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Abstract. 3D freehand ultrasound has extensive application for organ
volume measurement and has been shown to have better reproducibil-
ity than estimates of volume made from 2D measurement followed by
interpolation to 3D. One key advantage of free-hand ultrasound is that
of image compounding, but this advantage is lost in many automated
reconstruction systems. A novel method is presented for the automated
segmentation and surface reconstruction of organs from sparse 3D ul-
trasound data. Preliminary results are demonstrated for simulated data,
and two cases of in-vivo data; breast ultrasound and imaging of ovarian
follicles.

1 Introduction

Ultrasound imaging is used widely in clinical medicine. Its benefits include speed,
low cost and the limited exposure risk associated with it. Although imaging in
3D is starting to become more common place, most clinical scanning remains
2D. This has obvious disadvantages when it comes to quantitative analysis, but
even used qualitatively, the method is problematic. Clinicians must mentally
reconstruct the 3D tissue structure in order to ascertain shape or position of
a region of interest. This mental reconstruction is subjective and dependent on
the knowledge and experience of the ultrasonographer. A brief outline of 3D
scanning techniques is given here, a more detailed review can be found in [1].
There are three main methods used for 3D ultrasonography; free-hand scanning,
mechanically driven 3D, and 2D array probes. In this paper we concentrate on
the first two techniques. The latter is only starting to be used in particular
clinical applications, e.g. cardiology. These probes need further development to
have wider applicability. Both free-hand and mechanical 3D ultrasound scanning
produce sparse data-sets. Benefit may be derived from using image compounding
to reduce noise and artifacts, where image planes intersect [2]. In the case of free-
hand scanning this allows multiple views of the same organ, which can be used
to circumvent problems associated with acoustic shadowing.
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There are two main techniques for object reconstruction; those in which seg-
mentation of images is performed prior to object reconstruction and those which
perform it after image reconstruction. In the former case, the 2D boundaries are
used to guide a meshing algorithm to provide a 3D view of an object of interest.
In the latter case, the images are placed into a 3D voxel array and grey-level
interpolation is used to fill the gaps. This approach enables generation of images
from any viewpoint, together with viewing of a segmentation object.

A review of medical applications of image segmentation and object recon-
struction is presented in [1]. Our interest primarily lies in the use of these
methods in ovarian follicular volume estimation during assisted reproduction
techniques such as in-vitro fertilisation (IVF). A number of studies have shown
the benefit of 3D imaging in fertility treatment using manual segmentation of
mechanically generated 3D scans to calculate volume, for example[3]. The use of
automated methods for object reconstruction has been limited [4,5]; ter Harr-
Romeny et al. [5] used mechanical 3D ultrasound to scan ovarian follicles, per-
forming processing on the 3D reconstructed image data. After detecting the
follicle centre, the follicle boundary was found using a form of edge detection
at multiple scales on lines radiating from the center points. A spherical har-
monic surface was fitted to the sparse edge points. In general it appears that
most reconstruction methods, with the exception of [5], adopt the approach of
segmentation prior to object reconstruction. However, segmentation of individ-
ual images prior to reconstruction cannot take advantage of noise suppression
through image compounding [2].

We use a Level Set method for object reconstruction. Conventionally a single
level set function is used to embed a single object class as in [6]. However we
require identification of multiple object classes. In this paper we present a novel
variant of the Level Set method [7] which allows for the simultaneous recon-
struction of multiple objects from sparse data. Although not limited to these
applications, preliminary results are presented for in-vivo data from free-hand
3D breast ultrasound and ovarian scans.

