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Abstract. 3D freehand ultrasound imaging is becoming a widespread
technique in medical examinations. This imaging technique produces a
set of irregularly spaced B-scans. Reconstructing a regular grid from
these B-scans is a challenging problem that enables the visualization and
further analysis of the acquired data. This paper focuses on extending
an existing method [I] to define the output reconstruction grid based on
principal component analysis (PCA). Our method introduces a model
for the region of interest (ROI) in order to adapt the grid to the ROI.
In addition, a technique based on normalized convolution is proposed
for the interpolation problem. A new applicability function based on the
correlation function of a linear probe is used to avoid inter-resolution cell
blurring.

1 Introduction

Three dimensional (3D) ultrasonic imaging is increasingly being used as a diag-
nostic tool as well as in the operation room for surgical guidance. In freehand
imaging, a 3D positioning sensor provides a measure of the position and the
orientation of the coordinate system of a receiver (typically attached to the
probe) with respect to a fixed coordinate system located at the transmitter. A
rigid transformation allows us to convert each position in the B-scan plane to a
3D spatial position. The acquired data can be seen as a scattered distribution
of planes in the 3D space. The reconstruction of a volume out of a number of
planes with arbitrary orientations is still needed to apply further processing with
off-the-shelf algorithms, although a real time visualization based on raw B-scans
is possible and allows on-line diagnosis [2].

Volume reconstruction of ultrasounds has been tackled by several authors [3]
4I5] in the past. All these studies, despite their unobjectionable quality, share the
same pitfall: no attention is paid to the details of the construction of the regular
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grid. We have recently addressed this problem [1], focusing on the three following
subproblems: the selection of the coordinate system of the reconstruction grid,
the selection of the extent of the reconstructed volume and the determination
of the voxel size. Principal component analysis (PCA) was used in that study
to deal with the first of the aforementioned subproblems. Considering the 3D
positions of the pixels as samples of a population, we look for the coordinate
system that achieves the largest data variance in each direction while being
uncorrelated with the others. The size of the reconstructed volume is pruned
using the eigenvalues information provided by PCA. We have shown [ that this
technique encloses the region of interest (ROI) with a smaller overall physical
volume than other methods previously proposed in the literature.

This paper aims at extending our previous technique. A prior of the ROI
is defined in order to weight the PCA stage. The ROI prior is defined as two
independent distributions in both the axial and lateral directions. The model
parameters are estimated in a maximum likelihood sense from a few ROI delin-
eations. Moreover, we propose the use of normalized convolution [6] to perform
the interpolation of the irregular sampled data. The proposed normalized con-
volution method takes into account the point spread function of the aperture.
Thus, the interpolation scheme is tuned to the resolution cell of the ultrasound
system, avoiding a inter-resolution cell blurring.

2 Methods

2.1 Coordinate System Extraction

In this work, we introduce an enhancement of the method proposed in by
including a ROI prior in the PCA computation. The coordinate system associ-
ated with the output grid is computed from an principal component analysis of
the data points (B-scan pixels) positions. The covariance matrix of the positions
defines the transformation between the transmitter coordinate system and the
output grid coordinate system (see Fig. [Ih).

A prior defines the probability for a given point in the B-scan plane to belong
to the ROI. We propose a prior probability density function (pdf) that follows a
Gaussian distribution in the lateral direction and a Rayleigh distribution in the
axial direction.

T T 592 502,
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The further in the axial direction the more unlikely to find a point that, a priori,
belongs to the ROI due the fact that the ultrasound signal undergoes an in-depth
attenuation that makes preferable to localize the object of interest near the fo-
cus. In that sense, a Rayleigh distribution accounts quite well for that behavior.
The prior parameters can be estimated by a maximum likelihood approach. Let
us assume that we are able to know the points that belong to the ROI along some
slices in our study, S = {s;} and Q = {¢;}, where i = 1... N. The log-likelihood
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Fig. 1. (a) Coordinate systems involved in the grid definition.(b) Prior distribution
contour plot on a kidney examination

function is given by £(8](S, Q)) = log [T, Prar(si(Bs1, 052))Pax (¢:]641). The pa-
rameters that maximize this function can be easily worked out, resulting on

N N N
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Figure [Ib shows the prior distribution contour plot overlaid with the corre-
sponding B-scan of a kidney examination. The ROI has been delineated (dashed
contour) and eq. (@) have been used to compute the prior parameters.

