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Abstract. Diffusion Tensor Imaging (DTI) provides voxel-wise informa-
tion related to the local diffusion anisotropy. Recent research efforts have
centered around the use of this information to infer the direction of lo-
cal fiber bundles. Calculation of the diffusion tensor and corresponding
principle diffusion direction voxel-wise throughout the imaged volume
permits the use of tracking algorithms to reconstruct the fiber-bundle
pathways. These algorithms are typically based on line propagation and
provide results that visually resemble anatomical fiber dissections. De-
spite the success of these methods, they suffer several limitations, partic-
ularly within regions of decreased anisotropy, such as areas of grey matter
and fiber crossing or branching. In this paper we present an alternative
method of DTI data visualization, line integral convolution (LIC), which
has several advantages over existing techniques, particularly, the ability
to deal with noise and singularities within the vector field and areas of
low anisotropy.

1 Introduction

The advent of diffusion-weighted imaging (DWI) and more recently, diffusion
tensor imaging (DTI), of the brain has introduced the possibility of a non-
invasive in-vivo means of visualizing fiber tracts and neural connectivity. DTI
entails the collection of diffusion-weighted images, Sd, with diffusion encoding
along at least six non-collinear directions, typically (i,j,k) = (1,0,1), (-1,0,1),
(0,1,1), (0,1,-1), (1,1,0) and (-1,1,0), along with a non diffusion-weighted image,
So. The diffusion co-efficient in each of the six directions (ADCd) is calculated
as:

ADCd =
− ln (Sd

So
)

b
(1)

where b describes the amount of diffusion-weighting in the acquired images.
The diffusion co-efficients in the X, Y, Z, XY, YZ and XZ directions (ADCxx,

ADCyy, ADCzz, ADCxy, ADCyz and ADCxz) describe the local diffusion ten-
sor, and the principle direction of diffusion (PDD) is defined as the principle
eigenvector of the 3 x 3 matrix. Determination of the PDD voxel-wise generates
a vector field such as that illustrated in Fig. 1. In regions where diffusion along a
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single axis dominates, such as along a white matter tract, the associated fraction
anisotropy (FA), defined in Eq. 2, is high, while in regions where the diffusion
is more isotropic, the FA is lower.

FA =
3
2
×

√
(λ1 − λ)2 + (λ2 − λ)2 + (λ3 − λ)2√

λ2
1 + λ2

2 + λ2
3

(2)

where λ1, λ2 and λ3 are the principle, secondary and tertiary eigenvectors of the
matrix and λ is the average of the three.

Fig. 1. Principle direction of diffusion within each voxel overlayed on the anatomical
T2-weighted image. Data corresponds to the deep brain.

Reconstruction of the fiber paths is a natural extension of DTI and Fig. 1
and provides insight into the three dimensional structure and connectivity of the
data. Several methodologies of reconstruction, commonly referred to as tractog-
raphy, have been developed [1–7] and can generally be classified as belonging to
one of two groups: line propagation based methods and global statistical meth-
ods.

Line propagation (LP) is perhaps a more obvious and intuitive method of
tractography in which a line or stream is extended from an initial seed point
in the data along the local vector trajectories. The main difference between the
various LP approaches [4–6], is the way in which the algorithm steps along the
vector field from voxel to voxel. In general, the path is guided by the the as-
sumption that the direction of the fiber path does not change abruptly (ie. it is
smooth and continuous) [8]. A probability function is therefore used to determine
the next step with straight paths preferred over large deviations. The primary
disadvantage of this approach is that error is cumulative along the path.

Alternatively, tractography performed using global statistical methods such
as simulated annealing [7], involve determination of the most-likely or least-
costly paths between two defined points (A and B) within the vector field. As
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such, all possible paths connecting point A with point B are calculated and as-
signed a probability or cost. The most-probable path from the calculated set
is considered true. As with line propagation, these methods are guided by the
smooth and continuous path assumption. The principle drawback of these meth-
ods is that a path will always be found connecting A and B, regardless of the
anatomical validity of the path.

