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Abstract. Most methods used in functional MRI (fMRI) brain mapping
require restrictive prior knowledge about the shape of the active blood-
oxygenation-level-dependent (BOLD) response, thus leading to subop-
timal or invalid inference. To solve this problem, we propose to assess
local neural activity in terms of time alignment between the sequence of
BOLD dynamics changes of interest and an Hidden Semi-Markov Event
Sequence Model (HSMESM) of brain activation. The topology of the
HSMESM is built from the deterministic transitions of the input stim-
ulation paradigm and its parameters are automatically and iteratively
learned from all intracranial fMRI signals. The brain mapping results
achieved by HSMESMs in language processing demonstrate the rele-
vance of such models in BOLD fMRI, especially to cope with strong
variabilities of the active BOLD signal across time, brain, experiments
and subjects.

1 Introduction

Functional MRI extends conventional anatomical imaging to include localiza-
tion and mapping of active brain areas engaged during perceptions, actions and
cognitive tasks. Most existing methods used in fMRI brain mapping involve
restrictive morphological assumptions about the shape of the BOLD signal ob-
served at each voxel in response to an input stimulation block paradigm. These
assumptions range from a simple on-off boxcar response, convolved or not with
a predefined hemodynamic response function [2][3][4], to a more flexible fitting
model formulated on a limited set of basis template functions as in the general
linear model at the heart of SPM [5]. In addition, all these methods assume that

R.E. Ellis and T.M. Peters (Eds.): MICCAI 2003, LNCS 2879, pp. 75–82, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



76 S. Faisan et al.

the BOLD response is constant across stimulus (excluding habituation, learning
and fatigue phenomenae) and, often, across brain areas, stimulation parameters,
experimental sessions, and subjects. Consequently, fMRI data may be partially
and misleadingly characterized leading to suboptimal or invalid inference.

To avoid prior morphological hypotheses, Thoraval et al. [1] recently proposed
to resolve fMRI brain mapping based only on the relevant non-stationarities
of the BOLD signal. In their approach, local neural activity is measured by
scoring the relative alignment of the sequence of dynamics changes, detected
in the corresponding BOLD signal, onto a deterministic model of the paradigm
transition sequence. Despite the promising results obtained, the method suffers
from the introduction of heuristic cost functions in the scoring process. In this
paper, we propose to reformulate the scoring or evaluation problem within the
statistical modeling framework of HSMESMs, a special class of Hidden Semi-
Markov Models (HSMMs), to lead to a probabilistic brain activation model in
place of the deterministic one mentionned above. The learning and generalizing
abilities of HSMESMs prove to be of great interest in BOLD fMRI when dealing
with the unknown shape and variability of the BOLD response.

2 Hidden Semi-Markov Event Sequence Models

This section presents only the salient features of HSMESMs within the general
context of hidden Markov modeling. Because an HSMESM can be viewed as
a special instance of an HSMM which in turn is an extension of the standard
HMM to explicit modeling of state occupancy duration, the reader is referred to
Rabiner’s tutorial [6] for a rigorous presentation of the HMM formalism, and to
the pioneering works of Ferguson [7], Russel et al. [8] and Levinson [9] for the
understanding of durational modeling in HSMMs.

2.1 Data Preprocessing, Event Sequence, Observation Sequence

In an HSMESM approach, a preprocessing step detects and characterizes events
of interest in the input process under analysis. Each time tl an event is de-
tected, an observation, also called an event, el, is produced. Let τO = {1, 2, ..., T}
be the set of observation times and O = o1o2...oT the corresponding observa-
tion sequence. Let τE = {t1 = 1, t2, ..., tL = T}, τE⊂τO, be the set of event
detection times and E = e1e2...eL the corresponding sequence of L detected
events. e1 and eL are both fictive events introduced at the beginning and the
end of E for duration modeling purposes. Then, by definition, O is built upon
E by inserting a null event, φ, in E each time t∈τE = τO − τE . The writ-
ing ot = φ means a missing of observation occurred at time t. As an ex-
ample, if T = 20 and τE = {1, 3, 6, 12, 15, 20}, then E = e1e2e3e4e5e6 and
O = e1φe2φφe3φφφφφe4φφe5φφφφe6.
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2.2 Elements of an HSMESM

