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Abstract. Mutual Information is perhaps the most widely used multi-
modality image registration method. A crucial step in mutual informa-
tion is the estimation of the probability density function (pdf). In most
cases, the Parzen window estimator is employed for this purpose which
results in an excessive computational cost. In this paper we demonstrate
that replacing the Parzen density estimator with a Support Vector Ma-
chine (SVM) density estimation will result in a significant reduction of
the computational time. We verified this by registering 2D portal images
to DRRs (digitally reconstructed radiographs) projected from 3D CT
volumetric data.

1 Introduction

One of the prime motivations behind using Mutual Information (MI) in image
analysis is the ability to perform multi-modal registration. Since its inception as
a similarity metric or measure in 1995 [1,2], it has been successfully applied in
many applications concerned with 2D-3D and 3D-3D registration. In principle,
mutual information measures the statistical dependence between two images.
The metric operates solely on the pixel intensities without reference to any ex-
traneous properties of the object that is imaged, or the imaging system itself.
Consequently, it is quite robust when applied across imaging modalities.

At the core of the metric’s algorithm is the evaluation of the probability
densities of the data sets that are being registered. In most imaging modalities,
the probability density functions (pdf) are not easily predicted and need to
be estimated. The various ways of predicting or estimating pdfs are grouped
under parametric, semi-parametric and non-parametric methods. A Gaussian is
a standard example of a parametric pdf, while a finite mixture model such as
a mixture of Gaussians is an example of a semi-parametric pdf [3]. However, in
many cases, non-parametric methods are the models of choice because no prior
assumptions about the forms of the pdfs are required. Examples are histograms,
K-nearest neighbour method, and kernel based estimators such as the Parzen
Windows [4]. Viola et al. use the Parzen windows density estimator because it
provides a very smooth estimate [2]. This is achieved by using the full data set
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as input to compute subsequent estimates. Employing large data samples results
in an accurate estimate, but with the penalty of a higher computational expense
[5].

An alternate method of density estimation using the Support Vector Method
(SVM) was proposed by Vapnik et al. [6,7]. The SVM technique expresses the
density estimation problem as a linear operator equation and uses the regres-
sion approach with a regularization term to converge to the solution. It can be
classified under kernel based estimators. We integrated the SVM estimator into
the mutual information registration method to reduce the computational cost of
using the Parzen windows estimator. The SVM method is sparser in comparison
to the Parzen windows method because many of the data elements are not used
in the estimate. The compromise between data sparsity and estimation accuracy
is controlled by the use of a regularization term which is used in addition to the
kernel width.

2 Mathematical Background

Mutual information has multiple interpretations in standard literature. The
Kullback-Leibler distance measure interprets the mutual information between
two random variables X and Y as the relative entropy between the joint prob-
ability distribution of the variables and the product of their marginal distribu-
tions. This in essence is an estimate of their statistical dependence. The metric
can be expressed as follows:

I (X, Y ) = D (p (X, Y ) ‖ p (X) p (Y ))

= EX,Y

[
log

p (X, Y )
p (X) p (Y )

]

=
∑
x∈X

∑
y∈Y

p (x, y) log
p (x, y)
p (x) p (y)

(1)

An alternate formulation is to relate mutual information to the entropy of
the random variables under consideration. The entropy of a random variable is
the expected value of the negative log probability.

H (X) = EX [− log p (X)] = −
∑
x∈X

p (x) ∗ log p (x) (2)

Similarly, the joint entropy between X,Y can be expressed as:

H (X, Y ) = EX,Y [− log p (X, Y )] = −
∑
x∈X

∑
y∈Y

p (x, y) ∗ log p (x, y) (3)

Consequently,
I (X, Y ) = H (X) +H (Y ) −H (X, Y ) (4)
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In the context of registering 2D images to a 3D volume, such as 2D portal,
X-Ray fluoroscopy etc. to a 3D CT volumetric data set, the mutual information
metric can be formulated in the following manner. LetX represent a set of sample
points, and U (X) be the 2D portal image, and V (T (X)) be the transformed CT-
derived 2D DRR (digitally reconstructed radiograph). The objective function is
then written as:

I (U (X) , V (T (X))) = H (U (X)) +H (V (T (X))) −H (U (X) V (T (X)))
= EU, V [log p (U (x) , V (T (x)))] − EU [log p (U (x))]
− EV [log p (V (T (x)))] ∀x ∈ X, ∀y ∈ Y (5)

The computational burden in mutual information registration lies in accu-
rately estimating the joint and marginal pdfs in equation 5.

2.1 Parzen Window Density Estimation

This method of density estimation was first introduced by Parzen [8]. The prob-
ability density is estimated as a linear combination of a set of symmetric ker-
nels, or window functions, that are centered at the sample points. The Parzen
method assumes that it is modeling a continuous pdf p (x). A window function,
for instance a Gaussian: gψ (u) with variance ψ is chosen and we obtain the ap-
proximation pn (x, a) to the density p (x) at the sample point x given the sample
set a of size n. It is expressed as:

pn (x, a) =
1
n

∑
xa∈a

gψ (x− xa) (6)

This interpolates between the sample points and each point contributes an
amount proportional to its distance from x. The parameter that needs to be
estimated is the variance. If it is too wide, the estimate will be too coarse and
if it is too narrow, it will have too much variability. Consequently, the variance
chosen should be optimal, and the computation tends to be intensive if the sam-
ple set is large. Another constraint when using the Parzen method is that the
sample set used to represent the density should be different from the set used
to compute the density approximation. If Na and Nb be the two sets, then at
every point in set Nb we need to calculate the linear combination of Na window
functions, making the total Na ∗ Nb computations. This computation becomes
prohibitively large with increasing Na and Nb.

