g. [11]). It is
desirable to be a tool for specifying real-time, reactive and embedded systems.
Some development environments, such as STATEMATE [4, 5], are developed to
support the specification of applications with Statecharts. The formalism acts
now also as one of the major components of UML [2].

Statecharts can be thought as an enrichment of finite-state transition sys-
tems. Here the states can have hierarchical structures and may consist of several
sub-states, in fact, sub-Statecharts. These sub-Statecharts can themselves have
embedded sub-Statecharts too. Statecharts may be composed sequentially or in
parallel to form Or-Statecharts or And-Statecharts respectively.

The execution of Statecharts is defined by the active states and transitions.
In a Statechart, there are usually several simultaneously active states (sub-
Statecharts) at a time instant, they communicate with each other via broad-
casting events in a global environment. The transitions defined determine the
transference of active states. Each of the transitions is labeled by a pair of sets of
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Fig. 1. A simple Statechart

events, where the first set of events is called the trigger of the transition which
may include both positive and negative events, and the second is referred to as
the action which can in turn act as triggers to fire other transitions. A transition
connects a pair of states, with the first one as its source state and the second
one as its target. Intuitively, if the source state of a transition is active, and all
positive events from its trigger are present while all negative ones are absent, the
transition is enabled and may be performed. When a transition is performed,
the events in its action will be generated, and the target state of the transition
becomes active afterward.

Fig.1 shows a simple Statechart. It consists of only one And-Statechart
named sc. The Statechart sc is composed of two parallel sub-Statecharts named
n1 and n2. Both n1 and n2 are Or-Statecharts. Or-Statechart n1 is refined to
basic Statecharts p1 and p2, which are connected by transition t1 with trigger
{a,−b} (Here we use −b to indicate that event b is absent.) and action c. The
figure shows that, in the current situation, the active state of n1 is p1. When
event a occurs but b does not, t1 can be performed, thus the event c is generated
as the action of t1, and the active state will be transferred to p2. On the other
side, Or-Statechart n2 is composed of two basic Statecharts p3 and p4, which are
connected by transition t2. The active state of n2 is p4.

In literatures, there exist a number of different semantics for variants of
Statecharts. M. von der Beeck discussed about twenty variants of Statecharts
in [1], each of these variants can be regarded as a subset of the originally pro-
posed language. The version discussed in [5] for STATEMATE has a powerful
semantics. But the semantics defined in that paper is neither formal, nor com-
positional. The work presented in [12] gives a compositional semantics of State-
charts, whereas their version does not contain data states. In [16], M.Schettini,
A.Peron and S.Tini had a discussion about the equivalence of Statecharts. They
presented a compositional semantics of Statecharts based on Labelled Transition
Systems(LTSs). They considered a hierarchy of LTSs equivalences and gave the
congruences to Statecharts operators.



In this paper, we present a semantics for Statecharts which is quite similar to
that proposed by Qin and Chin [15]. Both semantics have such features as being
compositional, adopting an asynchronous time model, reflecting the causality of
events, obeying local consistency and covering the data states. The only differ-
ence between ours and Qin and Chin’s is that in our semantics an active event
can be used many times within a macro-step. Based on this semantics, we build
a bisimulation between configurations of Statecharts. Borrowing the idea of [9]
and [7], we give a definition of the equivalence of Statecharts different from that
in [16]. It looks as if our definition were weaker. But actually, from this new
definition, we can get the same results as part of that in [16] in a much simpler
way. We will have a detailed discussion about this in Section 6. We also have a
brief discussion about the traces of Statecharts configurations on the macro-step
level.

The next section gives a brief description of term-based syntax of Statecharts.
In Section 3, we present our new semantics by a set of operational transition
rules. In Section 4, we define the equivalence of Statecharts and prove that
the definition is appropriate for getting the needed properties of equivalence.
Discussed in Section 5 are the definition and properties of traces of Statecharts
configurations. The related works are discussed in Section 6. Finally, Section 7
contains our conclusions and directions for future research.

2 Term-based Syntax of Statecharts

To facilitate our discussion, we use the textual representation for Statecharts that
was also given in Qin and Chin [15]. The formal term-based syntax definition
for Statecharts is depicted in what follows.

Suppose we have the following sets:

– N : The set of names used to denote Statecharts. We assume that the set is
large enough for all the Statecharts.

– Πe: The set of all positive events.
– Πē: The set of all negative events, that is, Πē =def {ē|e ∈ Πe}. We assume

that ¯̄e = e.
– Πa: The set of all assignment actions. These actions have the form ν = exp.
– T : The set of all possible transitions, T ⊆ N × 2Πe∪Πē × 2Πe∪Πa ×N , where

the first N denotes the source sub-state, the last N is the target sub-state,
2Πe∪Π̄e the trigger and 2Πe∪Πa the new events and assignments which were
generated and performed by the transition of T .

Definition 2.1. The set SC of Statecharts is defined inductively as follows:

1. Basic: N → SC:

Basic(n) =def [n]

2. Or: N × 〈SC〉 × SC × 2T → SC:

Or(n, 〈P1, · · · , Pl, · · · , Pm〉, Pl, T ) =def [n, (P1, · · · , Pm), Pl, T ]



3. And: N × 2SC → SC:

And(n, {P1, · · · , Pm}) =def [n, (P1, · · · , Pm)]

Note that we use square brackets to enclose a Statechart, use 〈SC〉 to denote
all sequences of Statecharts of SC. Following are some explanations of the con-
structions of Statecharts.

