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1 Robarts Research Institute
2 University of Western Ontario
London, ON N6A 5K8 Canada

{mwach, smolikov, tpeters}@imaging.robarts.ca

Abstract. In addition to the widely-used Shannon mutual information,
generalized information-theoretic similarity metrics have properties that
make them conducive to biomedical image registration. The mutual in-
formation based on Havrda-Charvat and Rényi entropy measures are
compared to Shannon mutual information, normalized mutual informa-
tion, the correlation ratio, and other generalized metrics. Single slice/3D
registration results on brain and heart volumes show that generalized
metrics that deviate slightly from the Shannon metrics can improve reg-
istration outcomes based on success rate, and have competitive compu-
tation times. The results also suggest that these metrics may be used
with Shannon (and other) measures in a complementary manner.

1 Introduction

Many similarity criteria exist for multimodal medical image registration, in-
cluding statistical measures (e.g. correlation ratio) [1], those based on image
features (pattern intensity, gradient difference, gradient cross correlation) [2],
and information-theoretic measures (e.g. joint entropy, mutual information) [3,
4], which have been shown to be particularly robust [5]. This paper focuses on
generalized information measures, and demonstrates their efficacy within a mul-
tiresolution registration framework. They are parameterized by a real number,
and typically specialize to Shannon metrics in a limit of their parameter. Some
such metrics have already been used for registration [6,7]. The current work ap-
plies additional measures to single slice/3D registration for MRI and CT brain
and cardiac images, and shows that improvements can be obtained when the
generalized and Shannon measures differ only slightly. Such registration is used
in motion correction [8], medical research [5], and in aligning 2D projection
images to 3D tomographic volumes [2,5]. The current study is limited to rigid
registration. Although most tissues are deformable, rigid registration is useful
in global alignment prior to local, non-linear registration [9]. It is also employed
for locally-constrained registration of images of deformable tissues [8].

After a brief description of generalized metrics, results are presented for ex-
periments on simulated and real medical images. Metrics based on the Rényi
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and Havrda-Charvat entropy definitions are compared with Shannon mutual in-
formation (MI), normalized mutual information (NMI), the entropy correlation
coefficient (ECC), and the correlation ratio (CR), as well as with other general-
ized metrics that have appeared in the literature [6,7].

2 Information-Theoretic Similarity Metrics

In the following discussion, let X and Y respectively denote the intensities of
the source image and of the corresponding transformed coordinates in the target
(reference) volume. Let p(xi), i = 1, . . . , n, and p(yj), j = 1, . . . , m denote the
probability distribution of the intensities of X and Y , respectively, and p(xi, yj)
represent their joint distribution. The Shannon entropy, H, is additive: if X
and Y are independent, then H(X, Y ) = H(X) + H(Y ). Thus, the Shannon
mutual information of X and Y is: I(X, Y ) = H(X) + H(Y ) − H(X, Y ). A
normalized variant, less sensitive to the size of the source/target overlap, is [10]:
Ĩ(X, Y ) = H(X)+H(Y )

2H(X,Y ) . Another metric based on Shannon entropy is the entropy

correlation coefficient, given as [11]: ĨECC(X, Y ) =
√

2I(X,Y )
H(X)+H(Y ) .

Many generalized entropy definitions exist. Most have the property that they
approach the Shannon entropy in some limit of their parameter(s). One of the

earliest such definitions is that of Rényi [12]: Rα(X) = 1
1−α ln

n∑
i=1

pα(xi), α ∈
R − 1. The Rényi entropy becomes the Shannon entropy as α → 1. Like H, Rα

is additive, and therefore a measure of Rényi information, IR
α , is [7]:

IR
α (X, Y ) = Rα(X) + Rα(Y ) − Rα(X, Y ). (1)

A non-logarithmic form of entropy is proposed by Havrda-Charvat [13]:

Sα(X) = 1
1−α

(
n∑

i=1
pα(xi) − 1

)
, α ∈ R − 1. This entropy becomes Shannon

entropy as α → 1. Sα, functionally similar to the Tsallis entropy [14], is non-
additive. However, if X and Y are independent, then Sα(X, Y ) = Sα(X) +
Sα(Y ) + (1 − α)Sα(X)Sα(Y ). Thus, an information measure information using
Sα, IS

