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Abstract. Spatial normalization is a key process in cross-sectional stud-
ies of brain structure and function using MRI, fMRI, PET and other
imaging techniques. A wide range of 3D image deformation algorithms
have been developed, all of which involve design choices that are subject
to debate. Moreover, most have numerical parameters whose value must
be specified by the user. This paper proposes a principled method for
evaluating design choices and choosing parameter values. This method
can also be used to compare competing spatial normalization algorithms.
We demonstrate the method through a performance analysis of a partic-
ular nonaffine deformation algorithm, ANIMAL.

1 Introduction

The goal of spatial normalization in brain imaging is to remove, to the ex-
tent possible, the natural anatomical variability in a population by warping
each individual’s anatomy into a standardized space. Meaningful comparisons of
spatially-varying data (structural or functional) can then be made. The sensi-
tivity of such comparisons is reduced by anatomical variability remaining after
standardization. We wish to quantify this residual variability in order to choose
the spatial normalization method for which it is the lowest.

The standardized system in widespread use today is a 3D Cartesian coordi-
nate system into which each individual is mapped by an affine spatial transfor-
mation. Such a mapping procedure corrects only for location, orientation, and
overall size of the input brain, leaving much variability [13].

A nonaffine transformation enables removal of anatomical variability to a
greater extent. Many algorithms for nonaffine mapping have been proposed
(e.g. [1,2,3,4,5,7,14,15,17]); these differ in the set of transformations searched,
transformation parameterization, how the search is conducted, and the image
feature(s) used to drive the search. Such algorithms search for a spatial mapping
T from input image I to image J by explicitly or implicitly minimizing some
objective function of the form

Φ(T ) = ΦD(I, J ◦ T ) + aΦM (T ), (1)
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where ΦD represents the data (image similarity) term and ΦM represents the
model term, also known as the regularizer as it embodies our “prior knowledge”
of the transformation expected. The mathematical form for a data term has a
theoretical basis in some instances [11]. However, there is no biological theory
to suggest a model term appropriate for transformation of one individual to
another, so the models in use are either ad-hoc [5] or borrowed from physics
(e.g. elastic solids [2], viscous fluids [4], or diffusion [14]). These models include
parameters corresponding to physical quantities such as “stiffness” or viscosity
whose value is not determined by theory. The coefficient a in Equation 1, bal-
ancing the contribution of the data and model terms, is also undetermined by
theory.

An empirical performance measure is therefore required to evaluate design
choices such as data and model terms, and to select parameter values. In the
context of spatial normalization, residual anatomical variability is the natural
choice for performance measure. In this paper we present such a measure of
variability and demonstrate how it can be used to evaluate design choices and
tune parameters of a particular algorithm, dramatically improving the resulting
registrations.

2 Methods

2.1 Anatomical Variability Measure

Anatomical variability is often visualized qualitatively in the “sharpness” of
the mean intensity image after spatial normalization. The intensity values of a
structural magnetic resonance (MR) image, while obviously carrying anatomical
information, are affected by factors such as scanner settings, the partial volume
effect, and the shading artifact. It is unclear how much the raw MR intensity
value tells us about biological homology.

Instead, some anatomical “label” can be used which identifies a specific
anatomical feature, as a dimensionless point landmark, a curve (1D), surface
(2D), or volume (3D) label field. Anatomical variability can be quantified using
some measure of the spatial distribution of corresponding points [9], curves [17,
13], surfaces [10], or volumes [12,8]. These measures use a limited number of
features, e.g. 128 landmark points per hemisphere [9], leaving them insensitive
to the value of T at unlabelled points. We prefer a variability measure sensitive
to each voxel of the standardized space.

A segmentation of an image is an assignment of a class label to each voxel.
Labels assigned to an input image can be carried along with a spatial transfor-
mation to induce a segmentation of a grid in the standard space. Using a “ground
truth” segmentation of the standard space, Crivello et al. [6] measured the label
agreement between the ground truth and induced segmentations and used mean
label agreement as the measure of anatomical variability. We can avoid requir-
ing ground truth, and the attendant concerns about biasing the results if the
ground truth is incorrect, by instead looking for consistency across the induced
segmentations of standard space.
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Consider voxel v in the standard space grid. This voxel maps to a certain
point in subject i, which has a label that we denote lvi. A spatial normalization
method that achieves its goal of matching homologous points of each input will
result in identical labels across the subjects (lv1 = lv2 = . . .) for each voxel v.
Warfield et al. [16] suggested to consider the label of voxel v as a random variable
Lv, of which the set {lvi} is a sampling. The entropy of this distribution is

H(Lv) = −
∑

l

pl log2 pl, (2)

where pl is the probability that Lv is assigned label l. The entropy measures
the amount of uncertainty in the label (in bits, as we use base-2 logarithms),
which we regard as the anatomical variability at voxel v. The uncertainty over
the entire standardized space is bounded by the sum

H =
∑

v

H(Lv). (3)

We use H, which we term total entropy, as a measure of variability remaining
after spatial normalization is applied.