• Basic(n) denotes a basic Statechart named n.
• Or(n, 〈P1, · · · , Pl, · · · , Pm〉, Pl, T ) denotes an Or-Statechart named n with a

sequence of sub-states 〈P1, · · · , Pm〉, where P1 is the default sub-state and Pl

is the active sub-state currently. Notice that the sub-states are defined as a
sequence rather than a set, to indicate that P1 is the default sub-state. The
order of other sub-states is arbitrary. T is the set composed of all possible
transitions among the sub-states of n.

• And(n, {P1, · · · , Pm}) denotes the And-Statechart named n, which contains
a number of parallel sub-states P1, · · · , Pm, where P1, · · · , Pm are basic Stat-
echarts or Or-Statecharts (but not And-Statecharts).

Example 2.1. The term-based syntax for the Statechart shown in Fig.1 is
given below:

1. N = And(sc, {n1, n2}) = [sc, (n1, n2)];
2. n1 = Or(n1, 〈p1, p2〉, p1, {t1}) = [n1, (p1, p2), p1, {〈p1, {a, b̄}, {c}, p2〉}];
3. n2 = [n2, (p3, p4), p4, {〈p3, {d}, {e}, p4〉}];
4. Definition of p1, p2, p3, p4, etc.

Note that we use 〈pi, E, A, pj〉 to represent a transition from state pi to pj

with trigger set E and action set A. ut
It should be noticed that our version is a subset of Harel’s original definition.

We do not include timeout events, inter-level transitions and some other minor
features.

3 Operational Transition Rules

Before presenting the semantics for Statecharts, we define configurations of Stat-
echarts first. A configuration of Statecharts is defined as a triple 〈P, ν,E〉, where

• P is the syntax of the Statechart of interest.
• ν is a snapshot of data items (data state).
• E ⊆ Πe is a set of active events.

The behavior of a Statechart is composed of a sequence of macro-steps, each
of which comprises a sequence of micro-steps which are triggered by the external
or internal events. A Statechart reacts to any stimulus from the environment at
the beginning of each macro-step by performing a sequence of transitions and
generating some internal events (by the actions of the transitions it performs),



which can in turn fire other state transitions and lead to a chain of micro-steps
without advancing time. During this chain of micro-steps, the Statechart does
not respond to any (potentially) further external stimulus. In case that no more
transitions, except for the clock tick, are enabled, the macro-step comes to the
end. The clock tick transition then occurs, which empties the set of currently
active events and advances time by one unit. Then, the Statechart is ready
again to accept another external stimuli and start off the next macro-step. The
relationship of macro-step and micro-step was discussed in details by G. Lüttgen,
M. von der Beeck and R. Cleaveland [12].

We explore the following transition rules, consisting of state transitions rules
and time advance transitions rules.

The first transition rule initiates a macro-step for a Statechart. It is the first
micro-step of a macro-step. It performs only when a set of events E arrives (due
to the environment) and the Statechart is ready to accept them.

Rule 3.1 (Initiate). 〈P, ν, φ〉 E−→ 〈P, ν, E〉 ut
In an Or-Statechart, if a transition between two immediate connected sub-

states is enabled, the transition can be performed.

Rule 3.2 (Or). Suppose P is an Or-Statechart and P = [n, (P1, · · · , Pm), Pl, T ],
τ ∈ En(P, E). Then we can have

〈P, ν,E〉 τ−→ 〈[n, (P1, · · · , Pm), a2d(tgt(τ)), T ], ν′, E ∪ acte(τ)〉
where

– En(P, E) =def {τ ∈ T |sre(τ) = Pl ∧ trig+(τ) ⊆ E ∧ trig−(τ) ∩ E = φ} is
the set of transitions enabled in current configuration on the “highest level”.

– sre(τ) and tgt(τ) are the source and target states of transition τ , respectively.
– acte(τ) denotes the set of events generated by transition τ .
– trig+(τ) and trig−(τ) are respectively the set of positive events and the set

of negative ones that form the trigger of the transition τ .
– The function a2d(P ) maps the sub-state p of P to its default sub-state

(recursively). Its definition is:

a2d([n]) =def [n]
a2d([n, (P1, · · · , Pm), Pl, T ]) =def [n, (P1, · · · , Pm), a2d(P1), T ]
a2d([n, (P1, · · · , Pm)]) =def [n, (a2d(P1), · · · , a2d(Pm))]

– ν′ denotes the new data states which might be updated by actions of τ . ut
If no transition among immediate sub-states of an Or-Statechart is enabled,

then the transitions in its active sub-state can be performed.

Rule 3.3 (Or-Substate). Suppose P = [n, (P1, · · · , Pm), Pl, T ] is an Or-State-
chart, En(P, E) = φ, and 〈Pl, ν, E〉 τ−→ 〈P ′l , ν′, E′〉, then

〈P, ν,E〉 τ−→ 〈[n, (P1, · · · , Pm), P ′l , T ], ν′, E′〉
ut



From Rule 3.3 we know that, the enabled transitions of the higher level Stat-
echart will have the relative higher priority of being chosen, while simultaneously
enabled transitions of the embedded Statecharts will be discarded.