α (which becomes I for α = 1), is [14]:

IS
α (X, Y ) = Sα(X) + Sα(Y ) + (1 − α)Sα(X)Sα(Y ) − Sα(X, Y ). (2)

Some generalized measures have been applied to biomedical image registra-
tion, including Iα and Mα information [6]:

Iα(X, Y ) =
1

α(α − 1)




n∑
i=1

m∑
j=1

pα(xi, yj)
(p(xi)p(yj))α−1 − 1


 , (3)

and

Mα(X, Y ) =
n∑

i=1

m∑
j=1

|pα(xi, yj) − (p(xi)p(yj))α|1/α
. (4)
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These various information measures exhibit different behaviours as X and
Y come into alignment (become more dependent). This behaviour is illustrated
in Fig. 1 for I, ĨECC , and for various parameters of IS

α and Mα. In the figure,
the metrics were computed from 8-bit joint distributions ranging from complete
dependence (p(xi, yj) = 1/256 for i = j, and 0 otherwise) to complete inde-
pendence (p(xi, yj) = 1/2562 for i, j = 1, 2, . . . , 256). Metric curve behaviour is
related to its parameter value. For instance, the Mα metric for α = 0.25 is more
sensitive to changes in independence as the images approach correct alignment,
whereas is it not sensitive for large misalignments. The converse is true for α = 2.
The shape of the curves approach that of I as the parameter values approach
1. The functional behaviour of these metrics can be exploited to improve regis-
tration outcomes. Henceforth, it is assumed that the similarity metric function
attains its maximum at correct alignment, although exceptions do exist [5].

(a) (b)

Fig. 1. Curves of MI, ECC, and generalized metrics representing change from depen-
dence (alignment) to independence. (a) IS

α information. (b) Mα information.

3 Methods

3.1 Images

All experiments were rigid body multimodal registrations of 2D slices to 3D
volumes. The data consisted of: 1: Simulated PD MRI images of a brain with
multiple sclerosis lesions registered to a corresponding T1 MRI volume of a nor-
mal brain with 5% noise, and 2: with 9% noise (BrainWeb, Montreal Neurological
Institute) [15] (Fig. 2). 3: 2D MRI to 3D CT registration of brain images obtained
through the NLM-NIH Visible Human Project (VHP) female dataset (Fig. 3, (a)
and (b)). 4: 2D MRI to 3D CT registration of whole-heart images obtained from
VHP male dataset (Fig. 3, (c) and (d)). Beam-hardening artifacts were present
in this CT volume, which also had low contrast even after enhancement. As the
voxel size was known, the volumes and corresponding slices were resampled to be
isotropic and equal in resolution to eliminate scaling transformation parameters
[8]. The data are described in detail in Table 1.
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Table 1. Data used in registration experiments.

Volume Description Voxel Volume Image Image size Original Source
size (mm) size modality (# images) pixel size (mm)

T1 MRI 1.0 217 × 181 × 181 PD MRI 101 × 101 (4) 1.0 BrainWeb
1 Normal MS

Brain lesions
5% noise 0% noise
T1 MRI 1.0 217 × 181 × 181 PD MRI 101 × 101 (4) 1.0 BrainWeb

2 Normal MS
Brain lesions

9% noise 0% noise
CT Head 0.448 440 × 440 × 246 PD MRI 161 × 161 (1) 0.859 VHP

3 Female 201 × 201 (3)
281 × 281 (1)

4 CT Heart 0.9375 301 × 301 × 305 PD MRI 201 × 201 (4) 1.875 VHP
Male

(a) (b) (c) (d)

Fig. 2. (a) and (c) Simulated PD MRI MS lesion brain images. (b) and (d) Corre-
sponding slice in T1 volume (9% noise).

(a) (b) (c) (d)

Fig. 3. (a) PD MRI head image. (b) Corresponding slice from CT volume. (c) PD MRI
heart image. (d) Corresponding slice from CT volume.

