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Abstract. We present a fully automated deformable model technique for
myocardium segmentation in 3D MRI. Loss of signal due to blood flow, partial
volume effects and significant variation of surface grey value appearance make
this a difficult problem. We integrate various sources of prior knowledge learned
from annotated image data into a deformable model. Inter-individual shape
variation is represented by a statistical point distribution model, and the spatial
relationship of the epi- and endocardium is modeled by adapting two coupled
triangular surface meshes. To robustly accommodate variation of grey value
appearance around the myocardiac surface, a prior parametric spatially varying
feature model is established by classification of grey value surface profiles.
Quantitative validation of 60 end-diastolic 3D MRI datasets demonstrates
accuracy and robustness, with 1.284+0.81 mm mean deviation from manual
segmentation. We investigate the extension to 4D by incorporating a constraint
on the allowed deformation based on a learned example and show illustrative
results for 4D MRIL.
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1 Introduction

Cardiac MRI provides important information for diagnosis and treatment of cardiovascu-
lar diseases by enabling quantitative assessment of functional parameters [4]. However,
the lack of computational tools still implies that not all the information contained in the
data is currently used. In order to fully exploit the information in the MRI data in clinical
practice, automated extraction of the myocardium is essential. Considering the amount
of data involved (10-20 frames by 8—12 image slices), clinically feasible delineation
should be automated. However, poor object features resulting from signal loss due to
blood flow and partial volume effects, and significant variation of grey value appearance
make finding a robust and accurate solution a difficult problem.

Recently proposed approaches to automated segmentation incorporate prior knowl-
edge to improve robustness [BI8l0I10]]. Lorenzo-Valdes et al. achieved convincing results
by volumetric atlas matching using B-spline registration [O]. However, this approach re-
quires several minutes for a single time frame. The fast and robust framework of active
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shape and appearance models by Cootes et al. was extended and applied to cardiac
3D and 2D time series [8], achieving promising results. However, statistical shape mod-
els cannot capture variability outside of the learning set, which is likely to occur in the
case of pathology, and appearance modeling may fail in the presence of large grey value
variability across subjects and time.

Earlier work by this group proposed shape constrained deformable models, enabling
local deviation from a statistical shape model by embedding it into a 3D triangular
deformable mesh [6/1T]]. This approach used deterministic feature search and was suc-
cessfully applied to segment bones in CT. However, like many other deformable model
approaches [7l], multiple objects as the endo- and epicardium are not considered, nor
objects of significant shape change over time and across subjects. In addition, methods
with deterministic feature functions assume constant grey value appearance of the ob-
ject’s surface, which is not true for the myocardiac surface due to different surrounding
tissue as lung parenchyma, fat, and the right ventricle.

‘We propose to integrate several prior information sources into shape constrained de-
formable models including a deterministic, parametric model of the variation of surface
features, spatial relationships to handle multiple objects, and object deformation in time.
In the following we present the modeling and segmentation methods with application to
cardiac 3D MRI time series.

2 Methods

The shape model is represented by a triangular mesh. After initial positioning, the mesh
is adapted to the image by iterating the two-step procedure consisting of i) surface
detection in the image for each triangle, and ii) reconfiguration of the vertex coordinates
by minimizing £ = FE + aFj,. The parameter o weighs the relative influence of
an external energy Fex, which drives the mesh towards detected surface points, and
an internal energy FEj,;, which maintains the vertex configuration of an statistical shape
model. In the following we outline the deformable model framework [11]] and then
present how to represent, learn and integrate prior knowledge into the method.

2.1 Deformable Shape Models

Surface Detection is carried out for each triangle center x;. We seek the point x; along
the triangle normal n; which maximizes the cost function of a feature function F' (see
below) and distance ;4 to the triangle center according to

X; = x; + 0n; argmax {F(x; + jon;) — Dj?6%}, (1
G=—l, .1

where 2] + 1 is the number of points investigated, ¢ specifies the distance between two
points on the profile, and D controls the tradeoff between feature strength and distance.
The external energy term drives the mesh towards the detected surface points:

T
Bey(x) = Zw (% —xi)°, w; = max {0, F(%;) — Dj26%} )
=1
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T being the number of triangles. The weights w; give the most promising surface points
X; the largest influence during mesh reconfiguration.