2 Reconstruction Method

The Level Set approach is a powerful tool which finds application in many fields
including medical image segmentation and object reconstruction [7]. The essence
of the approach is to define a boundary implicitly as the zero level set of a higher
dimensional function, for example a curve (1D) is represented by the zero level set
(φ = 0) of a surface, φ (2D). The advantage of this representation is that complex
topology and surface evolution, for example curve merging, can be handled in
an elegant manner. A full explanation of the method can be found in [7]. The
main equation solved by the method is:

φt + F |∇φ| = 0 (1)

where the function, φ(t), is evolved over time using a speed function, F , such that
the zero level set, φ = 0, at time T = ∞ is the optimal solution for the application



418 M.J. Gooding, S. Kennedy, and J.A. Noble

of interest; in our case, the segmentation and reconstruction of sparse ultrasound
data. Equation 1 may be numerically minimised by defining the iterative update
equation:

φnew = φold − ∆TF |∇φ| (2)

where ∆T is a small time step. A speed function, F , must be defined for the
application of interest. A method for reconstructing an object from sparse known
edge points was presented in [6], where F was defined as:

F = ∇d.
∇φ

|∇φ| +
d

p
∇.

∇φ

|∇φ| (3)

Here d is the distance to the nearest edge point and p is a weighting factor
controlling the smoothness of the solution. In this case the speed function finds
the weighted minimal surface with respect to the edge points. Although such
a method could be used to fit a surface to 2D segmentations, our aim is to
segment sparse 3D images after reconstruction. To this end we propose a new
speed function as follows:

F = αFsurf + βFimage + γFreg (4)

where Fsurf is the surface reconstruction term in Equation 3, Fimage is a segmen-
tation term and Freg is a regularisation term; in this instance proportional to the
level set curvature ∇. ∇φ

|∇φ| . The purpose of this last term is to keep the segmenta-
tion result smooth. The parameters α, β and γ are application specific and must
be determined empirically. Our method is as follows: first the free-hand data is
reconstructed as a volume image. Then the level set is evolved using information
from the volume image to guide both the segmentation and reconstruction. The
distance to the edge point required for Equation 3 is calculated at each iteration
from the current positions where the zero-level set intersects the image data.

A relatively simple segmentation term, Fimage is used in the work. Given a
prior segmentation, whether by initialization or as a result of a previous itera-
tion, each region is labelled with a class, c, such that c(x) is the current class at
point x within the volume image. Associated with each class is a non-parametric
probability density function (PDF) derived from the intensity of the points con-
tained within the class. We then define pc(x)(v) as the probability that intensity
value v belongs to class c(x), which is found from the PDF of c(x). The inten-
sity value at point x is given by the mean intensity within a neighbourhood,
N2(x), around that point. For a particular point, x, we consider the probability
of membership to the region to which it currently belongs and to any region
within a neighbourhood, N1(x) around that point. The size of N1 is on the scale
of the level set function discretisation, whilst N2 is chosen to get a good ap-
proximation to the local data. Fimage is set to the difference in the probability
of membership between the current class and the most probable neighbouring
class. For non-boundary pixels where all points within N1(x) are the same class,
or for areas where there is no data within N2(x), Fimage is set to zero. This
results in the segmentation term, Fimage, having a value between -1 and 1, with
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the sign chosen such that the region is extended if it is more probable that the
point belongs to the class that it is already in and shrinks if the probability of
belonging to a neighbouring class is higher. This can be expressed as:

Fimage(x) = max
∀u∈N1(x)|u�=x,c(u) �=c(x)

[
pc(u)(µ(N2(x))) − pc(x)(µ(N2(x)))

]
(5)

where µ() is the mean value over a neighbourhood. For all x where N2(x) = ∅
or where ∀u ∈ N1(x), c(u) = c(x);

Fimage(x) = 0 (6)

2.1 Implementation of the Object Reconstruction

The implementation of the level set method is done in a similar way to [6], but
with two important modifications.