3.2 Registration Controls and Performance Metrics

To test the proposed similarity metrics, translations along the x-, y-, and z- axes
and rotations about the x-, y-, and z-axes were determined. For all experiments,
ground truth transformations were known. The initial orientations were chosen
using a protocol similar to [2]. There were six initial positions from ground truth:
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±4◦ rotation error for translation errors of 5 and 10 mm (denoted as positions
1 and 2), ±8◦ and 15 mm (position 3), ±12◦ and 20 mm (position 4), ±16◦ and
25 mm (position 5), and ±20◦ and 30 mm translation error (position 6). The
rotation errors were applied on all three axes. The image centres were placed
at four locations for each distance. Thus, 8 × 4 × 6 = 192 registrations were
performed for each slice and for each metric.

Probability density estimation is critical for accurate metric computation and
registration accuracy. Parzen windows [4] and histograms [3] have been used in
previous studies. The latter approach was adopted in the current work. For
the data sets in this study, using 64 bins generally produced a smooth rep-
resentation of the density, while retaining important intensity features [3,5].
During resampling, partial volume interpolation [3] was employed. Optimiza-
tion was performed with Powell’s method, a direct local optimization technique
used in many registration studies [3,6,16]. I, Ĩ, ĨECC , CR, IR

α , IS
α , and Iα for

α ∈ {0.25, 0.5, 0.9, 1.1, 1.25, 1.5, 2}, and Mα for α ∈ {0.2, 0.5, 0.9, 1.1, 1.25} were
compared. Parameters lower than 0.25 and higher than 2 exhibit numerical in-
accuracies and rough registration functions. Values for the latter two metrics
were similar to those in [6]. For multiresolution registration, the images were
subsampled in all dimensions. (Blurring prior to subsampling does not necessar-
ily improve performance, and increases computation time [16].) The result from
one resolution was used as the initial orientation in the next higher resolution.
The VHP head images were successively registered at 4- and 2-voxel subsam-
pling, and then at full resolution. The lower-resolution BrainWeb and VHP heart
images were first registered with 2-voxel subsampling, followed by full resolution.

The metrics were judged with respect to: 1: The success rate (ratio of cor-
rect registrations). A registration is considered correct if the Euclidean distance
between the final and ground truth translation parameters is less than 2.5 mm,
and if the angle between the planes formed by the ground truth and final trans-
formations is less than 2◦, and 2: the efficiency, or average number of function
(similarity metric) evaluations for successful registrations.

4 Results

The success rates and mean translation error (MTE), in mm, are displayed in
Tables 2 and 3. As this rate was less than 0.50 for positions 5 and 6 for all metrics,
only positions 1–4 are shown, along with the overall rate for positions 1–3 (5–15
mm). For the generalized measures, the two best parameters are displayed. The
mean number of function evaluations is shown in Table 4, as is the mean time for
correct registrations (running serially on Intel r©Itanium r©900 MHz processors)
for image sizes of 101 × 101 voxels (Volume 2) and 201 × 201 voxels (Volume 4).

IS
α and IR

α had the highest success rate for the BrainWeb and VHP heart
volumes. For the the VHP head volume, I and ĨECC also had high success
rates. CR generally had fewer satisfactory registrations than the information-
theoretic measures. The heart volume had the lowest success rate and highest
MTE, possibly due to low image resolution, beam-hardening artifacts, and low
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CT contrast. The CR and Mα metrics had the highest MTE, but the mean
translation errors among the remaining metrics were similar. For the generalized
metrics, the best results occurred for α between 0.9 and 1.5. IS

α generally had
higher success rates than Iα and Mα. Among the Shannon metrics, Ĩ had the
lowest success rate for all volumes, although it was the most efficient, along
with ĨECC (Table 4). I and the generalized metrics required the most function
evaluations, with no noticeable difference in their efficiencies. Registrations using
NMI and CR were the fastest (Table 4), and were the slowest with I and Mα.
Registration using IS

α and IR
α was generally slightly faster than with MI.

Table 2. Success rate for positions 1–4 and overall success rate and mean translation
error (MTE) in mm for Volumes 1 and 2. Overall success rate values higher than that
for Shannon MI are shown in boldface.