The internal energy maintains the distribution of the mesh vertex coordinates v ;
w.r.t. the edges of a given initial mesh v, = v; — v,

.
B = Z Z (Vvj —vi — SR%‘LC)2 ) 3)
)

j=1 keEN(j

where N (7) is the set of neighbors of vertex j, and V' is the number of vertex coordinates
[IT]]. The rotation R and the scaling s of the mesh are estimated each iteration using a
fast closed-form point-based registration method based on singular value decomposition.
Since the energies in @), (B) are quadratic, energy minimization results in the efficient
solution of a sparse linear system using the conjugate gradient method.

2.2 Integration of Prior Knowledge

Statistical Shape Model. A point distribution model (PDM) is a parametric represen-
tation of a set of learning shapes [[T]], where an arbitrary shape s = [v1 ...v%]7 can be

approximated by the sum of the mean shape m and L — 1 weighted eigenmodes e;

L—-1

smm—f—Zpleh p=(s—m
=1

) e 4)

The model is automatically generated from a set of L segmented images [6]]. First, a
shape template is generated by triangulation of an arbitrarily selected image, which is
adapted to each of the remaining images by rigid and non-rigid adaptation (see above).
Finally, m and e; are calculated using principal component analysis on the landmark
vectors, which consist of the vertex coordinates of the adapted shape template.

The shape model can be adapted to image data by finding the optimal weights p; [1,
but shapes outside the variation of the training set cannot be described. In contrast, we
allow local deviations but encourage the distribution of the mesh vertices to stay close
to the PDM by embedding it into the internal energy [11]], extending (@) to

L

v
Bie=_ Y. (vj—vi—sR(m; —m;+ ) pile; —en)”, (5

j=1 keN(j) 1=1

where L is the number of eigenmodes used, m;, e;;, are the vertices of the PDM, and
the p; are calculated each iteration according to {@).

Simultaneous Adaptation of Spatially Related Surfaces. Our previous work con-
sidered segmenting single objects [[I1]. However, the epi- and endocardium are two
structures which are not connected but spatially related. This relationship may be vi-
olated during mesh adaption, yielding e.g. too close or even intersecting meshes. This
may result e.g. in the attraction of the endocardium to epicardiac image features (Fig.

Bla),(c)).
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Fig. 1. Myocardiac mesh with connections between endo- and epicardium (both cut in half for
visualization purposes, (a)), and the spatially varying feature model (color-coded gradient direc-
tion, (b)). Depending on the triangle location, profile statistics may exhibit small (c) and large (d)
variations, drastically reducing the specificity (d) of profile matching.

We propose to integrate this information to improve the segmentation robustness and
accuracy inspired by [3/12]]. Additional vertex connections are introduced that connect
neighboring vertices of the existing endo- and epicardiac surface model (Fig.[0(a)). Both
surface meshes are adapted simultaneously while constraining their initial configuration
and the vertex connections by adding a connection energy to the total energy

i d 5.2
E = Ee + aBiy + ﬁEconn s Feonn = Z(V;pl - v’ecrzj(; - SRij) 5 (6)
jeC
Vi = i'f;pi — v$ndo refers to a connected pair of vertices of the epi- and endocardiac

mean surfaces, C' is the set of connected vertices, 5 weighs the connection energy, and
Einex are calculated as in @), @) for both surfaces.

The connections are established once as part of the model construction phase. For
each vertex in the epicardiac surface the closest vertex in the epicardium is found in the
sense of the Euclidean distance. Since the shortest distance is not symmetric, the same
is done for the epicardium’s vertices. The resulting set of vertex pairs is then reduced so
that each vertex has at most one connection, favoring shorter connections. This results in
connections approximately orthogonal to the surface meshes in most cases (Fig. [[la)).
Spatially Varying Feature Model. Deterministic, parameterized feature models have
been successfully used, e.g. combining image gradient strength and direction w.r.t. the
triangle normal, F' = nTg, (D, for vertebrae in CT [11]]. However, the gradient direction
varies across the myocardiac surface, and the gradient strength alone is not a robust
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feature (Section [B). Statistical profile matching based on training data models
variable grey value appearance, but is computationally expensive in 3D and achieves
low specificity (and robustness) if the inter-subject profile variance is high (Fig.[I(c,d)).