Notice that the transition τ in above rule may be the conjunction of a set of
transitions, because Pl can be an And-Statechart (See Rule 3.4 below). We use
also symbol τ to denote that case for convenience and shall follow this convention
when needed. On the other hand, the fired transition(s) τ is (are) definitely on
the highest possible level in Pl due to Rule 3.2 and Rule 3.3.

If each variable can be modified by only one transition of an And-Statechart,
then all enabled transitions of those sub-states can perform together. We use
WV (τi) to denotes the variables that can be modified by τi. Here we avoid the
racing conflicts only for simpleness. Adding it will not bring essential changes to
the main parts of this paper.

Rule 3.4 (And). Suppose P is an And-Statechart, P = [n, (P1, · · · , Pm)]. For
i = 1, 2, · · · ,m, Pi is a Basic Statechart or Or-Statechart,

〈Pi, ν, E〉 τi−→ 〈P ′i , ν′i, E ∪ acte(τi)〉
If En∗(Pi, E) = φ for some i, then the sub-configuration is considered as staying
the same. That is

〈Pi, ν, E〉 → 〈Pi, ν, E〉
where En∗ is defined as follows

En∗([n], E) =def φ
En∗(P = [n, (P1, · · · , Pm), Pl, T ], E) =def En(P,E) ∪ En∗(Pl, E)
En∗(P = [n, (P1, · · · , Pm)], E) =def

⋃m
i=1 En∗(Pi, E)

We have further condition that for all i 6= j, WV (τi) ∩WV (τj) = φ, we denote
ν′ =

⊕m
i=1 ν′i the direct sum of all ν′i, then we have

〈P, ν,E〉
Vm

i=1 τi−→ 〈[P, (P ′1, · · · , P ′m)], ν′, E ∪
m⋃

i=1

acte(τi)〉
ut

If no transition is enabled in a Statechart and all of its embedded sub-states,
the current macro-step comes to the end. The Statechart will clear the set of
events and advance the time (Here σ is used to denote the clock tick transition),
and is ready to perform Rule 3.1 to start another macro-step.

Rule 3.5 (Empty and Time Advance). If En∗(P,E) = φ, then we have

〈P, ν,E〉 σ−→ 〈P, ν, φ〉
ut

Here is a simple example of how these operational rules work.



Example 3.1. In the Statechart of Fig.1, the default configuration is

〈[sc, ([n1, (p1, p2), p1, t1], [n2, (p3, p4), p3, t2])], ν, φ〉
When the external events set {a, d} appears. Rule 3.1 works.

〈[sc, ([n1, (p1, p2), p1, t1], [n2, (p3, p4), p3, t2])], ν, φ〉
{a,d}−→ 〈[sc, ([n1, (p1, p2), p1, t1], [n2, (p3, p4), p3, t2])], ν, {a, d}〉

This is an And-Statechart. Following the Rule 3.4, we need to consider its sub-
Statecharts. According to Rule 3.2, the following two potential transitions are
ready to be fired:

〈[n1, (p1, p2), p1, t1], ν1, {a, d}〉 t1−→ 〈[n1, (p1, p2), p2, t1], ν′1, {a, d, c}〉
〈[n2, (p3, p4), p3, t2], ν2, {a, d}〉 t2−→ 〈[n2, (p3, p4), p4, t2], ν′2, {a, d, e}〉

The conditions of Rule 3.4 hold. Therefore,

〈[sc, ([n1, (p1, p2), p1, t1], [n2, (p3, p4), p3, t2])], ν, {a, d}〉
t1∧t2−→ 〈[sc, ([n1, (p1, p2), p2, t1], [n2, (p3, p4), p4, t2])], ν′, {a, d, c, e}〉

where ν′ = ν′1 ⊕ ν′2.
Now the set En∗(sc, {a, c, d, e}) is empty, hence the Rule 3.5, that is,

〈[sc, ([n1, (p1, p2), p2, t1], [n2, (p3, p4), p4, t2])], ν′, {a, d, c, e}〉
σ−→ 〈[sc, ([n1, (p1, p2), p2, t1], [n2, (p3, p4), p4, t2])], ν′, φ〉

A macro-step comes to the end. ut

4 Equivalence

For the sake of convenience, we will use the capital letter C (or Ci) to denote
the configuration 〈P, ν,E〉 and let C be the space of all possible configurations
of a set of Statecharts.

For the description of the set of events used in one micro-step to trigger the
transition, we give the following definition.

Definition 4.1. We use C
E−→ C ′ to denote that, the configuration C evolves

to C ′ in one micro-step by some fired transitions (There might be more than
one fired transitions because of Rule 3.4), and E is the set of all the positive
events of the triggers of all the transitions performed in this micro-step.

The following definition describes the configurations which will execute micro-
steps infinitely and, therefore, makes the Statecharts no chance to participate
further stimuli from the environment.