Volume 1 Volume 2
Metric 1 2 3 4 Overall MTE 1 2 3 4 Overall MTE

I 0.98 0.71 0.17 0.07 0.62 0.25 ± 0.43 0.95 0.67 0.13 0.02 0.58 0.32 ± 0.44
Ĩ 0.95 0.64 0.13 0.03 0.57 0.27 ± 0.42 0.91 0.64 0.13 0.01 0.56 0.40 ± 0.47

ĨECC 0.99 0.72 0.18 0.03 0.63 0.26 ± 0.43 0.94 0.73 0.20 0.02 0.62 0.33 ± 0.43
CR 0.91 0.66 0.16 0.03 0.57 0.51 ± 0.46 0.84 0.67 0.14 0.04 0.55 0.58 ± 0.47
IS
1.5 1.00 0.84 0.31 0.11 0.72 0.28 ± 0.43 0.99 0.66 0.30 0.09 0.65 0.27 ± 0.43
IS
2 0.99 0.80 0.42 0.09 0.74 0.33 ± 0.45 0.99 0.71 0.26 0.09 0.65 0.33 ± 0.42

IR
1.25 1.00 0.70 0.26 0.06 0.65 0.26 ± 0.42 0.97 0.71 0.23 0.06 0.64 0.29 ± 0.44
IR
1.5 1.00 0.73 0.25 0.05 0.66 0.34 ± 0.42 0.98 0.62 0.20 0.06 0.60 0.31 ± 0.43

I0.9 0.98 0.71 0.19 0.01 0.63 0.24 ± 0.41 0.95 0.70 0.18 0.01 0.61 0.33 ± 0.44
I1.1 0.98 0.73 0.20 0.04 0.64 0.25 ± 0.42 0.95 0.68 0.18 0.02 0.60 0.31 ± 0.49
M0.5 0.93 0.66 0.09 0.02 0.58 0.37 ± 0.44 0.93 0.66 0.09 0.02 0.56 0.64 ± 0.45
M0.9 0.98 0.67 0.16 0.02 0.60 0.38 ± 0.44 0.95 0.63 0.14 0.02 0.57 0.55 ± 0.40

Table 3. Success rate for positions 1–4 and overall success rate and mean translation
error (MTE) in mm for Volumes 3 and 4. Overall success rate values higher than that
for Shannon MI are shown in boldface.

Volume 3 Volume 4
Metric 1 2 3 4 Overall MTE 1 2 3 4 Overall MTE

I 1.00 0.98 0.58 0.17 0.85 0.30 ± 0.20 0.77 0.80 0.63 0.51 0.73 1.33 ± 0.37
Ĩ 0.98 0.92 0.43 0.09 0.78 0.29 ± 0.16 0.63 0.61 0.39 0.31 0.55 1.43 ± 0.38

ĨECC 1.00 0.94 0.62 0.18 0.85 0.27 ± 0.16 0.70 0.67 0.59 0.41 0.65 1.33 ± 0.36
CR 0.91 0.76 0.30 0.08 0.66 0.63 ± 0.25 0.63 0.60 0.48 0.28 0.57 1.37 ± 0.32
IS
1.1 1.00 0.97 0.66 0.19 0.88 0.29 ± 0.20 0.80 0.83 0.63 0.45 0.75 1.21 ± 0.30

IS
1.25 1.00 0.97 0.59 0.20 0.85 0.28 ± 0.20 0.81 0.75 0.57 0.43 0.71 1.19 ± 0.32
IR
1.1 1.00 0.95 0.63 0.18 0.86 0.29 ± 0.17 0.84 0.82 0.61 0.48 0.76 1.21 ± 0.31

IR
1.25 1.00 0.95 0.55 0.17 0.83 0.35 ± 0.24 0.81 0.84 0.63 0.46 0.76 1.15 ± 0.35

I1.25 1.00 0.98 0.55 0.15 0.84 0.28 ± 0.21 0.78 0.74 0.55 0.47 0.69 1.23 ± 0.36
I1.5 1.00 0.93 0.56 0.16 0.83 0.27 ± 0.20 0.76 0.66 0.50 0.39 0.69 1.22 ± 0.40
M0.5 0.95 0.90 0.41 0.14 0.77 0.52 ± 0.23 0.64 0.64 0.51 0.37 0.60 1.35 ± 0.34
M0.9 0.98 0.84 0.45 0.10 0.76 0.53 ± 0.26 0.63 0.61 0.45 0.30 0.56 1.27 ± 0.37
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Table 4. Mean number of function evaluations for satisfactory registrations (×1000).

