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Abstract. Minimally invasive cardiac surgery is performed on the beating
heart, through inter-costal ports.  The two major limitations of these procedures
are: selecting port locations for optimal target coverage (based on chest x-rays
and angiograms), and navigating surgical tools through a dynamic and confined
environment using a 2D endoscope. To supplement the current surgery plan-
ning and guidance strategies, we continue developing VCSP – a virtual reality,
patient-specific, thoracic cavity model derived from 3D pre-procedural images.
In this work, we apply elastic image registration to 4D images of the heart to
model the epicardial surface over the cardiac cycle. We validated our registra-
tion algorithm on CT images of a dynamic cardiac phantom and of normal ca-
nine hearts, and found the error to be 1.14 ± 0.31 mm and 0.61 ± 0.12 mm, re-
spectively. We believe this method of modeling the epicardial surface is
sufficiently accurate to be applied in cardiac surgery planning and guidance.

1 Introduction

Coronary artery disease (CAD) is the single leading cause of death in the developed
world.  Traditionally, CAD is treated with coronary bypass surgery through a median
sternotomy under cardiopulmonary bypass. Eliminating the heart-lung machine and
using a less invasive thoracotomy have been shown to reduce hospital stays and costs
[1].  Such promising results have prompted the development of endoscopically-aided,
port-access, bypass surgeries [2]. In spite of the sophistication of some robotic sys-
tems used to perform these interventions, critical tasks such as surgery planning and
guidance are performed entirely with 2D images. Port placement is based on 2D angi-
ography and chest x-rays, while the entire procedure is guided solely through a 2D
video endoscope with a small field of view and reversed video picture. The lack of 3D
surgery planning and guidance can lead to improper patient selection, sub-optimal
port placement, longer procedures, and increased risks to the patient [3].

To address these issues, we have developed the Virtual Cardiac Surgery Planning
platform (VCSP) [3].  In this prototype software, a model of the thoracic cavity, de-
rived from segmented pre-procedural 3D images, is shown stereoscopically to the
user, who can then optimize locations of the inter-costal ports interactively. To adapt
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VCSP from surgery planning to guidance, we plan to update the environment with
intra-operative ultrasound (US) images, similar to the approach proposed for neuro-
surgery in [4]. Currently, the patient’s chest wall and ribs are represented in the VCSP
prototype. A non-patient specific dynamic model of the coronary arteries derived
from 2D angiograms is also available [5].  The aim of this work is to continue devel-
oping VCSP by including patient-specific, high resolution, dynamic models of the
epicardial surface, that will serve as a basis with which models of the coronary arter-
ies and other structures of interest will be merged

Previous work in cardiac modeling has concentrated primarily on analyzing the
left-ventricle (LV) - the structure most important for function. An exception is the
work by Sørensen et al. [6], who used image segmentation to create a static 3D model
of the entire heart from magnetic resonance (MR) images at end-diastole. Others have
employed segmentation of cardiac images to visualize various structures [7]. Al-
though effective on single 3D images, these methods fail to take advantage of the cor-
respondence of adjacent time points in a 4D dataset.  In contrast, the work by Declerc
et al. [8] makes use of the correspondence between time frames, but only for the LV,
where the geometry can be simplified to minimize the amount of parameters describ-
ing the motion.  Another method of deriving motion from a temporal image sequence
is through voxel-based, elastic image registration. Motion information obtained by
registering image time frames together can be used to propagate a static model (cre-
ated using a single segmentation) through the cardiac cycle. Similar ideas have been
used to compensate for motion blur in PET images [9], and to segment the myocar-
dium, LV and RV from 4D MR images [10]. Voxel-based methods are convenient for
planning and guidance of minimally invasive cardiac surgeries, since the amount of
user variability and the time required per patient is minimal.

In this paper we validate our elastic registration algorithm applied to the problem
of accurately representing a dynamic epicardial surface. We assert the performance of
our algorithm with computed tomography (CT) images obtained from a dynamic car-
diac phantom by following easily identifiable landmarks, and with images of normal
canine subjects, where we used consistency measures to estimate the error in epicar-
dial surface location. Multi-slice helical CT images were used because of the superior
voxel size (~ 0.15 mm3), but comparable time resolution (100 msec) to MR. Ulti-
mately, the epicardial surface model will be merged with models of much smaller
structures, such as the coronary arteries.  Therefore, we require the error in the regis-
tration to be less than 1 mm, or slightly smaller than the size of the relatively large
right coronary artery (cross section 4 ± 2 mm2 in women) [11].