2.2 ANIMAL

To illustrate the utility of tuning using total entropy, we use the ANIMAL
algorithm [5] as a prototypical nonaffine registration method. This section
briefly describes the algorithm, with attention to the numerical parameters the
user must choose. The resulting transformation T is applied after an initial
affine transformation. For convenience, ANIMAL works with the displacements
∆(x) = T (x)−x rather than the transformation T itself. The displacement func-
tion ∆ estimated by ANIMAL is parameterized as a freeform deformation, that
is, the displacement vectors are stored for points arranged on a cubic 3D control
grid. At non-grid points, the displacement is obtained using a cubic Catmull-
Rom interpolating spline.

ANIMAL is structured as two nested loops. The outer loop iterates over
different control grids in a coarse-to-fine manner, while the inner loop optimizes
∆ on a fixed control grid.

Outer Loop. The first iteration of the outer loop employs a control grid with
step=8 mm. The feature used in the match is the two input images, each blurred
using an isotropic Gaussian kernel with FWHM=8 mm. The next two itera-
tions use a control grid with step=4 mm (FWHM=8 mm blurring) and step=2
mm (FWHM=4 mm blurring), respectively. Finally, a fourth iteration with grid
step=2 mm is done using blurred (FWHM=4 mm) gradient magnitude images.

The initial iterate for the inner loop is interpolated from the result of the
previous iteration of the outer loop, except the first iteration which starts with
zero displacements.
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Algorithm 1 Inner loop of ANIMAL.
1. Optimize Φ({δv}) =

∑
v
(a1φv(∆v + δv) + (1 − a1)ψ(||δv||)).

2. Let ∆v = ∆v + a2δv.
3. Let ∆v be mean displacement of 26-neighbours of v.

Set ∆v = a3∆v + (1 − a3)∆v.
4. Loop over Steps 1-3 a fixed number of times.

Inner Loop. Use v to index the control grid vertices,∆v is the current estimated
displacement vector for vertex v, and δv is the correction to ∆v estimated at each
iteration of the inner loop. We use ||δv|| to denote the magnitude of vector δv.
The inner loop of ANIMAL is displayed in Algorithm 1.

The objective function of Line 1 is composed of two terms for each control
grid vertex. The first term, φv, is an image similarity measure (normalized cross
correlation) evaluated on a small neighbourhood (a sphere of radius 1.5 times the
control-grid step length) around vertex v. The second term, ψ, is an increasing
function that approaches ∞ at a finite value of ||δv||, thus limiting the size of
the correction vector. The parameter a1 ∈ [0, 1] balances these two terms, and
is known as the similarity cost ratio.

Each term of Φ is a function of exactly one correction vector δv, so the
optimization can be performed independently for each v, resulting in a large
number of small optimization problems (each δv has three variables to optimize,
the displacement in the x-, y-, and z-directions). However, the optimization at
control vertex v is not performed if the source image value at that location falls
below 10% of the maximum source image value. Such locations are likely to
be background and are skipped since there is nothing to be gained by fitting
background regions that are dominated by noise. This heuristic is termed node
thinning.

The update step of Line 2 employs a weight parameter a2. The displacements
are under-corrected if a2 < 1 or over-corrected if a2 > 1.

The displacement vector ∆v is smoothed in Line 3 by taking a weighted
sum of the current displacement estimate with the mean displacement of the 26
neighbours in a 3×3×3 control grid neighbourhood centered on v. The stiffness
parameter a3 ∈ [0, 1] balances the two terms.

The three parameters a1, a2, and a3 need to be specified in order to complete
the description of ANIMAL. Collins and Evans empirically chose values of 0.5,
0.6, and 0.5, respectively [5]. These values were obtained by trial-and-error using
visual inspection of the displacements and resampled images to judge registration
quality. The contribution of this paper is a more objective method to select these
parameters.

3 Results

To investigate design choices of ANIMAL, we choose 40 T1-weighted images
from the ICBM data base (similar to images used in [5]). An arbitrary image is
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selected to be the template and the other 39 are segmented into white matter,
gray matter, cerebral spinal fluid, and background classes with non-brain voxels
removed.

Consider first the outer loop. We normalize the data set using several choices
for the numerical parameters and compute the entropy after each of the four
iterations of the outer loop. The plot on the left of Figure 1 shows representative
results using weight a2 = 1.0, stiffness a3 = 0.9, and choices of similarity cost
ratio a1 ranging from 0.1 to 1.0. The first item to note is that the total entropy
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Fig. 1. Residual anatomical variability as measured by total entropy, H, for N = 10
individuals (first 10 of 39) after registration with ANIMAL, shown as a function of
similarity cost ratio. Left plot shows results after each of the four iterations of the
outer loop (weight=1.0, stiffness=0.9), along with the value for affine normalization,
for reference. Right plot shows results using different stiffness values (weight=1.0) after
three iterations of the outer loop.

is very large (even larger than obtained using the initial affine transformation)
for similarity cost ratio of 1, indicating that the correction length penalty ψ in
ANIMAL’s objective function plays an important role in controlling the opti-
mization. Transformations obtained with this ratio set to 1 (i.e. no contribution
at all from ψ) contain much larger displacements, and are much less smooth
and have more instances of folding (non-invertibility) than those obtained with
similarity cost ratio < 1.