Metric Vol. 1 Vol. 2 Vol. 3 Vol. 4 Time (sec) Time (sec)
(101 × 101 voxels) (201 × 201 voxels)

I 1.38 ± 0.30 1.37 ± 0.31 1.76 ± 0.41 1.16 ± 0.22 26.39 ± 8.69 71.60 ± 19.62
Ĩ 0.91 ± 0.19 0.86 ± 0.19 1.05 ± 0.19 0.66 ± 0.15 16.17 ± 4.26 38.04 ± 12.30

ĨECC 1.25 ± 0.29 1.27 ± 0.29 1.52 ± 0.35 1.05 ± 0.25 24.17 ± 7.67 65.07 ± 19.93
CR 1.28 ± 0.31 1.29 ± 0.32 1.85 ± 0.36 1.14 ± 0.29 17.45 ± 6.03 63.50 ± 20.89
IS
1.1 1.37 ± 0.35 1.39 ± 0.32 1.72 ± 0.37 1.15 ± 0.30 19.41 ± 6.95 67.65 ± 23.13

IS
1.25 1.34 ± 0.32 1.36 ± 0.33 1.70 ± 0.35 1.16 ± 0.29 19.51 ± 7.40 65.47 ± 25.29
IS
1.5 1.36 ± 0.35 1.40 ± 0.34 1.68 ± 0.34 1.68 ± 0.28 20.52 ± 8.39 67.96 ± 24.67
IS
2 1.39 ± 0.32 1.40 ± 0.32 1.75 ± 0.35 1.23 ± 0.28 20.65 ± 6.99 70.14 ± 24.91

IR
1.1 1.34 ± 0.32 1.34 ± 0.30 1.66 ± 0.35 1.17 ± 0.32 18.43 ± 6.71 65.14 ± 22.38

IR
1.25 1.34 ± 0.34 1.39 ± 0.33 1.63 ± 0.30 1.12 ± 0.28 20.02 ± 7.83 64.33 ± 25.91
IR
1.5 1.34 ± 0.33 1.37 ± 0.34 1.65 ± 0.35 1.13 ± 0.27 19.81 ± 7.86 66.01 ± 25.15
IR
2 1.28 ± 0.29 1.30 ± 0.26 1.63 ± 0.27 1.04 ± 0.26 18.29 ± 5.32 59.84 ± 19.91

I0.9 1.40 ± 0.35 1.42 ± 0.33 1.69 ± 0.35 1.22 ± 0.30 19.82 ± 7.11 65.93 ± 23.12
I1.1 1.39 ± 0.33 1.39 ± 0.32 1.71 ± 0.30 1.16 ± 0.26 19.12 ± 6.84 65.73 ± 21.31
I1.25 1.38 ± 0.34 1.42 ± 0.31 1.75 ± 0.37 1.21 ± 0.27 20.43 ± 7.21 67.56 ± 19.11
I1.5 1.43 ± 0.30 1.42 ± 0.30 1.81 ± 0.38 1.22 ± 0.29 20.60 ± 6.47 70.54 ± 20.36
M0.5 1.74 ± 0.39 1.67 ± 0.33 2.07 ± 0.36 1.33 ± 0.30 25.93 ± 7.11 84.24 ± 24.18
M0.9 1.47 ± 0.30 1.47 ± 0.29 1.77 ± 0.31 1.19 ± 0.31 22.68 ± 6.42 64.86 ± 18.04
M1.1 1.39 ± 0.29 1.40 ± 0.26 1.72 ± 0.31 1.13 ± 0.29 21.87 ± 6.14 66.70 ± 22.38

5 Discussion and Conclusions

For the generalized metrics, parameter values close to 1 (at which they resemble
Shannon metrics) had the highest success rate. Parameters much different than
unity have rough similarity metric functions, and are difficult to optimize [6,7].
The IR

α and IS
α metrics, with α slightly greater than 1 (α ∈ [1.1, 2]), were the

overall best performers, with about the same efficiency as I. Misregistrations
often result from entrapment in local extrema of the registration function, to
which local optimization methods are susceptible. Many of the generalized met-
rics have smoother registration surfaces than MI [7], and are more sensitive to
changes in dependence (Fig. 1). MI and ECC generally had higher success rates
than NMI.