Definition 4.2 (Divergent). A configuration C is divergent if there is an in-
finite sequence of configurations {Cn}∞n=1 such that C = C1 and Cn

En−→ Cn+1,
where En is the corresponding set of events. That is, there is an infinite sequence
of micro-steps started from C.



In what follows we depict the relationship of two configurations to express
their equivalent property.

Definition 4.3 (Bisimulation). A binary relation S over a configuration space
C is a bisimulation iff it satisfies the following conditions:

1. S is an equivalence relation.
2. Given Ci = 〈Pi, νi, Ei〉, i = 1, 2. If C1SC2 then

(a) var(P1) = var(P2), where var() denotes the variable set
(b) ν1 = ν2

(c) E1 = E2

(d) if C1 is not divergent, For any set of events E, whenever there exists a
C ′1 such that C1

E−→ C ′1, then there exists C ′2, such that
(C2

E−→ C ′2) ∧ (C ′1SC ′2)
(e) If C1

σ−→ C ′1 (Rule 3.5), then there exists C ′2, such that
(C2

σ−→ C ′2) ∧ (C ′1SC ′2) ut
In this definition, we do not mention the actions of the performed transitions.

However, from 2 (b), (c) and (d) we know that, the data states and sets of active
events of C ′1 and C ′2, i.e. ν′1 and ν′2, E′

1 and E′
2 (which reflect the effects of the

actions of the micro-step), are the same.

The following lemma shows our definition of bisimulation preserves normal
operations.

Lemma 4.4. If {Si} are bisimulations, then the following relations are also
bisimulations.

1.
⋃

i Si

2. Si ◦ Sj

Proof. The proof of 1 and 2 are similar. We prove 2 as an example.
What needs to be checked are the two conditions of Definition 4.3 in turn.

The condition 1 and (a), (b) and (c) of condition 2 are trivial, let’s see the
condition 2 (d).

If C1(Si ◦ Sj)C3, then there exists a configuration C2 such that

(C1SiC2) ∧ (C2SjC3)

So if there exists a configuration C ′1 such that C1
E−→ C ′1, then

∃C ′2 · (C2
E−→ C ′2) ∧ (C ′1SiC

′
2)

For C2SjC3 and C2
E−→ C ′2, we have

∃C ′3 · (C3
E−→ C ′3) ∧ (C ′2SjC

′
3)

So we have C ′1(Si ◦ Sj)C ′3. Now we have proved that C1
E−→ C ′1 implies

∃C ′3 · (C3
E−→ C ′3) ∧ (C ′1(Si ◦ Sj)C ′3)

In case of condition (e), it is similar to condition (d). ut



Using definition 4.3, we give the definition of the equivalence of two con-
figurations as follows.

Definition 4.5 (Configuration Equivalence). Two configurations C1 and
C2 are equivalent, denoted by C1 ∼ C2, iff there exists a bisimulation S such
that C1SC2.

Furthermore, we give the definition for the equivalence of two Statecharts as
follows. It seems that this definition is a little weak. In fact, this definition is
sufficient. The validity of this statement will be embodied by later theorems and
corollaries.

Definition 4.6 (Statechart Equivalence). Two Statecharts P and Q are
equivalent, denoted by P ∼ Q, iff D(P ) ∼ D(Q), where D(P ) denotes the
default configuration of P . That is, the configuration where the set of active
states is exactly the set of default states of P .

Example 4.1. [sc1, ([n11, (p1, p2), p1, t], [n12, (p3, p4), p3, t])] and
[sc2, ([n21, (p1, p3)], [n22, (p2, p4)]), n21, t] are two Statecharts, where p1, p2, p3,
p4 are their embedded Statecharts. Assuming var(sc1) = var(sc2), ν(D(sc1)) =
ν(D(sc2)) and E(D(sc1)) = E(D(sc2)), these two Statecharts are equivalent.

Fig.2 and Fig.3 shows these two Statecharts. The only micro-step can be
fired of sc1 is to transfer p1, p3 to p2, p4 parallelly by Rule 3.4 and the only
micro-step can be fired of sc2 is to transfer n21 to n22 by Rule 3.2. It is easy
to check that their default configurations can bisimulate each other. ut

Lemma 4.7. ∼ on the Statechart space is an equivalence relation.
The proof of this lemma is trivial. ut

To illustrate the validity of our definition of the equivalence, we shall show
the result that for every possible configuration of a Statechart P , we can find a
configuration from a Statechart Q which is equivalent to P , these configurations
bisimulate each other. We give the following definition first.

Definition 4.8. Suppose tr = 〈E1, E2, · · ·〉, where Ei ⊆ Πe (Recall that Πe is
the set of all possible events) or Ei = {σ} is a sequence of sets of events. We
use C1

tr−→ C2 to denote the fact that the configuration C1 evolves into C2 by
performing micro-steps 〈step1, step2, · · ·〉 in turn and the set of positive events
out of triggers of the transitions fired in stepi is Ei.

Given two equivalent Statecharts P and Q (P ∼ Q), the following theorem
states that, for any reachable configuration in a run of P (or Q respectively),
there exists a bisimular configuration in a run of Q (or P respectively).