We propose a hybrid approach, where the parameters of a deterministic feature model
are learned once from a training sample as part of the model construction. Specifically,
for each triangle we learn a grey value range [t1,;¢2;], a gradient range [¢1;; g2,], and
a gradient direction s; = =1 (inwards, outwards w.r.t. the mesh normal, Fig. [b)).
Feature search is made more robust to outliers by extending it to

F(X) = SjF(X)II(x)E[tlj;tQJ] 195 €l9155924] - Q)

The s; are automatically determined using the triangular meshes generated from the
above learning examples during PDM construction. First, grey value profiles are sam-
pled in all L images at all 7" triangle centers along the triangle normal. All triangles are
assigned a particular tissue interface class ¢;;, j = 1...7, 1 = 1... L, using square-
error (k-means) classification [2]] on the entire profiles. We argue that this classification
is more robust against outliers than local profile statistics since the sample size is sig-
nificantly larger (approximately L - T'/C vs. L, C: number of classes). We chose the
three classes myocard (MC)—fat, MC-right ventricle, and MC-lung parenchyma, where
each class was assigned the proper gradient direction. After classification, each triangle
Jj of the shape model is assigned the class label C'; and gradient direction s; following
Cj = argmax,_ 1 o ZzL:1 1., ,=c - This is based on the property that the triangles j,
have approximately anatomically corresponding locations on the learning examples [[6]).
Similarly, the grey and gradient value ranges for a triangle are the mean=(std deviation)
of grey values and gradients in the corresponding triangle centers in the learning set.
Generation and Adaptation of a 4D Deformation Model. Capturing significant LV
shape variation with deformable models is difficult because they are local methods with
limited capture range, and may adapt to false features due to poor image quality and other
nearby structures. One approach is to initialize the surface mesh with a close approxi-
mation to the object in the image [8/9/T()]. However, constraining a mesh adaptation to
the previous segmentation result may fail if the deformation between two time frames
is too large, and a prior 4D model of the LV for independent initialization of each time
frame may not describe a particular subject well.

S(0) S1) S(N)

---\I(N)

M(0) M(1) M(N)

Fig.2. 4D motion model constructed from a single subject (bottom row, every 5th frame, endo-
cardium cut open for visualization purposes) and adaption to a different subject (top row). The
model M () constrains the mesh adaptation to image I (%), initialized with the previous adaptation
result S(i — 1).
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We propose to combine a prior 4D shape model with the subject-specific adaptation
result of the previous image (Fig. ). The 4D model consists of meshes M (t) with
T triangles, V' time-dependent vertex coordinates vj(t), and T feature attributes s;.
Here we assume a constant feature model, enabled by the fixed mesh topology during
adaptation, i.e. constant number of triangles 7" and vertices V.

For each time frame I(t), the mesh M (¢) represents the shape model, and the mesh
S(t — 1) adapted to the previous image is used as an initialization. Each time frame
is segmented independently using the internal energy of @), where v, correspond to
the vertex coordinates of M (t), and v, v}, are initialized with the vertex coordinates
of S(t,—1) prior to the first adaptation. In our experiments, we had as many shape
models as time frames. If the numbers of shape models and time frames doesn’t match,
interpolation between shape model vertex coordinates is possible [[10].

Due to the limited availability of segmented image data we derive a 4D LV defor-
mation model from a single subjects manually segmented 4D MRI. A triangular mesh is
constructed from each time frame by adapting the myocardiac mesh of the end-diastole
generated earlier to the segmented image. In contrast to grey value images, this strategy
is possible with segmented images because they provide perfect surface features.

3 Experimental Results

For 3D (4D) adaptation the shape model is automatically positioned in the center of
the (first) image volume. In case of unfavorable FOV, more sophisticated positioning is
possible [8]]. The parameter settings used are summarized in Table 4. An adaptation to a
single time frame took approximately 8 seconds on a 1.7 GHz Pentium 4.

Image Data. We used cardiac MRI datasets (ECG-triggered FFE-EPI, Philips ACS-
NT 1.5 T, 20 time frames, 256 <256 images with 7-10 slices, 1.25x1.25x 10 mm) from
60 subjects with undetermined pathology and compared the automated results with
manual segmentations by calculating the mean and maximum closest distance between
mesh vertices and binary image. For each test case, a model was built from the remaining
59 subjects (leave-one-out test). The 4D deformation model was generated from this one
manually segmented time series, and adapted to time frames of other subjects. Due to
the lack of ground truth, the assessment was only done visually.