The prior pdf is used to weight the position of each pixel in the covariance
matrix estimation. The eigenvectors of the covariance matrix define the output
coordinate axis. The eigenvalues are used to compute the extent of the output
grid allowing a trimming as reported by [1]. The length of the trimmed output
grid along coordinate i that confines a given information density, say r, is [; =
2V/2); - er finv (7"1/ 3), where J; is the eigenvalue for coordinate i and er finv is
the inverse error function.

2.2 Regular Sampling from Sparse Data

The signal reconstruction from irregularly sparse sampled data is the main prob-
lem to overcome in freehand imaging once the coordinate system problem has
been resolved. Solutions that primely favor the simplicity and performance, i.e.
nearest neighbor solutions, have prevailed in the literature, for example [7].

We attempt to provide a localized solution while preserving computational
resources by means of spatial locality. This solution is based on normalized con-
volution [6] to filter uncertain and sparsely sampled data. Normalized convolu-
tion can be seen as a local weighted least square solution where the weights are
given by two terms: an certainty function, ¢, and an applicability function, a.
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The former encompasses the knowledge of our data being missing. The applica-
bility function tries to enforce locality to the solution by giving less importance
to samples further away the location of your output sample. In the case of us-
ing a constant basis function, the normalized convolution expression reduces to

f = % We will not elaborate further on normalized convolution but
5 alX;5)c;

refer the interested reader to the seminal references [6].

The ultrasound reconstruction problem has being traditionally divided in
two parts: bin filling and hole filling. The former accounts for resolving a single
value on the grid locations where several input samples contribute. The latter
estimates the values of the remaining output grid positions. A theoretical dis-
tinction between bin and hole filling allows to build a certainty function that
behaves differently when dealing with subvoxel interpolation and intervoxel in-
terpolation.

Certainty function. In this work, the local certainty function consists of two part
to account for the bin filling and hole filling process:

1. A bin measure, ¢, defined in the input data. This measure decides what to
do when several pixels lie into the same voxel. Operations like averaging,
median or maximum value could be implemented by properly setting c;.

2. A hole measure, ¢y, defined in the output grid. This function tells the loca-
tions where no data exist.

Applicability function. It has been specially designed to account for the asymmet-
ric shape of the point spread function of the ultrasound beam. The point spread
function determines the resolution cell of our system. Our applicability function
should take this into account to avoid blurring beyond the system resolution;
therefore, the output structural blurring is minimize making the interpolation
process as local as possible to the information that lies into the resolution cell.

The applicability function proposed in this paper is given by three terms:
a(s,q,t) = Raxz(q)Ria(8)Rei(t), where R stems from the correlation functions of
a rectangular aperture that can be analytically resolved [g]:

1 {1 _ sin(2mfss)
(ms)? 27 fss

Ria(s) = )] ’ Rax(q) = 462, Re(t) = e .

In a far field approximation every aperture can be seen as a rectangular one,
making eq. (B feasible. The parameters f,, o5 and o, have a physical meaning

. . A2 A2 .
associated with probe parameters: f; = ﬁ, 03 = 15155 and ol = . A is the

transducer wavelength, D is the aperture width and s is the focal depth.

3 Results

Coordinate system evaluation. The evaluation has been carried out using a thy-
roid and a kidney examination. An expert was requested to scroll along the
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Fig. 2. Evolution of the Vo with Vgriq, both normalized by Vros. Two cases have
been analyzed: (a) thyroid gland and (b) kidney. Vertical lines show the point at which
each method starts to enclose the ROL.

volumes and delineate the ROI in a set of representative slices. This initial de-
lineation was used to estimate the prior pdf parameters using eq. (). Later on,
the same expert was requested to carefully delineate the ROI along the whole
examination, so a quantitative study could be conducted.