Theorem 4.9. Suppose P ∼ Q. Let tr be any finite length sequence of sets of
events. If there exists a configuration Cp such that D(P ) tr−→ Cp, then there
exists a configuration Cq such that D(Q) tr−→ Cq and Cp ∼ Cq.
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That is, we have the following commuting diagram:

D(P ) tr−−−−→ Cp

∼
y

y∼
D(Q) −−−−→

tr
Cq

Proof. By induction on n, the length of tr.
(1) n = 1. By definition 4.5 and definition 4.6, there exists a bisimulation S
such that

D(P )SD(Q),

and we have

D(P ) E1−→ Cp

From 2.(d) and 2.(e) in Definition 4.3, we get that there exists Cq such that

(D(Q) E1−→ Cq) ∧ (CpSCq)

(2) Assume the result holds for n = k. We prove that it also holds for the case
of n = k + 1.



Suppose tr = {E1, E2, · · · , Ek+1}. We denote tr′ = {E1, E2, · · · , Ek}. Then

there exists C ′p such that D(P ) tr′−→ C ′p and C ′p
Ek+1−→ Cp. Using the inductive

assumption, there exists a configuration C ′q such that D(Q) tr′−→ C ′q and C ′p ∼ C ′q.
By Definition 4.5 and Definition 4.6, there exists a bisimulation S such that

(C ′pSC ′q) ∧ (C ′p
Ek+1−→ Cp)

From 2.(d) and 2.(e) in Definition 4.3, we know that there exists Cq such
that

(C ′q
Ek+1−→ Cq) ∧ (CpSCq)

That is

(D(Q) tr−→ Cq) ∧ (CpSCq)

Now with (1) and (2) done, we have come to the end of our proof. ut
From the above theorem we can prove the following property which expresses

the above mentioned idea easily.

Corollary 4.10. Suppose P ∼ Q. Then for each legal configuration Cp of P ,
there exists a configuration Cq of Q such that Cp ∼ Cq.

Proof. Consider the micro-step sequence 〈step1, · · · , stepk〉 which leads D(P ) to
Cp and the corresponding sequence of sets of events 〈E1, · · · , Ek〉. ut

The following theorem shows that the equivalence relation is preserved by
the constructors of Statecharts.

Theorem 4.11 (Congruence). Pi ∼ Qi (i = 1, · · · , m) implies

1. And(Np, {P1, · · · , Pm}) ∼ And(Nq, {Q1, · · · , Qm});
2. Or(Np, 〈P1, · · · , Pm〉, Pl, T ) ∼ Or(Nq, 〈Q1, · · · , Qm〉, Ql, T

′). where there ex-
ist a bijection f between T and T ′, such that for any τ ∈ T

(a) acte(τ) = acte(f(τ))
(b) trig+(τ) = trig+(f(τ)) ∧ trig−(τ) = trig−(f(τ))

(c) Pi
τ−→ Pj ⇐⇒ Qi

f(τ)−→ Qj

That is, we have following commuting diagram in which the symbol op denotes
the Statechart construction operators And or Or:

{P1, · · · , Pm} op−−−−→ Np

∼
y

y∼
{Q1, · · · , Qm} −−−−→

op
Nq



Proof. 1. For Pi ∼ Qi, we have D(Pi) ∼ D(Qi), then ∃Si · D(Pi)SiD(Qi),
where Si is a bisimulation. So we have:
For any set of events E, whenever there exists a configuration (D(Pi))′ such
that

D(Pi)
E−→ (D(Pi))′,

there exists (D(Qi))′, such that

(D(Qi)
E−→ (D(Qi))′) ∧ ((D(Pi))′Si(D(Qi))′)

Now we define the relationship

S = {〈D(And(Np, {P1, · · · , Pm})), D(And(Nq, {Q1, · · · , Qm}))〉
where D(Pi)SiD(Qi)} ∪ Id

We prove that S is a bisimulation as follows.
It is trivial that S is an equivalence relation. (†)
Now we check the conditions 2(a) – 2(e) in Definition 4.3. 2(a), 2(b) and
2(c) are trivial. Since 2(e) is similar to 2(d), we check condition 2(d) in details
here.
Since our discussion is at the micro-step level, the actions of transitions in
D(Pi) do not have effect on D(Pj).
Thus we have the following fact.

For any set of events E, whenever D(Np)
E−→ (D(Np))′,

there exists (D(Nq))′, such that

(D(Nq)
E−→ (D(Nq))′) ∧ ((D(Np))′S(D(Nq))′) (‡)

We then have Np ∼ Nq from (†) and (‡).

2. Similar to 1, we have ∃Si · D(Pi)SiD(Qi), where Si is a bisimulation, and
the following result:
For any set of events E, whenever there exists a configuration (D(Pi))′ such
that

D(Pi)
E−→ (D(Pi))′,

there exists a (D(Qi))′, such that

(D(Qi)
E−→ (D(Qi))′) ∧ ((D(Pi))′Si(D(Qi))′)

Now we define the relationship

S = {〈D(Or(Np, 〈P1, · · · , Pm〉, Pl, T )),
D(Or(Nq, 〈Q1, · · · , Qm〉, Ql, T

′))〉, where D(Pi)SiD(Qi)}
∪ Id

It is trivial that S is an equivalence relation. (∗)



Analogically, to check condition 2 in Definition 4.3, we need a formula
similar to (‡). It can be divided into two cases:
(a) If the micro-step triggered by E is between the immediate sub-state Pl

and Pk, i.e.