Due to the detection based preprocessing, an HSMESM observation sequence is
usually composed of true positive events (tpe) mixed with false positive events
(fpe) and missings of observation (null). Let C − 2 be the number of tpe classes
that characterize the process under study. Then, the state space of the associated
HSMESM results from the union of two state subspaces, namely:

– Stpe = {Si; i = 1, ..., C}: Si is a standard Markov state producing tpe at
times tl ∈ τE according to its associated output observation probability
density function (pdf) bj(otl

). S1 et SC are the start and final states of the
hidden process. They model the fictive events e1 and eL, respectively, with
the arbitrary settings b1(ot1 = e1) = 1 and bC(otL

= eL) = 1.
– Sfpe/null = {Sij ; i, j = 1, ..., C}: Sij is a semi-markovian state interleaved

between Si and Sj . Sij is occupied d−1 times when the model transits from
Si to Sj , with an inter-tpe state duration d, d ≥ 1, between Si et Sj explicitly
modeled by the duration pdf pij(d) in accordance with the semi-markovian
nature of Sij . Sij produces fpe or null at times t ∈ τE according to its
composite output observation pdf b+

ij(ot) = bij(el).eij1.11τE
(t) + eij2.11τ

E
(t)

(11X(t) = 1 if t ∈ X, 0 otherwise) built on the latent Bernoulli process of
parameter eij1 = 1 − eij2.

To be completely specified, an HSMESM needs to define the C parameter, the
transition probability matrix A = {aij}, the observation pdfs B = {bj(.)} and
B′ = {bij(.)}, the durational pdfs D = {pij(.)} and the emission matrix E =
{eij1}. Hereafter, we use the compact notation λ = (A, B, B′, D, E) to denote
an HSMESM.

From a generative point a view, an HSMESM behaves as follows. In S1 at
t1, the model emits e1. At some tk, 1 ≤ k < L, in Si, it selects the next state Sj

to visit according to the transition probability distribution {aij}. Sj is actually
visited at tl = tk + d, l > k, with d randomly drawn according to the inter–tpe
distribution pij(d). Before reaching Sj , the model remains d − 1 times in Sij to
emit fpe or null according to b+

ij(.). This procedure is repeated until reaching
SC at tL = T to emit eL.

The topological representation of an HSMESM is depicted in Fig. 1b. Shaded
circles represent tpe states while bicolor boxes in between correspond to fpe/null
states. The equivalent standard markovian representation of an HSMESM can
be obtained by expanding the semi-Markov state Sij into two parallel state delay
lines, as shown in Fig. 1c, one composed of D−1 standard HMM states So,d

ij with
an associated output pdf bij(.), the other composed of D − 1 standard HMM
states Sø,d

ij without any output pdf . D denotes the maximum duration allowed
between two successive tpe. When transiting from Si to Sj , the hidden process
swaps from one delay line to the other. For instance, observing the subsequence
of Fig. 1a is equivalent at the hidden process level to occupy Si, Sφ,7

ij , So,6
ij and so

on until reaching Sj . An HSMESM can be seen as a special class of HSMM since
setting eij1 = 1 and bij(.) ≡ bj(.) in Fig. 1c leads back to Levinson’s equivalent
standard markovian representation of a semi-Markov state.
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Fig. 1. HSMESM example: a) output observation sequence with some of the corre-
sponding visited states, b) topological representation, c) equivalent standard markovian
representation of the state triplet {Si, Sij , Sj} (see text).