First, we subsample the 3D image into a voxel array of the same resolution
as the level set function voxel array, with the mean intensity being used in any
voxel with more than a single pixel falling in it. In such an arrangement we may
consider the neighbourhood, N2, of a point as being the voxel in which it falls,
with calculations of level set speed only occurring at each voxel centre near the
boundary. N1 is defined as the 27-voxel neighbourhood of each voxel centre. In
principle, the reconstructed image can be kept in the form of a position-intensity
pair, where the position is not quantised to a voxel array but is in “real space”.
Such a scheme is used in [6], however once the distance field d is calculated for
each point within the Level Set voxel array, the raw data can be discarded. In
our method the raw data cannot be discarded since the intensity at each position
is needed for the Fimage term, and d is recalculated at each iteration. Since our
data sets are very large (of the order 106 points), the memory requirements to
store the information make such an approach unfeasible so we adopt the voxel
based representation.

Second, Level Set segmentation methods exist which operate by evolving mul-
tiple coupled surfaces in parallel, requiring N [8], or at best logN [9], embedded
functions for N classes. In [10] a method is presented for embedding N classes
in a single level set function, which although slow is memory efficient. For 3D
applications, memory becomes more constrained than for 2D image analysis and
as a result a modification of the implementation in [10] has been developed as
follows. Multiple classes evolution is achieved by storing a class label for each
voxel. When the sign of φ changes for a particular voxel, its label either becomes
that of the background class, for φ > 0, or the same as the object that it is
touching. If two different object classes come within 2 voxels of each other both
have the speed set F = −1 such that they will be driven apart again, as this
prevents problems of class assignment occurring on the boundary between the
object classes. Once the regions are “driven back”, the class with the highest
true speed value is the first to move back into the gap and the two regions
compete in this way. This method varies from [10], by allowing for non-binary
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speed functions, storing of the class labels, and preventing region merging. The
initial seeding is performed manually and merging is prevented because, in this
application, neighbouring objects share the same statistical appearance.

3 Experimental Analysis

Examples of applying the method to both simulated and in-vivo data are given
in the section. In-vivo results are shown for two clinical ultrasound applications:
breast mass detection and fertility treatment.

3.1 Simulated Data Sets

In this experiment the simulated data consists of a spherical object of radius
20 voxels. Simulated scans of this object were made, such that for each plane
the regions corresponding to the sphere would have intensity values in the range
from 60 to 120, uniformly distributed, while the background has intensities from
10 to 240, uniformly distributed. The sampled intensities from each plane were
quantised to a voxel array. Each voxel on a plane had between 30 and 60 intensity
values assigned to it for simulated compounding. Simulations were made with 4
scan patterns; linear sweep across the x-axis at 2 and 5 voxel spacing, and rota-
tional about the x-axis at π

24 and π
12 radian spacing. Two spherical initialisations

were used, centred at (50, 50, 50), with radii of 15 and 25 voxels.
Table 1 shows the volume error for each of the simulated data test. All volume

estimates fall within an equivalent of 1 voxel change of radius. The linear scan
measure shows larger error for the smaller initialisation as the method cannot
extend to unconnected scan planes. Closer spacing of planes, for both linear and
rotational scans, gives greater accuracy as expected.

Table 1. Volume results for simulated data compared with true volume.

Scan type initial radius estimated volume error
and spacing (voxels) (voxels) (%)

linear, 5 voxels 15 29819 -10.65
linear, 5 voxels 25 32173 -3.58
linear, 2 voxels 15 29861 -10.52
linear, 2 voxels 25 33493 0.37

rotation, π
12 rads 15 30573 -8.38

rotation, π
12 rads 25 32417 -2.86

rotation, π
24 rads 15 32406 -2.89

rotation, π
24 rads 25 33338 -0.10

3.2 In-vivo Scanning

Breast data: The breast ultrasound data consist of 174 B-mode images recorded
at approximately 25Hz using a linear sweep across a cyst. The images were
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scanned using an AuIdea4 (Esaote) and an LA13 7.5Mhz linear array probe.
The positions were recorded by a Polaris Hybrid optical tracker (Northern Digital
Inc). No quantitative measurements of the cyst volume were available.