2 Methods

The goal is to accurately track the epicardial surface over the cardiac cycle. Fig. 1 il-
lustrates how elastic image registration along with 4D imaging can be applied to this
problem. The fundamental assumption is that image motion, observed by changing
voxel intensities, corresponds accurately to the physical motion of the object.
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Fig. 1. Slices from CT images of a cardiac phantom, A - end-diastole, B - end-systole.  Regis-
tering A to B produces transformation TAB that describes the motion between the two images

2.1 Elastic Registration

Our algorithm uses free-form deformations to model the motion of the epicardial sur-
face.  First, the source image is overlaid on the target image.  In our experience, rigid
body pre-registration is not required since differences between two image frames are
relatively small.  A 3D grid of vectors is then superimposed on the source image to
facilitate the elastic deformation.  Each vector is optimized separately by minimizing
the following cost function using the simplex method of Nelder and Mead [12]:

cost(Ti) =  ISo(Ti) − ITa

V

+ α ⋅ BE(TSoTa) . (1)

where Ti is the current vector being tested, TSoTa is the complete transformation from
source to target (composed of all Ti), V is the sub-volume of interest surrounding the
current vector being optimized, ISo(Ti) is the voxel intensity in the source image after
translation by Ti, ITa is the voxel intensity in the target image, and α is the coefficient
used to control the cost attributed to the bending energy (BE) of the vector field.  The
first term is the sum of absolute differences (SAD) between source and target sub-
volumes.  SAD measures image misalignment, and has previously been used in serial
image registration [13] because ideally, serial images differ only by noise and location
of features.  In addition, the SAD calculation is simple, fast, and can easily take ad-
vantage of parallel processing.  The second term, calculated using the 3D bending en-
ergy definition in [14], ensures that the vector field transformation is smooth.

In order to reduce optimization errors, the algorithm progresses through three
stages with increasing vector field density (21 mm3 of image volume per vector, then
14 mm3, and finally 7 mm3).  7 mm3 was the finest detail used as it suitably balanced
accuracy and computation time.  At each stage the vector field is interpolated using a
linear, cubic or B-spline method prior to being applied to the source image.  Higher
order interpolation can be used to further ensure that the transformations are smooth.

2.2 Dynamic Epicardial Surface Model

The epicardial surface model is based on multi-slice, helical CT images obtained us-
ing a GE LightSpeed Ultra CT scanner, with retrospective gating.  Each 4D dataset
consists of ten 3D images over the cardiac cycle. Normal canines were scanned after

TAB
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injection of iodine contrast agent.  The animals were
paralyzed and artificially ventilated during the 30-
second imaging time.

Generating the epicardial surface model can be
divided into two distinct steps.  First, a static model
is created by manually segmenting the epicardium in
the end-diastolic image of a given 4D dataset.  The
end-diastolic image is chosen because heart motion
is minimal during this phase.  The binary segmenta-
tion is smoothed with a spherical kernel Gaussian
filter and then rendered in 3D using the marching
cubes algorithm [15].  Fig. 2 shows an example of a
typical 3D epicardial surface model at end-diastole.

To animate the model, we elastically registered a
4D image of a given subject as illustrated in Fig. 3.
The vector field transformations, T01 through T09,
were applied to the end-diastolic, 3D surface using
linear, cubic or B-spline interpolation.  The resulting
surfaces were then displayed sequentially to portray
the dynamic model of the epicardial surface.

Fig. 3. Measuring cardiac deformation with elastic registration.  ED is the end-diastolic image,
ED + N is the Nth image in the cardiac cycle. T0N represents the vector field transformation
mapping the end-diastole to the Nth time phase image

3 Motion Validation

The ability of our registration algorithm to accurately track the epicardial surface was
assessed with experiments on phantom and canine datasets.

3.1 Cardiac Phantom Experiment

Our phantom (Limbs & Things, Bristol, UK) [16] consists of a rubber-like model of a
single-chambered heart that rests on a fiberglass “thorax”.  The phantom is inflated by
an air pump, modified to output a TTL trigger to allow ECG-gated imaging. The sur-

Fig. 2. Epicardial surface
model of a canine heart at
end-diastole. Labels: left
ventricle LV, right ventricle
RV, right atrium RA, and
ascending aorta AA
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face of the phantom was covered with a network of 1 mm-diameter metal wires to
simulate the coronary arteries. 1 mm-diameter ball bearings were added in areas not
covered by the wire network. The purpose of these modifications was to provide
identifiable landmarks for validation (21 in total).  A photograph of the phantom with
examples of three different landmarks is shown in Fig. 4a.

Seven 3D CT images of the phantom were acquired from end-diastole (N = 0) to
end-systole (N = 6) using retrospective ECG gating (images span half of the complete
cycle).  Iso-surfaces of the coronary network and the ball bearings were easily ex-
tracted using marching cubes.  Each 3D iso-surface-image pair was rendered with
three orthogonal cut planes, as shown in Fig. 4b.  Landmarks were located manually
by using the mouse to drag a small sphere along the cut planes to the appropriate lo-
cation on the image.  The iso-surface was used as an additional cue to increase the ac-
curacy in finding the landmarks.

    

Fig. 4. A – Photograph of the modified cardiac phantom with example landmarks. B – Three
orthogonal planes slicing through the end-diastolic CT image; the corresponding wire network
iso-surface is overlaid on the image

The error in motion extraction was estimated by comparing the manually selected
landmark positions with the corresponding positions obtained from registration.  Let
LMN be the set of 21 manually selected landmark locations for an image at time N.
We can obtain LAN (algorithm-derived landmark locations at time N) by registering
image 0 to image N, and applying the resulting transformation T0N to LA0.  Table 1
presents the root mean square (RMS) and maximum of the Euclidian distances be-
tween corresponding LM and LA landmarks at a given time N. Also shown, is the
RMS and maximum distance between LM locations obtained by the same individual
on two separate trials (indicates precision in the manual localization step).

