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Abstract. The evolution of blood flow patterns (vortical flow features in par-
ticular) and their interactions with cardiovascular structure is important in the
study of cardiovascular function.  The winding index method is widely used for
vortex detection and has shown to be very sensitive to noise.  We propose a
novel technique for the detection of vortical flow features that consists of three
main components: flow restoration, abstraction and vortex detection.  Firstly, an
abstract flow field is obtained by clustering the flow field restored using our
proposed restoration method.  Afterwards, critical points are computed from the
abstract flow field and then phase portrait theory is employed to identify vor-
tices.  The proposed technique is applied to 12 sets of MR velocity maps ac-
quired from patients with sequential MR examination following myocardial in-
farction and the results show that vortical flow patterns are more readily
detected compared to the winding index method.

1   Introduction

The analysis of blood flow patterns and their interaction with cardiovascular structure
plays an important role in the study of cardiovascular function.  In particular, vortical
motion, known to exist in the diastolic phase of the cardiac cycle [1], is the most im-
portant flow feature and its evolution over different phases of the cardiac cycle can
provide important insight into the health status of the heart. Previous research [2] has
shown that in order to achieve a comprehensive and integrated description of flow in
health and disease, it is necessary to characterise and model both normal and abnor-
mal flows and their effects.  This permits the establishment of links between blood
flow patterns and the localised genesis and development of cardiovascular disease.

With the ability to acquire multi-dimensional cine flow data, Magnetic Resonance
(MR) velocity imaging is increasingly used for acquiring in vivo flow details.  The
technique, however, is generally subject to a certain amount of noise and this poses a
major problem for automatic quantitative analysis of flow features.  To tackle this
problem, a vector field restoration method is needed.  In recent years, total variation
(TV) based restoration method, first introduced by Rudin [3] for restoration of scalar
images, has received a lot of interest and several researchers [4][5] have extended the
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method for vector images.  We have developed a TV-based variational method [6] for
restoring vector field and finding the optimal solution of a regularisation parameter,
which is known to affect the restoration result significantly.  This restoration scheme
has been proven to restore both 2D and 3D flow field effectively [7].

With the recent advances in in vivo MR flow imaging techniques, a large amount
of velocity data can be generated rapidly to provide a comprehensive measurement of
flow information.  Therefore, it is desirable to perform a systematic study and gener-
ate a compact topological description of complex flow patterns depicted by MR ve-
locity imaging.  Computation and visualisation of vector field topology was first in-
troduced by Helman and Hesselink [8].  In recent years, several methods based on
hierarchical clustering have been proposed for vector field abstraction. They can gen-
erally be divided into two categories: a top-down strategy and a bottom-up strategy.
In both cases, a hierarchical tree is generated to represent the vector field.   Heckel et
al. [9] used a top-down approach where a discrete vector field is segmented into a
disjoint set of clusters, whereas Telea et al. [10] used a bottom-up clustering approach
by recursively merging similar clusters to form larger cluster.  Lodha et al. [11]
adopted the same clustering approach as Telea et al., but with a different error metric
to preserve topology of the vector field.  More recently, Garcke et al. [12] have pro-
posed a continuous clustering method for simplifying vector fields.  This method is
based on the Cahn-Hilliard model that describes phase separation and coarsening in
binary alloys.  The essence of the technique is similar to the other bottom-up methods
in that it builds a multi-scale vector field representation by merging neighbouring
cells, but it was done in a continuous manner.  Generally speaking, all these methods
use a single vector to represent a cluster and are well suited for visualisation purposes,
however, given a set of such clusters, it is difficult to recover the original vector field.

For the purpose of providing a better ground for vortices detection, we propose to
use local linear expansion for representing a cluster of 2D vectors, with each plane
representing a velocity component.  By using this representation, the neighbourhood
of a critical point can be compactly described.  The advantage of using this represen-
tation is that given a cluster, the approximation of the original vectors can be easily
deduced from the planes.  We show that this approach greatly reduces the amount of
information needed to describe complex flow fields while preserving all the important
critical points intrinsically. Comparison to the traditional approach of vortex detection
with winding index is also provided [13][14], and we demonstrate the much-improved
sensitivity provided by the proposed new method.