D(Np)
E−→ (D(Np))′ = D(Or(N ′

p, 〈P1, · · · , Pm〉, Pk, T ))

Because of there is a bijection f between the transitions sets of Np and Nq

which satisfies the three conditions, we have

D(Nq)
E−→ (D(Nq))′ = D(Or(N ′

q, 〈Q1, · · · , Qm〉, Qk, T ′))

(b) If the micro-step triggered by E is in the active sub-state Pl, i.e.

Pl
E−→ P ′l

For PlSlQl, we have there exits Q′l, such that

(Ql
E−→ Q′l) ∧ (P ′lSlQ

′
l)

We take

(D(Nq))′ = D(Or(N ′
q, 〈Q1, · · · , Qm〉, Q′

l, T
′))

In both case (a) and case (b) it is trivial that

(D(Nq)
E−→ (D(Nq))′) ∧ ((D(Np))′S(D(Nq))′) (∗∗)

From (∗) and (∗∗), we obtain Np ∼ Nq. ut

5 Traces

As shown in the Definition 4.8, suppose tr = 〈E1, E2, · · ·〉 is a sequence of
sets of events. We use C1

tr−→ C2 to denote the fact that the configuration C1

evolves into C2 by performing micro-steps 〈step1, step2, · · ·〉 in turn and the set
of positive events from the triggers of the transitions fired in stepi is Ei. In this
section we investigate some properties on the level of macro-step.

Definition 5.1. We use Πex to denote all possible external events. Suppose
E ⊆ Πex and Ci = 〈Pi, νi, φ〉, i = 1, 2, we use C1

E=⇒ C2 to denote a macro-
step from C1 to C2 with the set of initial external events E by a sequence of
micro-steps, where only the last micro-step is the clock tick σ.

We use (2Πex)∗ to denote the set of all the possible finite-length sequences
of sets of external events. Suppose tr = 〈E1, E2, · · · , Em〉 ∈ (2Πex)∗. We use also
C1

tr=⇒ C2 to denote the fact that the configuration C1 can evolve into C2 by
performing a sequence of macro-steps 〈Mstep1,Mstep2, · · · ,Mstepm〉 in turn and
the set of events Ei is the set of initial events stimulating the Mstepi.



When a finite sequence of sets of external events comes sequentially, a Stat-
echart starts to respond the first set of events from its current configuration. As
reactions to this finite sequence of stimuli, it may perform a sequence of tran-
sitions which are triggered by these stimuli directly or indirectly, go through a
number of macro-steps and reach another configuration eventually, or it may fall
into divergence in some macro-step on the way, and is not able to participate
the next macro-step. We address these issues in this section.

We give two definitions to formalize the aforementioned ideas.

Definition 5.2 (Trace). A trace tr ∈ (2Πex)∗ is a finite sequence of external
events in which a particular Statechart participates with its environment.

What follows is our definition of specific trace sets. We propose two type
of sets with respect to configurations. For a configuration CP , set Div(CP ) in-
cludes all the traces that may lead the configuration CP to divergence, while
the another set is Prg(CP ) which includes all traces which definitely lead config-
uration CP to a steady configuration. We use Prg to hint that the configuration
will progress normally while “consuming” a trace of Prg(CP ) and will be ready
to accept other external events.

Definition 5.3 (Trace Sets). Suppose P is a Statechart and CP is one of its
configurations with empty set of events, we define two sets of sequences of set of
events as follows:

Div(CP ) =def { tr ∈ (2Πex)∗|
∃s, C ′ · s ≺ tr ∧ (CP

s=⇒ C ′) ∧ div(C ′, tr(#s + 1))}
Prg(CP ) =def { tr ∈ (2Πex)∗|∃C ′ · (CP

tr=⇒ C ′)〉}
where s ≺ tr means s is a proper prefix of tr. We use div(C ′, E) to represent
that C ′ is divergent after receiving set of events E according to Rule 3.1. Note
that #s is the length of s, while tr(n) denotes the nth element of tr.

Form the definition we have the following property immediately.

Lemma 5.4. Suppose CP is a configuration of a Statechart P with empty set
of events, then

Prg(CP ) ∪Div(CP ) = (2Πex)∗

Proof. By Definition 4.2, we have the fact that if a trace tr is not in Div(CP ),
then there exists a steady configuration C as the end configuration after pre-
forming all the macro-steps triggered by tr. From the transition Rule 3.1∼ 3.5,
we can see that only the configuration with the form 〈P, ν, φ〉 can be the end
configuration of a macro-step. Therefore tr lies in Prg(CP ). So we have

Prg(CP ) ∪Div(CP ) = (2Πex)∗

ut
Two equivalent configurations of Statecharts should have the same trace sets

Div and Prg as one may expect. The following theorem tells us the truth.