The proposed coordinate system has been compared with other three meth-
ods: PCA without using ROI prior, Key-frame and the transmitter coordinate
system (hereon referred as the T method). Key-frame merely sets up the coordi-
nate system by choosing one of the study B-scan coordinates as grid coordinate
system. The transmitter coordinate system is the one given directly for the track-
ing system (see Fig.[Th). For the PCA systems two trimming methods has been
used: the proposed eigenvalues approach and a deterministic approach based on
the deviation from the center of gravity and an external percentage p [1]. Key-
frame and T methods have been solely trimmed with the deterministic method
due the lack of eigenvalues in those cases. We evaluate the coordinate system
by analyzing the ROI volume encompassed for the grid as the trimming method
includes more and more information. ROC-like curves are shown in which the
magnitude in the horizontal axis is the physical volume of the reconstructed
grid (Vgria), and the magnitude in the vertical axis is the portion of the ROI
captured by the reconstructed grid (Vj5,;). Both axis are normalized by the
physical volume of the ROI (Vgors) in order for the curves of the two datasets
to be comparable irrespective of the actual size of the ROL.

Figure 2 shows the Receiver Operating Characteristic (ROC) curves that
result from the different methods for the two studies. The ROI method signif-
icantly improves the results, overall when the eigenvalues are used to trim the
volume. We have observed that the ROI prior greatly enhance the information
carried by the eigenvalues of the covariance matrix. We have also seen that the
trimming method is less sensitive to the variation of r when the ROI prior is
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Fig. 3. Performance of the ROI prior method with the eigenvalue trimming approach.
The original B-scans planes, the bounding box (outer box) and box for » = 0.8 are
shown for the cases (a) thyroid gland and (b) kidney.

taken into account. Figure 3 shows the output grids when the PCA with ROI
prior is applied. r has been set to 0.8. A ROI model has been rendered to let
the reader assess the goodness of the result. The outermost box is the bounding
box that covers the whole data for the PCA coordinate system.

Normalized convolution. The interpolation has been assessed using two studies.
First, an examination of a thyroid gland performed with a 7 MHz linear array
probe and a depth setting of 40 mm depth. The second examination was per-
formed with a 6.5 MHz laparoscopic convex curvilinear array probe and a depth
setting of 35 mm. The performance of the proposed applicability function using
normalized convolution (NC) has been compared with other three interpolation
methods. A simple nearest neighbor approach (NN), a inverse distance-weighted
approach (DW) and a triangle-based interpolation (TgLinear) [9] using the Mat-
lab griddata implementation.

Since an underlying anatomical ground truth is not known, we have decided
to test our method by artificially removing data from the two examinations. For
a given slice, the voxel array has been aligned with this B-scan such that pix-
els fall exactly onto voxels. Pixels of this B-scan have been randomly removed
from a uniform distribution. The corresponding interpolation algorithm has been
applied over this artificial irregular sampled slab. The tests have been carried
out along 6 different B-scans for both volumes. For each B-scan, ten different
percentages of data have been removed: 5% and from 10% to 90% in 10% in-
crements. For each percentage, the test has been repeated ten times such that
new random pixels are drawn each time. The root mean squared error (RMS)
between the interpolated and the original data has been computed as performace
measure.
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Fig. 4. Evaluation of the interpolation method.(a) Thyroid case.(b) Pig hepatic vein
case. Mean RMS error is plotted with lines, the standard deviation with boxes and the
outliers values at the end of the whiskers.

Figure @ shows the overall trend of the methods under analysis. Our method
performs as well as TgLinear. However, our method is on average four times
faster. Moreover, TgLinear is not feasible when the number of fitting points
become larger and lager. In our case, we are not limited by this factor. Figure
illustrate a set of interpolated images when 60% of the data is removed. In
general, NC shows a good signal recovery without structural blurring. These
visual results validate the way that the applicability function has been built.
Methods like NN and TglLinear show a result that looks more alike the original,
although artifact are introduced in the structures, as it can be seen.

4 Conclusions

A reconstruction method for freehand ultrasound has been presented. The main
contribution has been an extension of an PCA-based approach to find out the
optimum coordinate system. This extension is based on fitting a prior model
for the ROI in order to get the best grid that encloses the ROI. Moreove, we
has proposed a new applicability function that takes into account the physical
characteristic of the probe in order to localize the interpolation problem to the
system resolution in a normalized convolution framework. Our method seems to
outperform existing methods both numerically and visually.

Acknowledgements. The first author would like to thank Anders Brun for his
useful comments reviewing this paper. This work was partially funded by NIH
grant P41-RR13218 and by CIMIT.
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(a)

Fig. 5. Interpolation results. (a) Original slices: a thyroid (top), a hepatic vein of a
pig (bottom). Details for the thyroid case (b) and pig hepatic vein (c). From top to
bottom, left to right: original, missing data, NN, DW, TgLinear and NC.
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