Figure 1 shows the segmentation and surface fit of the breast cyst. Visually,
both the segmentation and object reconstruction appear good. A shift in the
surface of the cyst can be observed. This was caused by variation in the contact
force between the probe and the breast, resulting in variable compression of
the cyst and the breast tissue. This is a significant source of error and must be
addressed before quantitative measurements can be made [11].

Follicular data: In this experiment the data consists of scans from 2 pa-
tients undergoing IVF treatment. Each set contains 180 B-mode images of an
ovary recorded at approximately 12Hz using a rotational motion. Ovary 1 con-
tained one follicle, Ovary 2 contained three follicles. The images were scanned
using a Powervision 6000 (Toshiba Medical Systems) and a 7.5MHz transvaginal
probe. Positions were recorded by a Faro Arm (Faro Technologies Inc). Linear
measurements were made of the follicle during 2D scanning. Each follicle was
aspirated as part of the normal IVF treatment, shortly after scanning, allowing
the associated volume to be recorded.

Consenting patients were scanned at the John Radcliffe Hospital, Oxford,
U.K. Ethics committee approval had been granted for both acquistions.

Figure 2A shows the reconstruction. Although the reconstruction appears
good, Table 2 shows that the method underestimates the aspirated volume in
3 out of 4 cases. Despite this underestimate the reconstructed volume is of a
similar accuracy to the volume of a sphere calculated from clinical measurements.
The mean measurement of two diameters is currently used by clinical staff as
an indicator of follicle size. The re-sliced compounded image (Fig. 2B) reveals
that compounding leads to lower image quality as a result of misplaced images.
Patient breathing and motion have an effect on the resulting segmentation and
hence the accuracy of the measurements, particularly for the second ovary.

Table 2. Measurements of follicle volume compared to aspirated volume

mean diameter estimated estimated aspirated error in error in
Ovary/ measured in volume from volume from [true] estimate from estimate from
follicle 2D US (mm) 2D US (ml) 3D US (ml) volume (ml) 2D US (%) 3D US (%)

1/i 21 4.9 6.21 7.0 -30 -11
2/i 22 5.6 2.91 5.5 +1.8 -47
2/ii 22 5.6 4.70 7.0 -20 -32
2/iii 9 0.4 1.57 1.0 -60 +57

4 Discussion and Conclusion

This paper has presented a novel method for the 3D volume reconstruction
from sparse 3D (ultrasound) scans. Initial experimental results are encouraging
despite the simple segmentation model, with reconstruction of artificial data
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Fig. 1. A shows the 3D shape of the breast cyst when reconstructed in 3D. The shift
in the surface, as indicated by the arrow, is as a result of breast deformation under
different probe contact pressure with the breast. B shows the segmentation overlaid on
the compounded image for a particular plane. C shows the same segmentation overlaid
on the original image from that plane.

B

A

C

Fig. 2. A shows the shape of the follicles when the ovary is reconstructed in 3D. B
shows the compounded image for a particular plane. C shows the same segmentation
overlaid on the original image from that plane. Compounding can be seen to be making
image quality and the resulting segmentation worse. This effect is a result of patient
motion and breathing.
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falling within 1 voxel radius of the true volume. The preliminary results on in-
vivo scans are encouraging, showing plausible segmentation results. The resulting
volume estimates are disappointing as a result of patient motion, but have similar
error range to 2D clinical measurement.

Two particular problems need addressing in future work: first, problems with
the data acquisition process, for example patient motion and deformation due to
probe contact force, need consideration. These are not problems of the algorithm
per se, but do affect the accuracy of the resulting segmentation and volume
estimation. Second, a feature of the segmentation term is that compounding gives
better separation for classes with different mean values. However segmentation
will fail for classes with identical, or close, means. This can be addressed by
using a different measure to calculate class membership for each voxel. A more
sophisticated segmentation term could prevent underestimation resulting from
multiple classes falling in a single voxel on the class boundaries.
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