Theorem 5.5 (Trace). Suppose P ∼ Q and Cp is the configuration of P with
empty set of events. If Cq is the configuration of Q which is equivalent to Cp.
Then

Div(Cp) = Div(Cq) and Prg(Cp) = Prg(Cq)

Proof. If tr ∈ Prg(Cp) is a trace, then there exists a configuration C ′p such that

Cp
tr=⇒ C ′p

Because a macro-step can be considered as a sequence of micro-steps, by The-
orem 4.9, we see that there exists a configuration C ′q, such that

Cq
tr=⇒ C ′q

So tr ∈ Prg(Cq), Then we have

Prg(Cp) ⊆ Prg(Cq)

For the same reason , we have

Prg(Cq) ⊆ Prg(Cp)

So we come to

Prg(Cp) = Prg(Cq)

From Lemma 5.4, we obtain Div(Cp) = Div(Cq). ut

We considered above the external traces or input traces, which are provided
by the environment. Now we take into account the responses of a Statechart to
these stimuli from the environment, and introduce the response traces.

According to our definition of transition rules, before a clock tick transition,
all events generated by those transitions in one macro-step are accumulated in
the set of active events. This reflects the reaction of the Statechart to environ-
mental stimuli arrived at the beginning of the macrostep. We use it to specify a
Statechart’s response behaviour to the environment.

Definition 5.6 (Response). We use C
E/Ê
=⇒ C ′ to denote a macro-step from

C to C ′ with the set of initial external events E by a sequence of micro-steps,
where only the last micro-step is the clock tick σ, and the set of events in the
configuration before the clock tick is Ê. We call Ê the set of response events in
this macro-step.

Definition 5.7 (Response Trace). Suppose P is a Statechart and Cp is one
of its configuration with empty set of events. Suppose tr = 〈E1, E2, · · · , Em〉 ∈
(2Πex)∗ and there is a configuration C ′ such that C

tr=⇒ C ′. We collect the
sets of response events along the way, which form a sequence of sets of events
t̂r = 〈Ê1, Ê2, · · · , Êm〉 ∈ (2Π)∗, and call the sequence a response trace of tr with

respect to C and C ′, and denote the fact as C
tr/t̂r
=⇒ C ′.



Obviously, due to possible non-determinism, for a certain C and a fixed tr,

there might be more than one pair of C ′ and t̂r such that C
tr/t̂r
=⇒ C ′.

In the remainder of this section, we shall prove that, if two configurations
are equivalent, C1 ∼ C2, or two Statecharts are equivalent, P ∼ Q, then for an
external event trace tr, they will generate the same set of response traces.

Lemma 5.8. Suppose P ∼ Q, Cp is a configuration of P with empty set of
events and Cq is a configuration of Q which is equivalent to Cp. Suppose E ∈ 2Πex

and Ê ∈ 2Π . Then we have that, if there exists a configuration C ′p of P such

that Cp
E/Ê
=⇒ C ′p, then there exists a configuration C ′q of Q such that Cq

E/Ê
=⇒ C ′q.

That is we have the following commuting diagram:

Cp

E/Ê
=⇒−−−−→ C ′p

∼
y

y∼

Cq

E/Ê
=⇒−−−−→ C ′q

Proof. A macro-step can be considered as a sequence of micro-steps, so if we

have ∃C ′p · Cp
E/Ê
=⇒ C ′p, then by Theorem 4.9, we see that

∃C ′q · Cq
E=⇒ C ′q (∗)

Suppose the macro-step from Cp to C ′p is Mstepp = 〈step1, · · · , stepk−1, stepk〉,
the macro-step from Cq to C ′q is Mstepq = 〈step′1, · · · , step′k−1, step

′
k〉, and the

configuration sequences with respect to these steps are 〈Cp,1, · · · , Cp,k−1, C
′
p〉 and

〈Cq,1, · · · , Cq,k−1, C
′
q〉 respectively, where stepi and step′i (i = 1, · · · , k) are all

micro-steps. For Ê is the response set of Mstepp, from Definition 5.6, we know
that the set of events in Cp,k−1 is Ê. For Cp,k−1 ∼ Cq,k−1, from Definition
4.3,4.5 we get that the event set of Cq,k−1 is also Ê. So we have Ê is the
response set of Mstepq. Then from (∗) we have come to

∃C ′q · Cq
E/Ê
=⇒ C ′q

So there is

∃C ′p · Cp
E/Ê
=⇒ C ′p implies ∃C ′q · Cq

E/Ê
=⇒ C ′q

ut
Theorem 5.9 (Response Trace). Suppose P ∼ Q, Cp is a configuration of P
with empty set of events and Cq is a configuration of Q which is equivalent to Cp.
Suppose tr ∈ (2Πex)∗ and t̂r ∈ (2Π)∗ is a sequence with the same length of tr.

Then we have that, if there exists a configuration C ′p of P such that Cp
tr/t̂r
=⇒ C ′p,

then there exists a configuration C ′q of Q such that Cq
tr/t̂r
=⇒ C ′q.