3D Adaptation. Fig.[Billustrates the effect of the various sources of prior knowledge
on the model adaptation. Separate adaptation of the two surface meshes with a global
feature function F' = n”'g (Fig.Bla)) results in severe adaptation errors since it models
a bright object on a dark background. Simultaneous adaptation of connected meshes

(a) Global F' (b) Connected (c) Local ' (d) Local F' +
connected

Fig. 3. Effect of prior knowledge on model adaptation. F' is the feature function.
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Parameter [ [ Value ‘
Energy weight « 0.25
2 mitial Distance weight D 100
ﬁf —— adaptation Profile step size & 1 mm
E 6 Profile length [ 10
g5 Num eigenmodes L 10
T4 Num mesh reconfigurations 20
=
54 lError [mm]: HMean[Std Dev[ Max ‘
i Tnitialization || 234 | 1.46 |20.35
o Simple Gradient|| 3.24 | 1.65 |21.25
00200 S0 S0 6 Combination || 1.28 | 0.82 |11.18

Fig. 4: Adaptation results (end-diastolic phase) after mesh initialization in the volume’s center
(data points sorted and connected with lines for visualization purposes), parameter settings.

approximately maintains the distances between the meshes (Fig. 3[(b)), but does not
prevent attraction of the epicardiac mesh to the LV. Separate adaptation with a spatially
varying feature model (Fig.Bl¢)) correctly adapts the epicardiac mesh in places where the
myocardiac tissue interfaces with the right ventricle. Nevertheless, the partial differences
between the feature model and this subject result in false attraction to the epicardiac fat.
Constraining the spatial relationship of the surface meshes (Fig.[3(d)) compensates the
partially wrong feature model. For wall thickness analysis the papillary muscles must
be inside the endocardiac surface, which is achieved by maintaining the shape of the
model and the spatial relationship between the meshes.

These findings are consolidated in our leave-one-out experiments. Accurate adap-
tation is not possible with a simple gradient feature alone due to disregard of prior
information (Table 4). Mean and maximum errors after automated initialization and
mesh adaptation are 1.2840.82 mm or 1-2 voxels (Fig. and Table 4 ), where the maxi-
mum errors occur in slice direction (10 mm slice thickness). The experiments showed no
significant difference between the adaptation accuracy of the endo- and epicardium. In
two cases (23, 54, Fig. 4) the initial mesh was a better approximation to the subject’s LV
than the adaptation result. In these cases the spatial distribution of features in the model
did not describe the subject’s grey value appearance well and could not be compensated
by the shape constraints (i.e. surface and connections), resulting in partial attraction of
the endocardiac mesh to epicardiac fat.

4D Adaptation. The 4D model (Fig.[2l bottom row) derived from segmented images
of a subject was adapted to time series of a different subject (top row). Visual inspection
of the adaptation of the model suggests feasibility of the method, which was not possible
using the 3D end-diastolic model alone due to the large deformation during the heart
cycle. As in the 3D case, similar few false attraction occurred, where the i.e. endocardiac
mesh adapted to epicardiac fat.

4 Conclusion

We presented a novel method for modeling and fully automated segmentation of LV in
3D cardiac MRI time-series with a mean error of 1.28 + 0.82 mm for the end-diastolic



Automated Segmentation of the Left Ventricle in Cardiac MRI 439

phase. While visual inspection suggests feasibility of the method in 4D, quantitative
validation for 4D segmentation is required to assess the quality of the segmentation and
quantitative measurements of functional parameters.

We demonstrated that the integration of several sources of prior knowledge into
a deformable model significantly increases robustness and accuracy of segmentation.
Information about shape and spatial configuration of objects by simultaneous adaptation
of coupled meshes helps compensating the lack of prominent features. Learning of
parameterized, deterministic local feature functions enables robust surface detection for
objects with spatially varying grey value appearance on the surface. The integration of
a temporal deformation model enabled to segment objects of large shape variation.

Future work will investigate the advantages of a true 4D approach by e.g. simultane-
ous adaptation of connected 3D meshes, and the extension of the 4D deformation model
to represent the deformation of a population of subjects.
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