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Abstract. In this note, we present a method for flattening anatomi-
cal surfaces such as branched vessels and intestinal tracts in an area-
preserving way. This method is based on the theory of optimal mass
transport and conformal mapping of surfaces. The flattened representa-
tions differ minimally from conformality in a certain precise sense. Po-
tential applications include the detection and visualization of pathologies
such as stenoses and polyps.

1 Introduction

Surface deformations, in particular the flattening of highly undulated and
branched surfaces, is an active area of research in the field of medical imag-
ing and visualization, For example, flattened representations of brain surface are
important in the study of neural activities within the three dimensional folds of
brain surface; see [14,2] and the references therein. Flattened versions of the colon
surface may be a good complement for CT colonography or virtual colonoscopy;
see [12,7] and the references therein.

There have been a number of approaches to surface flattening. In[12], a vi-
sualization technique is proposed which uses cylindrical and planar map pro-
jections. Methods based on quasi-isometric and quasi-conformal flattenings of
brain surface have been considered in [4,13], among others. Wang [15] presented
a method for unravelling colon surface based on electrical field. Typically, these
methods do not guarantee bijectivity of the mapping. Algorithms based on con-
formal mapping have also been applied on this problem [2,7,16]. These methods
preserve angles, and in this sense preserve local geometry. They also guarantee
bijectivity. However, these conformal flattening methods are not area-preserving,
since a mapping cannot be both angle-preserving and area-preserving unless the
original surface has zero Gaussian curvature. This problem becomes particularly
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pronounced when we wish to construct a flattened representation for a multi-
branched surface.

Here we take another approach based on the theory of optimal mass trans-
port. Our method makes minimal adjustments to an initial conformal mapping
to find an area-preserving mapping. [1].

2 Conformal Flattening of a Multi-branched Vessel

We now briefly review our approach for constructing a conformal flattening of
a multi-branched vessel. The algorithm contains two steps: dividing the whole
vessel into several Y-shaped segments using the harmonic skeleton, and then
flattening each Y-shaped segment. More precisely, our method is based on the
solution of a harmonic equation on the surface, from which a “harmonic skele-
ton” or medial axis is derived. The harmonic skeleton is easy to calculate, is
guaranteed to be smooth, and can be used as a “center line” for a fly-through.

Let Σ be a triangulated surface, without self-intersections, which is topolog-
ically a tube with several branches. A branched blood vessel is an example of
such a surface. We assume each branch terminates in a boundary loop which we
call σi (i = 0...N). The first step in our algorithm is to solve a Dirichlet prob-
lem ∆u = 0 on the interior of Σ with proper boundary conditions. One of the
boundaries, σ0, is selected to be the root. The value of u on the root boundary is
assigned to be 0. Given this 0 contour, there exists a set of triangles whose base
vertices are coincident with the 0 (starting) contour and whose apex vertices
describe the successive contour. This description can be repeated for n pairs of
triangle sets until the successive contour reaches a boundary other than root.
The value of u on this boundary is then assigned to be n. The equation ∆u = 0
is solved using standard finite element techniques [7].

The second step is to build a tree-like structure we call the harmonic skeleton.
Using the function u solved for in the first step, we find level sets on the surface,
i.e. sets {x|u(x) = ν} for values of ν ranging from 0 to the maximum of u. We
partition each level set into classes according to connectivity on the surface. The
centroid of each class of points corresponds to a point on the harmonic skeleton.
By increasing ν from 0 to its maximum, we can build a structured tree. The
locations of the bifurcations along the tree are obvious since it is easy to see
where one centroid splits into two.

The third step is to refine the harmonic skeleton by replacing the boundary
values used previously in step 1 with new values obtained as the distance along
the skeleton from the root boundary to the other boundaries. We again solve
the corresponding Dirichlet problem and extract a refined harmonic skeleton. It
is easy to cut a branched vessel into several Y-shaped segments with the help of
this construction.

Details for the conformal flattening of a Y-shaped vessel (i.e., with only a
single branch point) have been presented in [16] to which we refer the interested
reader. Essentially, the method involves solving another Dirichlet problem to
obtain a harmonic conjugate for u.
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It is well known that conformal flattenings are “similarities in the small” in
the sense that over small regions, the flattened version differs from the original
by a scale factor alone. As a result, the flattened surface retains much of the
visual quality of the original. However, conformal mappings do not in general
preserve surface area. Indeed, some areas of the surface may be greatly enlarged
or reduced. The problem becomes exacerbated when there are a large number of
branches. To address this problem, we consider adjusting the conformal mapping
in a minimal way so as to correct the distortion of area. By making only these
minimal adjustments, we hope to preserve the desirable qualities of the conformal
mapping as much as possible.