2.2 Support Vector Method of Density Estimation

We follow the method suggest by Vapnik et al. [6,7] in estimating the density.
Let the distribution function corresponding to the density p (x) be F (x). Then,

F (x) =
∫ x

−∞
p (t) dt (7)
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However, in reality, the distribution function is unknown and only the set of
independent and indentically distributed (iid) data is provided. The function
F (x) is approximated with the empirical function Fl (x) [7]:

Fl (x) =
1
l

l∑
i=1

θ (x− xi) (8)

where θ (x) is the step-function.
Solving equations 7 with the aproximation in 8 is an ill-posed problem. This

implies that small deviations in Fl can cause large deviations in the solution
for p (x). In a linear operator representation, we are solving Ap = F with the
approximation Fl. One of the standard methods for formulating solutions to
such problems was proposed by Tikhonov [9]. A regularizing function ψ (p) is
introduced, and the solution is formulated as follows [6]:

ψ (p) =‖ p ‖2 (9)

This functional is minimized subject to the constraint

max
i

∣∣∣∣Fl (x) −
∫ x

−∞
p (t) dt

∣∣∣∣
x=xi

= εl (10)

where εl is one of the regularization parameters to control accuracy. We now
look for a solution of the form

p (x) =
l∑
i=1

βiKl (x, xi) (11)

where Kl (x, xi) = 1
lK

(
x−xi

l

)
. This a generalized form of the Parzen estima-

tor, where each βi is a non-uniform weighting coefficient. This is equivalent to
minimizing

ψ (p) =‖ p ‖2=
l∑

i,=1

βi βjKl (xi, xj) (12)

subject to the constraints

max
l

∣∣∣∣∣∣Fl (x) −
l∑

j=1

βj

∫ x

−∞
Kh (xi, t) dt

∣∣∣∣∣∣
x=xi

= εl

βi ≥ 0,
l∑
i=1

βi = 1 (13)

This is now a standard optimization problem and is solved without much com-
putational expense. Only a few of the βi are non-zero and the xi corresponding
to those βi are called the support vectors [6,7]. The chosen kernel function will
correspondingly have the smallest number of support vectors. Consequently, the
support vector method of density estimation is analogous to the Parzen windows
method, but with the additional choice of the regularization term, and a sparser
data set, and with a faster convergence.
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3 Results

To test the Parzen windows density estimator and the support vector estimator,
we first employed both methods to compute the density contours of an arbitrary
data set. The data set consists of 500 points sampled from a set of three isotropic
Gaussian functions. The Parzen method employed the full data set in estimating
the densities and required 6∗104 computations. The support vector method used
only 80 data points chosen as support vectors and converged to a similar density
estimate in 16000 iterations. The computation time for the latter was about one
third that of the former. Figure 1(a) is a plot of the density iso-contours (contours
on which the probability density is constant) using the Parzen method and figure
1(b) is plot of the same using the support vector method. The figures show the
data points used for density computation in both cases.
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Fig. 1. Comparison of the Parzen and Support Vector methods in density estimation.
Figures show contours of constant probability density. The Support vector method
used a sparser sample set and computed the same iso-contours in one third the time.

Subsequent to the previous simulation, we incorporated both density estima-
tion techniques into a mutual information code and used it to test the registration
of anterior-posterior (AP) images of the pelvis derived from a phantom. One of
was a portal image acquired using a high energy (6MeV) radiation beam. This
image was registered to two DRRs projected from a CT volume of the phantom.
Prior to projecting the DRR, the CT volume was translated by 5 pixels (1 pixel
= 1.1mm) along the x-axis in one case, and rotated by 5 degrees about the AP
axis in the other. The DRRs thus acquired were registered to the portal image.
Figure 2 shows the portal image and a sample DRR image that has been rotated
about the AP axis. Figures 3 and 4 are plots of the MI values for the transla-
tional and rotational misalignment experiments. The MI function is maximum
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(a) AP Portal Image (b) Misaligned DRR Image

Fig. 2. Portal and DRR images of a pelvic phantom. The latter was rotated by 5o to
test the registration algorithm with the Parzen and Support Vector density estimators.

in both instances, and for both density estimation methods, close to the correct
transformation values. We implemented both algorithms on a Pentium III, 450
MHz computer and the computation times were 25 min and 9 min respectively
for the Parzen and SVM estimators respectively. In estimating the density, the
SVM method used approximately 25% to 30% of the data while the Parzen
extimator used almost all the available data.
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Fig. 3. Plot of the MI function for registration with misalignment of 5 pixels along the
x-axis,using the Parzen Windows and the Support Vector methods.
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Fig. 4. Plot of the MI function for registration with misalignment of 5o about the AP
axis, using the Parzen Windows and the Support Vector methods.

4 Conclusion

The support vector method provided approximately the same density estimation
as the popular Parzen windows method with less computational expense. This
was verified by incorporating SVM as part of a mutual information registration
algorithm. The computation for the Parzen method scaled as O (

N2
)
, while the

SVM estimator scales as O (
kN2

)
, with k < 1. The SVM method used about one

third the data and was about 2.5 times faster than the Parzen windows method.
However, these performance characteristics should be taken only as potential
indicators and not as true computational measures. We are in the process of
testing the SVM algorithm on real data. The true test lies in how the SVM
technique will perform when registering real clinical data. The complexity of
such data will pose real challenges to the judicious selection of support vectors.
If a corresponding speedup is achieved with clinical data also, it will result in a
significant saving of time when performing 2D to 3D and 3D to 3D registration.
This will be particularly useful when doing real time registration.
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