2.3 Algorithmic Aspects

The three basic problems of HMMs or HSMMs, namely evaluation, learning and
decoding [6], arise equally within an HSMESM modeling framework. They can
be solved similarly based on adapted versions of the Forward–Backward, Baum–
Welch and Viterbi algorithms, respectively. They are not presented in this paper.
However, it can be stressed that the Forward, Backward and Viterbi variables,
when implemented in an HSMESM analysis framework, are calculated only for
the detection time series {tl}, thus reducing substantially the computation load
and the memory requirements as soon as the number of detected events, L,
becomes much less than the number of observations, T .

3 Unsupervised Learning and Mapping of fMRI Signals

3.1 fMRI Data Preprocessing

The events to be detected here are the significant dynamics changes of the local
BOLD response. To this aim, the wavelet-based preprocessing approach of Tho-
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raval et al. [1] is used. Unlike their approach, only the ”off-on” dynamics changes
of interest are tracked. Indeed, due to a locally smoothed shape of the BOLD
response or due to an unsustained cerebral response, or both, the temporal lo-
calization of the ”on-off” dynamics changes of interest is made too unprecise,
leading to excessive noise in terms of time alignment onto the paradigm transi-
tions.

3.2 Brain Activation HSMESM

At the hidden process level, C − 2 tpe states Si are used, one for each ”off-on”
paradigm transition, with a state index i reflecting the order of appearance of
the transition in the paradigm. The start and final tpe states S1 and SC are
then added and a semi-Markov state Sij inserted between each valid tpe state
pair (Si, Sj). A left-right topology is selected for the chain with the additional
contraints aii = 0, ∀i, and aij = 0 if j > i + ∆, with ∆ ∼ C

2 , to avoid an active
signal jumps too many successive transitions at once. A typical chain topology
of a brain activation HSMESM is depicted in Fig. 2 with ∆ = 2 and C = 5. For
simplicity of the model and consistency in the reestimation of its parameters,
all observation and durational pdfs are specified as one-dimensional gaussians.
Finally, to reduce the amount of parameters to be estimated, the concept of
parameter tying [6] is extensively used.

�� �� �� �� ��

��

���

Fig. 2. State chain example of a brain activation HSMESM : a) paradigm off-on transi-
tion sequence with the fictive beginning and end off-on transitions, b) associated hidden
state chain with the tpe (circles) and fpe/null (boxes) states.

3.3 Unsupervised Learning and Mapping

Unsupervised learning and mapping of brain active signals are performed jointly
in the sake of a brain activation HSMESM well-suited for the fMRI sequence
under analysis. The procedure consists in building iteratively a series of refined
brain activation models {λi} along with a series of active signal sets {Si}. Com-
posed of all the signals declared active by λi, Si is used as learning set for
λi+1. Both series converge respectively to λopt and Sopt in that learning from
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Fig. 3. Learning-Mapping procedure of a brain activation HSMESM

Sopt yields λopt which in turn declare active Sopt. The overall procedure is de-
picted in Fig. 3. The initial model λ1 is derived from simple statistics performed
on the active signal set S0 of all intracranial event sequences. The likelihood
map LMi is made of the voxel likelihoods l = P (O|λi) for which a p-value
p =

∫ +∞
l

P (x|H0)dx is calculated, where P (x|H0) is the pdf of the likelihood x
under the null hypothesis H0 of cerebral inactivity. This distribution is inferred
experimentally from a large set of random observation sequences, representative
of chance, obtained by a random mixing procedure applied to the intracranial
event sequences. The p-value map associated with LMi is thresholded to yield
the active signal set Si. If Si coincide with Si−1, the learning–mapping procedure
is stopped with Si as the final brain activation map. Otherwise, Si is reused to
estimate λi+1 based on the Baum-Welch algorithm. It must be noted that the
above procedure converged for all fMRI sequences tested, and independtly of the
initial model λ1, provided λ1 is a weakly-constrained brain activation HSMESM.