3 Introduction Optimal Mass Transport

3.1 Background

Our method for minimally adjusting a conformal mapping is based on the theory
of optimal mass transport, also referred to as the Monge-Kantorovich problem.
Here we present a review of the basic theory. Let Ω0 and Ω1 be two domains
in R2, having smooth boundaries. On each of these domains we assume we are
given a priori a mass density function µ0 and µ1 respectively. We assume that
the same total mass is associated with each of these densities.

We will be considering a class of diffeomorphisms u from Ω0 to Ω1 which
satisfy the equation

µ0 = |Du|µ1 ◦ u. (1)

Here Du is the matrix of first derivatives of u, and ◦ represents composition of
functions. This is the “Jacobian equation”, which is a mass preservation (MP)
constraint. For a function satisfying (1) we will write u ∈ MP. The special case
where µ1 = 1 is of particular interest for the current application. In this case
Equation (1) reduces to µ0 = |Du|, and we see that this equation is simply a
hard constraint on the Jacobian |Du| of u, the Jacobian giving the amount of
scaling of area that occurs locally under the mapping u.

We are interested in finding an MP mapping u which differs minimally from
the identity. To this end, we introduce a squared L2 Kantorovich–Wasserstein
penalty functional on u ∈ MP, defined as:

M [u] :=
∫

Ω0

‖u(x) − x‖2µ0(x)dx (2)

This functional (2) is seen to place a penalty on the distance the map u moves
each bit of material, weighted by the material’s mass. Hence, the Kantorovich–
Wasserstein metric may be thought of as the cost associated with transporting,
via u, a distribution of material given by µ0. The resulting distribution of ma-
terial is constrained to be the given density µ1, according to (1).

Theoretical results [3,5] show that there is a unique minimizer ũ ∈ MP of
M , and that this minimizer is characterized as being the gradient of a convex
function w, i.e., ũ = ∇w.
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3.2 Finding the Minimizer

There have been many approaches for finding the solution ũ to the optimal mass
transport problem. In [1,8], a new approach for finding the optimal map was
proposed, based on the notion of polar factorization [6,3]. Here we present the
main idea behind this work.

Our algorithm for finding ũ consists of two steps. The first step is to find
an initial mapping u from Ω0 to Ω1 satisfying the Jacobian equation (1) . The
second step is to adjust this mapping iteratively using gradient descent in or-
der to minimize the functional M , while constraining u so that it continues to
satisfy (1). A method for finding an initial mapping is described below. Here,
we derive the appropriate gradient descent equation, considering a more general
cost functional M given by

M [ut] =
∫

Ω0

Φ(ut(x) − x)µ0(x)dx, (3)

where Φ : R2 → R is a positive C1 function. The L2 Kantorovich–Wasserstein
functional (2) corresponds to the case Φ(x) = ‖x‖2.

We think of u as a function of time t, and introduce the notation ut, with u0

being the initial mapping. Each such ut can be written as the composition

ut = u0 ◦ (st)−1, or (4)
u0 = ut ◦ st, (5)

where st is a mass preserving mapping from Ω0 to itself satisfying µ0 = |Dst| µ0◦
st. The derivative of st with respect to time is described by a vector field vt on
Ω0, i.e.

∂st

∂t
= vt ◦ st. (6)

where the vector field vt must satisfy div(µ0 vt) = 0 in order to preserve the
density µ0. By the chain rule applied to Equation (4), the evolution of ut must
satisfy

∂ut

∂t
+ Dut · vt = 0. (7)

By a change of variables x = st(y) in (3), together with (4), we find

M(t) =
∫

Ω

Φ(u0(y) − st(y)) µ0(y) dy. (8)

From this one computes that the cost decreases according to

dM

dt
= −

∫
〈∇Φ(u0 − s),

∂st

∂t
〉µ0 dy = −

∫
〈∇Φ(ut(x) − x), µ0 vt〉 dx.

Clearly, were it not for the constraint div(µ0 vt) = 0, we could take µ0 vt =
∇Φ(ut(x)−x) to decrease M. Instead, we take µ0 vt to be the divergence-free part
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of ∇Φ(ut(x)−x), finding this part through the use of Helmholtz decomposition.
This step involves solving Laplace’s equation with boundary conditions set to
keep the flow of st confined in Ω0. The resulting equation for updating ut has
the following form:

∂ut

∂t
= − 1

µ0
Dut · (I − ∇∆−1div)∇Φ(ut − id), (9)

where id denotes the identity map, and I is the identity matrix. For more details
on this technique, please refer to [1,8].

3.3 Finding an Initial MP Mapping

A general method for finding an initial mapping for irregularly shaped domains
can be found in the work of Moser [10]. In our algorithm, both source and target
domains are rectangles of the same size. Accordingly, we can use the following
simple method, as described in [1,8].