Secondly, it is clear that the anatomical variability is strictly reduced by each
of the first three outer loop iterations, while the final iteration using gradient data
degrades the result. Closer examination reveals the node thinning strategy as the
culprit. For the iterations using intensity data, this heuristic retains nearly all
the nodes lying in brain tissue, while skipping control-grid nodes located outside
of the head. In the gradient data iteration, however, only values on the scalp,
ventricle, and superficial cortex edges are above the threshold. Displacements
are therefore estimated on very few control vertices (about 1/3 of the number of
vertices in the previous outer iteration, which uses the same control grid), while
all vertices participate in the smoothing. The effect is to smooth out the warp,
degrading the data fit. Omitting the node thinning heuristic for the gradient data



Tuning and Comparing Spatial Normalization Methods 915

fit does reduce the variability below that of the step 2 intensity fit. However, for
this paper we focus on the results using the first three iterations of the outer
loop.

We turn now to the three numerical parameters, running normalization ex-
periments for weight values in the range 0.8-1.2, stiffness and similarity cost ratio
values in the range 0-1. Figure 1 (right) shows typical plots of entropy for various
stiffness and similarity cost ratios (weight 1.0). We can see that higher stiffness
and similarity cost ratio values perform best, with a minimum near stiffness 1,
similarity cost ratio 0.98. In fact, however, this is a local minimum, as we found
that weight 0.8, stiffness 0.98, and similarity cost ratio 0.98 performs even better.

Fig. 2. Entropy maps (N = 39) from left-to-right: affine, classic ANIMAL, and tuned
ANIMAL. Axial slice at Z = 36 shown (all registrations carried out in 3D). Voxels
with more variability are brighter.

Figure 2 provides a visual illustration of the reduced anatomical variability
in a set of 39 individuals, obtained using the tuned version of ANIMAL. The
variability in the depth of many sulci is reduced, indicating that the sulci are
better aligned.

Figure 3 shows intensity-averaged images which become sharper with tuning,
a qualitative display of the improvement in aligning fine detail.

4 Discussion

As noted in Section 2.1, assessing variability using label consistency obviates the
need for a ground truth segmentation. The variability of any label data can be
measured using H, e.g. sulci, functional fields, etc. In order to assess the quality
of anatomical normalization the labels should carry anatomical information. A
labelling of sulci is a natural choice, which we have used in preliminary work
and found broadly the same optimal parameters as those reported here. We
choose instead to use tissue labels for two reasons: the labels can be obtained
automatically, and they cover the entire brain. It is true that aligning gray and
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Fig. 3. Intensity-averaged images (N = 39) from left-to-right: affine, classic ANIMAL,
and tuned ANIMAL. Axial slice at Z = 46 shown. The template is shown on the right,
for comparison.

white matter does not guarantee the correct sulci are aligned. However, the
converse holds: when the spatial normalization succeeds in aligning sulci, the
surrounding gray and white matter tissues will be aligned and this will produce
a lower variability measure. Our experiments demonstrate that variability (total
entropy) of tissue labels is a useful performance measure.

We deliberately choose a performance measure based on a labelling rather
than directly on the image intensity because the former allows inclusion of extra
information in the labelling process. For example, the labels could be obtained
manually or semi-automatically and automated procedures can bring in prior
information such as the spatial distribution of tissues. Thus we are not simply
measuring the same intensity correlations as the registration algorithm itself.

Another point to consider in assessing competing algorithms for spatial nor-
malization is whether to have one or several measures of variability. As we have
shown, a single measure enables optimization of the algorithm parameters. Prior
works [16,6] have generated three or more measures of variability from tissue
classification labels: the variability of CSF, of white matter, of gray matter, etc.
This complicates the interpretation in the case that two normalization methods
under comparison each score best in some measures but not for all measures; i.e.,
there may be no clear-cut winner. Though multiple measures would be useful
in a situation that performance tradeoffs were being evaluated, e.g. a tradeoff
between residual variability and running time, it is not clear how one should
trade off accuracy in normalizing different structures or tissue classes.

5 Conclusions

We have presented a strategy for evaluating the quality of a spatial normalization
procedure on real data. The evaluation procedure is fully automatic and can be
applied to any spatial normalization method.

Our experiments on tuning pointed out several surprising features of the
ANIMAL algorithm and allowed us to make modifications to it, such as omitting
the gradient data fit. We expect that our evaluation strategy would provide
similar insights into other normalization methods.
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This entropy measure can also be used to compare two competing methods
of normalization, once each has been suitably tuned.
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