2   Materials and Methods

2.1    Flow Field Restoration

Flow velocity images acquired by MR velocity-mapping are generally subject to a
certain amount of noise that is intrinsic to system hardware setup and those specific to
patient movement in relation to imaging sequence designs.  To improve the accuracy
of the quantitative analysis of the evolution of topological flow features, it is essential
to restore the original flow fields.  In this study, we formulated a constrained optimi-
sation problem for the restoration of direction u, which is defined as u=v/|v| where v
is the original velocity vector.  The numerical scheme of this restoration method [6]
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can be defined as follows.  Firstly, the strength function e(u; ) at voxel  can be de-
fined as:
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where Nα denotes the neighbourhood of pixel α and dl denotes the embedded Euclid-
ean distance in S2.  The TV-energy of the direction field in domain Ω is then:
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and the constrained optimisation can be written as:
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where u0 denotes the original noisy image.  The corresponding Lagrange function,
also referred to as the unconstrained TV energy, is:








 Ω−+







=⋅+= ∑∑ ∑

Ω∈Ω∈ ∈ α
αα

α β
αβ σλλλ

α

202
2

1

2 ),(
2

),()();( uuuuuu l
N

l
TV ddhEL

(4)

Note that at the optimal solution, the constraint is met, i.e. h(u) equals zero, and there-
fore L(u; ) equals ETV.  The discrete form of the First Order Lagrangian Method can
be derived and written as a pair of iterative equations as follows:
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And 
u∏  denotes projection onto the plane orthogonal to u and ∆t denotes the step

size.

2.2    Flow Field Abstraction and Vortical Feature Detection

To generate an abstract flow field from a dense vector field, we apply a hierarchical
clustering algorithm to merge individual flow vectors into clusters through an iterative
process. A crucial factor to a good clustering algorithm is the choice of the represen-
tation for a cluster of vectors.  In our study, local linear expansion of the velocity
vectors is employed to represent a cluster of 2D vectors.  This representation is effec-
tively the same as using two planes with limited scopes, one for each velocity compo-
nent, to locally represent a cluster of vectors.  The planes are fitted using the least
squares method and the cost of merging two clusters is defined as the second moment
of all the points in the merged cluster.
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The choice of using planes to represent a flow field is particularly suitable for re-
gions near critical points, thus, this abstraction technique intrinsically preserves criti-
cal points and provides a good foundation for identification of critical points. The first
step of the clustering algorithm is to divide the image domain into clusters of 2×2
vectors.  Each cluster is represented by two planes which can be generated using the
least squares method.  Then, for each neighbouring cluster pair, the associated cost of
merging the pair is calculated and stored in a pool.  After the initialisation step, the
following steps are repeated until all clusters are merged to form one single cluster
which contains all individual vectors : i) the pair of clusters with the smallest merging
cost in the pool is selected and merged to form a new cluster, and ii) the cost of
merging the newly merged cluster with its neighbours is calculated and inserted into
the pool.  By repeatedly merging clusters, a hierarchical tree is constructed in the pro-
cess, with each node representing a cluster and its children representing its sub-
clusters. Once the hierarchical tree is constructed, abstract flow field with various
compression ratios can then be obtained from this tree efficiently.

The detection of critical points in vector fields require the evaluation of the Jaco-
bean matrix at positions of zero velocity. The traditionally adopted method of winding
index is sensitive to image noise. With the proposed flow field abstraction method,
this problem is naturally avoided as the Jacobean matrix can be readily retrieved from
the velocity planes. After the critical points are extracted, they can be classified by
using the phase portrait theory [15] to separate them into attracting/repelling focuses,
attracting/repelling nodes, planar vortex, or saddle by solving for the eigenvalues of
the Jacobean matrix. For vortices, the associated eigenvalues will have large imagi-
nary values.

3   Results and Discussion

To demonstrate the effectiveness of our restoration method, a 3D Computational
Fluid Dynamic (CFD) dataset simulating a 3D vortex with added Gaussian noise was
used for examining the restoration process. A sample noise-free image, the corre-
sponding noisy image and the restored image are shown in Figure 1.  To assess the
convergence behaviour of the proposed technique, the constrained and unconstrained
energy terms were recorded at each iteration and plotted in Figure 1d. It is found that
both energy terms converge to the same value as expected. The rate of convergence
depends on the choice of step size, which is typically of the order of 0.01. The algo-
rithm converged after approximately 200 iterations.  A more detailed analysis of the
performance of this restoration method can be found in [7].

With the convergence behavior of the restoration process fully analysed, 12 sets of
2D MR flow velocity data acquired from six patients with sequential examination
following myocardial infarction is then used for evaluating our proposed flow resto-
ration, abstraction and vortex detection method. All images were acquired using a
Marconi whole body MR scanner operating at 1.5T. Cine phase contrast velocity
mapping was performed using a field even echo rephrasing (FEER) sequence with a
TE of 14ms.  The slice thickness was 10mm and the field of view was 30-40cm.