Assume Ω0 = [0, A]× [0, B] and Ω1 = [0, A]× [0, B]. Our initial mapping will
be of the form u0(x, y) = (a(x), b(x, y)). Since both µ0 and µ1 are positive, we
may define a(x) implicitly by the following equation:

∫ a(x)

0

∫ B

0
µ1(η, y)dydη =

∫ x

0

∫ B

0
µ0(η, y)dydη. (10)

Note that a(0) = 0 and a(A) = A by the assumption that both domains contain
same amount of mass. By taking the derivative respect to x, we find

a′(x)
∫ B

0
µ1(a(x), y)dy =

∫ B

0
µ0(x, y)dy. (11)

We may now therefore define b = b(x, y) implicitly by the equation

a′(x)
∫ b(x,y)

0
µ1(a(x), ρ)dρ =

∫ y

0
µ0(x, ρ)dρ. (12)

Taking the derivative with respect to y shows that u0 satisfies the constraint (1).
This construction of u0 can be interpreted as finding the optimal mass transport
in the x direction, then in the y direction for each x.

4 Optimal Transport Applied to Conformal Mapping

Our goal is to apply the optimal transport theory to adjust a conformal mapping
minimally in order to obtain an area preserving mapping. Let us now assume we
have constructed a conformal mapping f of a triangulated surface to a region
range(f) in the plane.

For simplicity, and without loss of generality, we assume the initial surface
and range(f) have areas equal to 1. We can always scale homothetically to make
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this so. Define µ0 on range(f) to be the area of a triangle on the original surface
divided by the the area of the triangle once flattened. Extend the function µ0
to a rectangular region Ω0 surrounding this range by setting µ0 to 1 outside of
range(f). Figure 4 shows such a function µ0, the dark color representing enlarged
areas and the light color representing reduced areas. Let Ω1 = Ω0, and set µ1 to
be uniformly 1 throughout Ω1.

We now solve the optimal transport problem as described in the previous
section. Since µ1 = 1, the constraint (1) reduces to µ0 = |Du|, and so by the
construction of µ0 a mapping u which satisfies this constraint compensates ex-
actly for the distortion in area that occurred during flattening. Further, since
we minimize the functional (2) to find the minimizing ũ, our solution differs
minimally from the identity.

5 Implementation and Examples

We use standard techniques to solve Equation (9). In particular we have em-
ployed an upwinding scheme when computing Dut, and the FFT when inverting
the Laplacian on a rectangular grid. Standard centered differences were used for
other spatial derivatives. Once we numerically solve for the right hand side of
(9), we use the result to update ut. The optimal map is obtained as t → ∞. In
practice, we iterate until convergence with respect to a specified tolerance.

Our first example is a dataset provided by the Surgical Planning Lab of
Brigham and Women’s Hospital, Harvard Medical School. The dataset is a vessel
surface extracted from a 256×256×47 MRA brain image. By using a segmenta-
tion method based on active contour model, we found the surface of a section of
vessel. We then generated a triangulation of the surface using the Visualization
Toolkit as shown in Figure 1 and triangles at the ends were removed to create a
tubular surface. Next, we used the technique described in Section 2, we produced
a conformal flattening of this surface (Figure 2), together with a harmonic skele-
ton (Figure 3). Then, as described in Section 4, density maps were generated
(Figure 4) based on the distortion of area due to flattening. Figure 5 presents a
histogram of this distortion, from which it can be seen that many triangles were
enlarged or reduced. Finally, an area-preserving mapping (Figure 6) was con-
structed based on the algorithm described in Section 3.2. The computation took
about 9 minutes for the conformal flattening and about 20 minutes for the area
preserve flattening, both on a 1 GHz Linux system. All surfaces in the figures
are shaded by using outward normal vectors from the original surface.

The second example is a dataset provided by Emory Hospital. The dataset
is a 512× 512× 91 CT image for carotid vessel. The flattening approach for this
dataset was similar to that of the first one, except that there was only one branch
point and hence it was not necessary to generate a harmonic skeleton. Figure 7
is the segmented surface and Figure 8 is the area-preserving presentation.

Color images of these examples can be found at:
http://www.prism.gatech.edu/∼gte538w/miccai2003/miccai2003.htm
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Fig. 1. A segmented brain vessel

Fig. 2. The conformal mapping of Fig 1

Fig. 3. The harmonic skeleton for Fig 1

Fig. 4. Density map for Fig 2

Fig. 5. The statistics for Fig 4

Fig. 6. The area-preserving mapping of
Fig. 1

Fig. 7. A segmented carotid vessel

Fig. 8. Area-preserving flattening of Fig 7
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6 Conclusions

In this paper, we presented a new method for flattening of branched medical
surfaces based on the theory of optimal mass transportation. Starting from a
conformal equivalence, we constructed a density map and then generated an area-
preserving representation of the original 3D surface. Potential applications in-
clude the detection and visualization of pathologies such as stenoses and polyps.
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