Proof. Suppose tr = 〈E1, E2, · · · , Em〉 and tr = 〈Ê1, Ê2, · · · , Êm〉, By Lemma
5.8 and the following commuting diagram,

Cp

E1/Ê1=⇒−−−−→ Cp,1

E2/Ê2=⇒−−−−→ Cp,2

E3/Ê3=⇒−−−−→ · · ·
Em−1/Êm−1

=⇒−−−−−−−−→ Cp,m−1

Em/Êm
=⇒−−−−−→ C ′p

∼
y ∼

y ∼
y ∼

y ∼
y ∼

y

Cq

E1/Ê1=⇒−−−−→ Cq,1

E2/Ê2=⇒−−−−→ Cq,2

E3/Ê3=⇒−−−−→ · · ·
Em−1/Êm−1

=⇒−−−−−−−−→ Cq,m−1

Em/Êm
=⇒−−−−−→ C ′q

One can see the existence of C ′q. ut
Corollary 5.10. Given a pair of configurations Cp, Cq with empty sets of events,
Cp ∼ Cq, tr is a sequence of sets of external events. Then the sets of all possible
response traces of Cp and Cq with respect to trace tr are the same.

Proof. Using the above theorem it is trivial. ut
Corollary 5.11. Given two Statecharts P and Q, P ∼ Q, tr is a sequence of
sets of external events. Then the sets of all possible response traces of D(P ) and
D(Q) with respect to trace tr are the same.

6 Related work

The original Statecharts semantics is present by Harel et al. [6]. It obeys causality
and synchrony, but not compositionality. The synchrony implies that the system
is definitely faster than its environment, and can always finish computing its re-
sponse before the next stimulus from the environment arrives. In 1991, A.Pnueli
and M.Shalev [14] presented a way of defining the notion of step in the execu-
tion of Statecharts. This semantics maintains the synchrony hypothesis. They
defined the function En(τ) and used it to describe the synchrony, causality and
global consistency formally. They also gave a step-construction procedure to
compute En(τ) for a Statechart with respect to a certain environment. In 1996,
M. Schettini, A.Peron and S.Tini [16] gave a new definition which covered the
definition in [14] and included a new restriction named compatibility, such that
their step-construction procedure will not fail.

With regard to a semantics for Statecharts, it is very important whether it
is compositional or not. Because the compositionality ensures that the seman-
tics for a Statechart can be defined in terms of its component-charts. This is
important especially when only a few components of a large Statechart change,
a waste of resources by re-compiling the large Statechart will not take place.
Theoretical studies constructed by Huizing [10] showed that one cannot com-
bine the features of causality, synchrony hypothesis and compositionality with
a step semantics which labels transitions by sets of ”input/output” events. G.
Lüttgen, M. von der Beeck and R. Cleaveland [12] presented an approach to
define Statecharts’ semantics. Their semantics achieved compositionality on the
explicit micro-step level and causality and synchrony on the implicit macro-step



level. Our semantics is compositional. It adopts an asynchronous time model, in
which a macro-step is defined as a sequence of micro-steps taking place instan-
taneously. To be more intuitive, our semantics obeys local consistency rather
than global one. Furthermore, our semantics supports the data-states issues of
Statecharts, i.e. the actions in a transition can contain assignments.

In [16], the equivalences of Statecharts are investigated. The authors associ-
ated a Labeled Transition System (LTS) with each Statechart term in a syntax
directed way, and defined the semantics of Statecharts based on the LTS. They
defined a causal order over events to express the causality. Using these notions,
they defined four levels of equivalence of Statecharts and proved the properties
of congruence respectively. The main difference between our work and what pre-
sented in [16] is as follows. The first definition of equivalence in [16] needs a
bijection between all possible configurations of the two Statecharts whose equiv-
alence is under consideration. It causes much troublesome in proving the prop-
erty of congruence. Our concept of equivalence is similar to the second definition
of equivalence of [16]. We only need the bisimulation of the default states of
the Statecharts, which makes it much easier to prove the congruence property
(Theorem 4.11). It seems that our definition is weaker in comparison to the
first definition of equivalence in [16], but, in fact, it is not. As we have proved in
Theorem 4.9, our concept has all the expected properties of equivalence stated
in the first definition of equivalence in [16] and, at the same time, can get rid of
the redundant statements in proving the properties of congruence for that level
of equivalence, thus, getting the same results in a much simpler way.

C.A.R.Hoare [8] defined the trace notations of CSP. Many scholars defined
the trace notations for other languages, for instance [9, 3, 13, 7], to describe ob-
servable behaviours of systems. Borrowing the ideas from these work we define
the trace notations for Statecharts as sequences of sets of external stimuli and
sequences of responses of the Statechart to these stimuli. Some properties with
respect to the trace model for Statecharts are also explored. We believe these
definitions can be valuable in further investigation of Statecharts’ properties at
behavioural level of traces.

7 Conclusions and future work

In this paper we have explored a set of transition rules so as to describe the
operational semantics of Statecharts. We introduced the bisimulation to illus-
trate the equivalence between Statecharts’ configurations. Ulteriorly we defined
the equivalence between Statecharts and studied congruence properties with re-
spect to the construction operators of Statecharts (And and Or constructions).
In the end we introduced the notions of traces of Statecharts. It is foreseeable
that we can describe the equivalence of Statecharts at the level of observable
traces. As part of future work, the trace model should be further refined to com-
prise more information on behaviours of Statecharts, like causal orders of events
generated in one instant, instantaneous updates of data state. The simulation



between Statecharts needs also to be investigated to describe the refinement of
Statecharts.
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