Although generalized metrics have been shown to be robust similarity criteria
for biomedical image registration, parameter choice greatly affects performance.
Utilizing different measures at different resolutions (a similar suggestion was
made in [6]), may further improve performance. The Shannon metrics are gener-
ally accurate and efficient for registrations with initial orientations already close
to alignment. Therefore, these metrics could be used in the later registration
stages, after optimization of generalized metrics. Registration is also heavily af-
fected by the optimization method. Although Powell’s method is generally robust
and widely used in registration applications, it is also susceptible to entrapment
in local minima, which may have caused the low accuracy of the metrics for
α < 1. Performance could also potentially be enhanced with global optimization
(for distant initial orientations) combined with gradient-based local optimization
or robust direct methods, and by adaptive adjustment of metric parameters. Fu-
ture work also includes testing the metrics on a wide variety of clinical data,
extension to registering 3D source data sets, and adaptation to non-linear regis-
tration.



Multiresolution Biomedical Image Registration 853

Acknowledgements. The authors thank Dr. Maria Drangova (Robarts Re-
search Institute), for valuable suggestions. Data were provided through NLM-
NIH Visible Human Project and BrainWeb. M. Wachowiak also thanks his for-
mer advisor, Dr. Adel S. Elmaghraby (University of Louisville, Louisville, KY
USA). Funding for this project was provided by SHARCNet, NSERC (R3146-
A02), CIHR (MT 14735), (MT 11540), and (MGP 49536).

References

1. Roche, A., Malandain, G., Pennec, X., Ayache, N.: The Correlation Ratio as a New
Similarity Measure for Multimodal Image Registration. LNCS 1496: MICCAI’98
(1998) 1115–1124.

2. Hipwell, J. H., Penney, G. P., Cox, T. C., Byrne, J. V., Hawkes, D. J.: 2D-3D
Intensity Based Registration of DSA and MRA – A Comparison of Similarity
Measures. LNCS 2489:MICCAI’02 (2002) 501–508.

3. Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodal-
ity Image Registration by Maximization of Mutual Information. IEEE Trans. Med.
Imaging 16 (1997) 187–198.

4. Wells III, W. M., Viola, P., Atsumi, H., Nakajima, S., Kikinis, R.: Multi-Modal
Volume Registration by Maximization of Mutual Information. Med. Image Anal.
1 (1996) 35–51.

5. Hill, D. L. G., Batchelor, P. G., Holden, M., Hawkes, D. J.: Medical Image Regis-
tration. Phys. Med. Biol. 46 (2001) R1–R45.

6. Pluim, J. P. W., Maintz, J. B. A, Viergever, M. A.: f -Information Measures in
Medical Image Registration. Proc. SPIE 4322 (2001) 579–587.

7. Wachowiak, M. P., Smoĺıková, R., Tourassi, G. D., Elmaghraby, A. S.: Similarity
Metrics Based on Non-additive Entropies for 2D-3D Multimodal Biomedical Image
Registration. Proc. SPIE 5032 (2003) 1090–1100.

8. Hutton, B. F., Braun, M., Thurfjell, L., Lau, D. Y. H.: Image Registration: An
Essential Tool for Nuclear Medicine. Eur. J. Nucl. Med. 29(4) (2002) 559–577.

9. McLeish, K., Hill, D. L. G., Atkinson, D., Blackall, J. M., Razavi, R.: A Study of
the Motion and Deformation of the Heart Due to Respiration. IEEE Trans. Med.
Imaging 21(9) (2002) 1142–1150.

10. Studholme, C., Hill, D. L. G., Hawkes, D. J.: An Overlap Invariant Entropy Mea-
sure of 3D Medical Image Alignment. Pattern Recognition 32 (1999) 71–86.

11. Astola, J., Virtanen, I.: Entropy Correlation Coefficient, a Measure of Statisti-
cal Dependence for Categorized Data. In Proc. Univ. Vaasa, Finland, Discussion
papers 44 (1982) 1–12.
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