While tractography results from these methods are promising and visually
resemble classic anatomical fiber dissections [9], they suffer from a number of
limitations. In regions where the PDD is poorly defined or has a high associated
uncertainty (low FA), such as in grey matter, along grey matter / white matter
boundaries, or areas where fiber bundles cross or branch, these approaches can
easily become side-tracked and wander off track. Additionally, when the propa-
gating line encounters a branch, it is constrained to follow only one of the paths
while ignoring the other.

Although not commonly considered a tractography method, line integral con-
volution (LIC) [10] is a widely-used approach for visualizing complex vector fields
in two and three dimensions, such as those associated with turbulent flow. The
LIC algorithm produces a texture representation of a vector field by locally blur-
ring an input texture (usually white noise) with the vector field. An example of
LIC is illustrated in Fig. 2 where we have applied the algorithm to a sinusoidal
vector field.

Fig. 2. The input white noise image on the left is blurred with the sinusoidal vector
field using the LIC algorithm to produce the image on the right.

Areas of the vector field that are coherent and continuous are easily followed
within the LIC result, via patterns of correlation in the output texture.

Despite its widespread use in computational fluid dynamics [11] LIC has not
yet been adopted within the medical imaging community for visualization of DTI
vector fields or reconstruction of neuronal fiber tracts. This is surprising since
the LIC method offers several advantages over both line propagation and global
statistical methods, particularly when considering its relative immunity to noise
within the vector field. Since the LIC result is produced by locally blurring the
noise image with the vector field at each point, small deviations in the vector
field do not significantly influence the result.
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Areas of fiber branching and crossing are also handled well with LIC. While
conventional line propagation methods limit the path to following only one
branch or the other, LIC blurs, or smears, the texture along both paths. Ad-
ditionally, since LIC takes advantage of the human visual system’s ability to
recognize and follow patterns [12], areas where fiber bundles cross are easily
interpreted and the continuity of the paths inferred. This phenomenon is illus-
trated in Fig. 3. In a traditional tractography result, streamtubes propagated
from the left or right would tend to change directions and follow the vertical
path in the center.

Fig. 3. LIC result of a vector field in which two paths cross. The human visual system
is able to recognize and follow both paths.

In this paper we present a simplified version of the LIC algorithm for use
with DTI data. We show that the LIC approach is a quick, intuitive and effec-
tive method of visualizing DTI data and produces qualitative results similar to
conventional tractography methods.

2 Methods

2.1 Simplified LIC Algorithm

The LIC algorithm we present is a simplification of that originally presented
by Cabral and Leedom in [10]. In the complete implementation, output pixel
intensities are generated by a one-dimensional convolution of a filter kernel and
the noise input texture along the local streamline through each pixel in the vector
field. Mathematically, this is given by

SIout(i, j) =
∑

p⊂τ

SIin(p) · h(p) (3)

where
τ = the set of cells along the streamline within a set distance from point (i,j),
shown in Fig. 4
SIin(p) = input noise texture at cell p
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h(p) =
∫ β

α
k(w)dw

α = the length of the streamline from (i,j) to the entrance of cell p
β = the length of the streamline from (i,j) to the exit of cell p
k(w) is the convolution filter function.

Fig. 4. Example Vector field showing the streamline through point (i,j).

In our adaptation of the algorithm, we assume the fiber bundles follow a
smooth and continuous path. Therefore, the streamline through each point (i,j)
in the vector field can be approximated as the tangent to the vector in (i,j), Fig.
5. This simplification is introduced to help avoid singularities within the DTI
data and to smooth out areas of noise. The vector field derived from DTI data is
not a tradition vector field in that the absolute direction of the eigenvalues is not
defined. Following the tangent of each vector reduces the difficulity associated
with dealing with this property. Comparison of our implementation with the
complete LIC algorithm (Fig. 6) shows this simplification introduces no visual
difference between the results.