Non-zero RMS between LM and LA indicates an overall error in the registration
algorithm and in the manual landmark localization step. From Table 1, landmark lo-
cations can be selected with a precision of 0.89 ± 0.28 mm, whereas the overall error
in motion extraction is 1.14 ± 0.31 mm.  Clearly, most of the overall error can be at-
tributed to manually locating landmarks rather than the registration process. Incon-
sistency in landmark positioning is caused by the large diameter of fiducials (1 mm),
metal artefacts in the CT images, and additional motion artefacts in the middle stages
of the half-cycle, when the phantom wall is moving at maximum velocity.

intersection
landmark

ball bearing
landmark

endpoint
landmark
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Table 1.  RMS and maximum of the Euclidian distance for LMN vs. LAN and LMN vs. LMN.
The last row is the mean ± standard deviation over the six landmark set pairs

LM vs. LA LM vs. LM
N

RMS (mm) Max. Dist. (mm) RMS (mm) Max. Dist. (mm)
1 0.58 1.27 0.41 0.81
2 1.04 2.87 0.85 1.98
3 1.32 2.96 1.24 3.33
4 1.48 3.64 1.02 2.55
5 1.23 2.18 0.96 1.61
6 1.20 1.99 0.88 1.92

Mean ± STD 1.14 ± 0.31 - 0.89 ± 0.28 -

3.2 Canine Experiments

For the second experiment we tracked the epicardial surface in 4D images of four
normal canine hearts.  Because the true cardiac motion was unavailable, we used con-
sistency measurements [17] to validate our algorithm.  The schematic in Fig. 5 shows
three possible registration loops (each consisting of three propagations) for a series of
nine images of a given subject (SN is the epicardial surface at time N, S’N is the sur-
face obtained after applying the complete loop of transformations to SN).  The first
loop is based on S0, the manual segmentation of the end-diastolic image, and the S1

and S2 loops are initialized by first transforming S0 with T01 and T02.  We chose to reg-
ister images that were three phases apart to approximate the “parallel” approach
shown in Fig. 3. For a given loop, we calculated the RMS of the Euclidian distance
between corresponding points on SN and S’N, effectively estimating the error in the
motion derivation procedure over three consecutive propagations. For the error in a
single propagation, we divided the RMS by √3, assuming that the true error is nor-
mally distributed and uncorrelated. Table 2 shows the error in a single propagation
averaged over the three possible registration loops for each canine subject.

The estimated error indicates suitable accuracy in motion extraction over the car-
diac cycle.  In Subject 2 there was an above-average error caused by a metal-like arte-
fact from contrast agent in the right atrium. In Subject 3, contrast agent was evenly
distributed, leading to lower error. The above-mentioned artefact is very localized, af-
fecting only a small part of the epicardial surface. Its presence depends on the timing
of contrast agent administration and imaging as well as the subject’s physiology.

Fig. 5. Registration loops for a 4D dataset composed of nine images used in the validation.  SN

is the epicardial surface at time point N (N = 0 is end-diastole)
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Table 2. RMS of Euclidian distances between corresponding points on the starting surface and
the surface obtained after applying a closed loop of transformations.  The RMS is averaged
over the three possible loops per subject.  Subject 3 was scanned on two different days

Subject # of Points per Surface RMS (mm)
1 9037 0.63
2 8658 0.76

3 (day 1) 10853 0.59
3 (day 2) 10276 0.48

Mean ± STD - 0.61 ± 0.12

4 Conclusions and Future Work

In this paper we presented a method for modeling the dynamic epicardial surface of a
potential cardiac intervention patient using elastic image registration. In the phantom
experiment, the error in extracted motion was shown to be almost entirely attributable
to the error in manually locating the landmarks. The simple geometry of the phantom
and the presence of high contrast fiducials in the images contributed to the above av-
erage performance.  In the canine experiments, the error in extracted motion was es-
timated to be smaller than the image voxel size. Due to the presence of image arte-
facts, the true error is probably not uncorrelated as was first assumed. Therefore, the
consistency-estimated error is probably an underestimate of the true error. This is not
particularity significant because our goal of 1 mm maximum error is much larger than
what we observed.

In the validation experiments we concentrated on the epicardial surface motion
over the cardiac cycle. The accuracy of the epicardial surface itself (manual segmen-
tation) has not been assessed. In the near future we will perform further validation
studies using more canine datasets, and eventually, human CT images. The major re-
search direction will be to incorporate subject-specific epicardial models into the vir-
tual environment in order to plan and guide port-access cardiac interventions. When
details of the coronary arteries are required, the surface model will be merged with a
model of the coronary artery tree, derived from intra-operative 2D angiography.  Ad-
ditional models of the internal structures of the heart will be created using similar
registration based methods and will be used to guide intra-chamber procedures.
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