To analyse the performance of our proposed flow abstraction algorithm, a number
of abstract flow fields at various compression ratios are generated for each restored
flow field and the abstract flow fields are then used to reconstruct the original flow
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field.  The reconstructed flow fields are compared with the original uncompressed
flow fields (Figure 2).   It is found that, with our proposed plane representation, the
salient flow features are well preserved in the abstract flow field even at high com-
pression rate.  The results show clear evidence that with a suitable representation, a
complex flow field can be closely represented in a much more compact way.  For ref-
erence purpose, the normalised magnitude error and the angular error at various com-
pression levels are listed in Table 1.

To validate our proposed vortex detection method, all frames acquired during di-
astole from the 12 datasets were selected.  The datasets have a temporal resolution of
40ms-50ms and the diastolic phase is covered in about 5-8 frames.  A sample se-
quence of flow images with vortices extracted by using the proposed method and the
winding index method are shown alongside in Figure 3.  The images clearly show that
vortices are more readily detected using our flow abstraction and vortex detection
method.

Fig. 1. Result of our restoration method using a synthetic 3D dataset which simulates flow
containing a vortex. (a) Original noise-free flow image. b) With added Gaussian noise. (c) Re-
stored flow image. (d) Convergence plot of the constrained and unconstrained energy terms
against the number of iterations for the 3D synthetic dataset.
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   (a) HLA MR image        (b) Original  (c) 80% compression (d) 90% compression

Fig. 2. (a) A horizontal long axis (HLA) MR image of the left ventricle with the four main
chambers and the descending aorta labeled (LA: left atrium; RA: right atrium; LV: left ventri-
cle; RV: right ventricle; DA: descending aorta).  (b) The flow pattern of region marked in (a) at
the onset of diastole. (c-d) Reconstructed flow field from compact flow field at two different
compression levels.

Table 1. Magnitude and angular error of the abstract flow fields depicted in Fig. 2. The original
flow field contains 1440 vectors

Compression
Ratio

No. of
Clusters

Angular Error
(degree)

Magnitude Error
 (normalised) x10-3

75% 360 10.3 3.5
80% 288 11.2 4.5
85% 216 13.6 6.2
90% 144 15.3 8.6
95% 72 25.0 12.4

To analyse the sensitivity, defined as the number of correctly identified vortices
divided by the number of known vortices, of the two vortex detection methods, the
number of major vortices correctly identified by these two methods are recorded and
compared against the number of major vortices identified manually.  The sensitivities
of both methods are plotted in Figure 4.  It is found that our proposed method has
achieved an average sensitivity of around 90%, much higher than that of the tradi-
tional winding index method.  The main drawback of our proposed method is that
some unwanted vortices, either minor vortices or false identification, are identified
along with the major vortices.  This, however, does not pose a major problem to our
study as these unwanted vortices can easily be filtered by applying a simple tracking
algorithm to locate the major vortices.

4   Conclusions

In this study, we proposed a new method for flow field abstraction and vortical flow
feature extraction in MR velocity maps.  The proposed flow abstraction algorithm can
greatly reduce the amount of information needed to describe a complex flow field
while preserving all the important critical points.  It is shown that the abstract flow
field serves as a more reliable ground for critical point detection.



430 Y.-H.P. Ng, B.S. Carmo, and G.-Z. Yang

Fig. 3. The flow patterns and the extracted vortices at several stages of the diastolic phase of
the cardiac cycle from one of the patients studied.  All extracted vortices (including false and
minor vortices) are marked with black dots where the major vortices are highlighted with a cir-
cle and an arrow to indicate its rotational direction. (Top) The depicted vortices were extracted
by the traditional winding index method.  (Bottom) The flow patterns were reconstructed from
the abstraction method and vortices were then extracted using the new vortex detection method.

Fig. 4. A comparison of the sensitivity of the proposed vortex detection method and the wind-
ing index method using 12 sets of MR flow images acquired from 6 patients at various time
following myocardial infarction.  It can be seen that the proposed method consistently per-
formed better than the winding index method.
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We have also demonstrated that the proposed flow abstraction algorithm together
with the vortex detection algorithm is effective in detecting vortices.  Its sensitivity on
12 sets of images is much higher than the winding index method. With the compact
representation of flow field and detected vortices, we can analyse and compare the
dynamical indices of the blood flow in patients and normal subjects and ultimately
establish the links between blood flow patterns and the localised genesis and devel-
opment of cardiovascular disease.
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