Additionally, we modify the input noise texture by first multiplying it with
the normalized fractional anisotropy (FA) map. This has the effect of enhanc-
ing regions of high anisotropy, such as the major white matter tracts of the
corpus callosum, in the resulting output texture and decreasing regions of low
anisotropy, such as grey matter regions within the cortex.

Fig. 5. Simplification of the LIC algorithm. The convolution is calculated along the
tangent to (i,j) rather than along the streamline through (i,j)

2.2! In!vivo!Imaging

Axially!oriented!images!were!acquired!of!a!human!volunteer!using!a!diffusion-
weighted!echo!planar!imaging!(dwEPI)!sequence!with!diffusion!encoding!along
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Fig. 6. Comparison of our simplified LIC approach (left) with the full algorithm (right).
No visual difference can be seen between the two results.

six directions. Specific imaging parameters were as follows: 25cm2 x 5cm field of
view, 256 x 128 x 25 matrix, TE = 67ms, TR = 10,000ms and b = 600 s/mm2.

The PDD and FA were calculated voxel-wise and the 3D vector data pro-
jected onto the X-Y plane. The vector data were limited to two dimensions for
simplicity and ease of presentation.

2.3 Tractography

LIC and probability-based LP tractography [4] were performed on the data and
visually compared. Seed points for the LP method were placed in every second
pixel in both X and Y directions. Propagation of the streamline was terminated
when the path entered a cell with a fractional anisotropy lower than a pre-
determined threshold of 0.2.

3 Results

Results of the LIC and LP streamline algorithms are shown in Fig. 7. Paths
corresponding to the major white matter tracts of the corpus callosum and
splenium can be seen in both images as well as smaller projections within the
cortex. Total processing time for the LIC result was less than 10 seconds, while
the streamline analysis required 5 minutes on a Macintosh 1 GHz G4.

An enlargement of the deep brain portion of the LIC result is shown in Fig.
8 and demonstrates distinguishable paths within the thalamus. Fiber tracking
within gray matter structures has traditionally been avoided due to the low FA
of the regions, and the poor results obtained with LP streamline methods. The
LIC result demonstrates fiber structure within the thalamus and the algorithm’s
ability to deal with the vector field noise.

4 Conclusions

Visualization of two and three dimensional vector fields is a challenging prob-
lem. Traditional methods of visualization, such as drawing arrows within each
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Fig. 7. Results of the LIC (left) and probability-based tractography (right) algorithms.

Fig. 8. Enlargement of the deep brain region in the LIC result showing distinguishable
paths within the thalamus.

voxel or generating streamlines throughout the vector field, can produce con-
fusing images, especially in areas where the PDD changes quickly. Additionally,
streamline based methods are intrinsically sensitive to noise within the vector
field.

In this paper we have evaluated the use of LIC for visualizing human brain
DTI data and have compared the results with those of a conventional line prop-
agation tractography method. We have found that LIC is a powerful technique
for visualizing the complex vector fields associated with DTI and offers several
advantages over the more conventional tractography. Among these advantages
are the computational speed of the algorithm. The texture can be computed
either slice-by-slice or from the full 3D data allowing easy visualization from any
orientation. 3D results can be displayed using three orthogonal planes, however,
this hinders the ability to view tracts running in non-orthogonal directions. Vol-
ume segmentation and colour augmentation offer a more intuitive and appealing
method of display. Animation may also be used to visualize the 3D data set,
by serially looping multiple LIC results calculated with the same noise input
function but shifted in phase, the perception of flow is seen in the 3D data.
An additional advatange is the algorithms robustness to noise within the vector
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field.!This!robustness!negates!the!need!for!complex!data!smoothing!approaches.
The!algorithm!performs!well!even!in!areas!of!low!anisotropy,! and!reveals!grey
matter!structure!not!seen!with!conventional!tractography!approaches.
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