4 Results and Discussion

fMRI studies have been conducted to map the cortical areas involved in language
processing on 16 healthy volunteers using a two-condition task [10]. Images were
acquired with a 2T whole body S200 Bruker MRI system with a head volume
coil. Each fMRI sequence is composed of 145 3D images obtained with echo-
planar imaging (EPI) using an axial slice orientation (32 slices, 64x64 pixels,
voxel size = 4x4x4 mm, TE=10ms,TR=5s). All images are registered to the first
image in the series. A spatial prefiltering is then performed to increase the signal
to noise ratio. Activation maps obtained with the HSMESM approach are com-
pared to the ones obtained by the t–test (Fig. 4a-d). The thresholded HSMESM
map of Fig. 4c indicates four brain areas implicated in the language task. These
are also detected by the t–test, as shown in Fig. 4d, except for Region 3, thereby
illustrating the ability of the HSMESM method to exhibit additional true acti-
vated areas in the brain. Moreover, signals declared active outside the language
areas by the HSMESM method, as Region 5 in Fig. 4c, do not correspond to false
alarms but to induced secondary activities. Generally speaking, true active fMRI
signals undetected by the t–test present either impulsive noise, baseline drift or
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Fig. 4. Results: a,b) activition maps in terms of p-value (p=0–1(white–black)) obtained
with the HSMESM method (a) and the t–test method (b), c,d) corresponding thresh-
olded maps (p=0.05), e) active signal from Region 1, detected by both methods, f)
active signal from Region 3, detected by the HSMESM method only, with, for e) and
f), from bottom to top: stimulation paradigm with off-on transitions, dynamics changes
detected in the raw fMRI signal, raw fMRI signal, tpe detection time series after Viterbi
decoding, g,h) matching plots of the tpe detection time series vs. the off-on transition
time series for a fMRI signal of Region 1 (g) and Region 5 (h)

activation delays along with low SNRs, as shown in Fig. 4f. They may also corre-
spond to emerging or vanishing activities, that is, to unsustained activities over
the fMRI experiment. Finally, both matching plots of Fig. 4g-h illustrate another
promising aspect of the HSMESM approach in BOLD fMRI. They are obtained
for two different regions of interest, namely Region 1 and Region 5, by plotting
for each voxel in the corresponding region, the tpe detection time series {t̂i}, t̂i
in τE , decoded by the Viterbi algorithm onto the brain activation HSMESM,
against the off-on transition time series {ti} of the stimulation paradigm. The
subplot of Fig. 4g is typical of an in-phase cerebral response for Region 1 with
respect to the stimulation paradigm. Instead, the half-opened shape depicted in
Fig. 4h is representative of an anti-phase cerebral response for Region 5, with an
underlying brain activation model not willing to decide whether the active fMRI
signal is in advance or late with respect to the paradigm transition sequence.
Finally, note that regarding computational issues, the processing time needed to
obtain an HSMESM activation map from a given input fMRI sequence, spatial
registration excluded, was about 10 minutes on a PC Pentium 4, 1.7 GHz.

5 Conclusion and Future Work

A new statistical method for learning and mapping active signals in functional
MRI of the human brain has been presented. Unlike other methods, no prior re-
strictive morphological assumptions are required. Neural activity is assessed only
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on the BOLD dynamics changes of interest detected at each voxel. The event
sequence they form is scored using a statistical brain activation hidden semi-
Markov event sequence model built from the deterministic sequence of stimu-
lation paradigm transitions, and statistically trained from all intracranial fMRI
signals.

The brain mapping results achieved by the HSMESM method are encour-
aging. They first demonstrate the relevance of such statistical models in BOLD
fMRI to take into account the variabilities of the BOLD active signal across time,
space, experiments and subjects. They also validate the time locking principle
between stimulation and response introduced by Thoraval et al. [1] in human
brain mapping. Finally, they lead to the design of new fMRI functionalities from
HSMESM Viterbi decoding such as selecting, focusing and analyzing specific
activation modes.

The proposed method has now to be compared further. In addition, we plan
to introduce neighbouring spatial information in the measure of the local neu-
ral activity by extending the HSMESM framework to the case of hidden semi-
Markov multiple event sequence models.
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