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Abstract. This article addresses the problem of histogram matching in
the context of medical image processing. Such a problem occurs while
comparing two images of the same object, where intensity differences
are due to different acquisition conditions. This can be compensated
by histogram matching or equalization. To achieve this, we based our
method on windowing techniques. This allows to match implicitly con-
tinuous probability density functions, yielding more robust results than
the methods issued from discrete histograms.

1 Introduction

We address in this article the problem of intensity compensation between im-
ages taken under different conditions. This problem is part of a complete scheme
where one wants to reconstruct an homogeneous image from multiple acquisi-
tions that exhibit differences in position or in intensity. Geometrical differences
can be compensated by image matching techniques [MV98], although intensity
differences have to be compensated by histogram matching.

This problem can be illustrated by two examples.

– Evolutive lesions in SEP lesions can be detected in a time series of 3D im-
ages [RSMA01] (4D image) by correlating the temporal signal of each voxel
with an evolving lesion model. Before conducting any statistical analysis, the
images have to be normalized in intensity.

– Fusion of MR and histological data (consisting of series of 2D contiguous
sections) needs first the reconstruction of a 3D volume from the 2D histolog-
ical slices. This reconstruction is performed by using dedicated registration
techniques [ORS+01]. Because of the imaging conditions during histology,
the reconstructed volume is generally not homogeneous in intensity from
one section to the next. Therefore, intensity normalization is needed.

These two examples are quite different. In the first one, the imaged object
(here the head) is the same for all the acquisitions, thus intensity normalization
can be done by comparing each image with a single reference image. In the
second one, which is our main interest here, each image is only slightly different
(but still comparable) from the two adjacent ones, but is not comparable with
the other images because of increasing anatomical differences. Here, the intensity
normalization has to be done for each pair of contiguous images, and has to be
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propagated in the whole volume. Because of this propagation, a highly robust
technique is required.

Classically, histogram equalization consists in transforming the input his-
togram into a flat histogram [Cas96]. Thus, matching two histograms can be
achieved by (implicitly) using this flat histogram as intermediary [Hea96]. This
approach is not robust at all, as it depends highly on the extremal values of the
intensity histogram, therefore it is not applicable for our purpose.

The approach developed by Wand et al. [WLB+98] is closer to our needs.
They compute the best linear transformation between two histograms by mini-
mizing a cost function (sum of squared differences). However, their approach is
dedicated to MR images, the way they transform histograms is heuristic, and
they need to introduce an extra parameter to minimize their cost function (due
to the fact that they consider histograms and not probability density functions).

In this paper, we propose to use windowing techniques to estimate continuous
probability density functions (PDFs) from discrete ones. This way, we will have
a formal frame to apply an intensity transformation to a discrete pdf, in order to
compare it to an other discrete pdf. This approach will be explained in the next
section. In section 3, histogram matching procedure is presented. Intensity com-
pensation in human brain optical images and monkey’s brain autoradiographs
are then presented in section 4.

2 Windowing Techniques for Discrete pdf Transformation

In this section, we present all the necessary notions that will be used throughout
this paper. We denote by X1, . . . , Xn an i.i.d. real-valued sample drawn from
an unknown probability density function (pdf) P on R

d. This sample may be
transformed by some bijective function f , yielding an new sample Yi such that
Yj = f(Xj) that may be considered to be drawn from an other probability
density function (pdf) Q on R

d.

2.1 Sample and Continuous Probability Density Functions

Estimating P is a well known problem. If this function has a parametric form (e.g.
mixture of Gaussians), classical estimation techniques, such that the maximum
likelihood of the function’s parameters, may work. But, in most cases, one may
consider it as non-parametric. Here, P can be estimated by Ps by the Akaike-
Parzen-Rosenblatt windowing technique [Aka54,Par62,Ros56]

Ps(x) =
1
n

n∑

j=1

Ks(x − Xj)

where s > 0 is a smoothing factor, K is a non negative absolutely integrable
function (called the kernel).

The choice of both the kernel and the smoothing factor is still a research
topic [BD94], but will not be discussed here. Our particular choice (somewhat
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classical) for the kernel function is the Gaussian, and the smoothing factor is
then σ.

As we are only interested in 1-D discrete probability functions, we will from
now on restrict our study for d = 1.

2.2 Samples, Histograms, and Discrete Probability Density
Functions

An histogram h can be built from the sample by grouping the Xj into bins bi,
each of them being represented by a value xi. In the 1-D case, the bins are 1-D
intervals. When dealing with gray-scale images, usually encoded with integers at
the acquisition stage, the xi are integer values, and the bin width is obviously 1.

It can be shown that the optimal (under certain conditions) boundary be-
tween two consecutive bins xi and xi+1 is given by (xi +xi+1)/2 [MGC01,Llo57].

Although the sampling of the xi can be adapted to correspond to a better
perception of the images [MGC01], we will here restrict ourself to a regular
sampling (i.e. |xi+1−xi| = cste). Moreover, the choice of the optimal bin’s width
could naturally be a research subject [Wan97] that will not be investigated here.

Let us now consider that the histogram is defined by some points xi, and
that the frontier between two consecutive points xi and xi+1 is located in the
middle (xi +xi+1)/2. Equivalently, we can said that each bin xi, with i = 0 . . . I,
is defined by the interval [xmin

i , xmax
i ] where xmin

i = (xi−1 + xi)/2 and xmax
i =

(xi + xi+1)/2. To be consistent, we define x−1 = −∞ and xI+1 = +∞.
The histogram h is thus defined by a finite number of integer values h(xi).

From it, it is straightforward to build a discrete probability density function,
p(xi) by normalizing by the sample size n =

∑
i h(xi): p(xi) = 1/n h(xi).

2.3 Discrete and Continuous Probability Density Functions

From above, it comes out that estimating a continuous probability density func-
tion from a discrete one can be achieved by the Akaike-Parzen-Rosenblatt win-
dowing technique. It comes to consider that all the Xj falling into a bin bi are
located at xi.

Ps(x) =
I∑

i=0

p(xi)Ks(x − xi) (1)

Building a discrete pdf from a continuous one is also straightforward p(xi) =∫ xmax
i

xmin
i

P (x). Thus, new (smoothed) discrete pdfs (defined by values yj and bins

[ymin
j ymax

j ]) can be easily deduced from a given one, through Parzen windowing,
i.e.

p̃s(yj) =
∫ ymax

j

ymin
j

Ps(x)dx =
I∑

i=0

p(xi)
∫ ymax

j −xi

ymin
j −xi

Ks(x)dx (2)

It comes out that p̃s(yj) can be expressed as a linear combination of the p(xi).
It should be pointed out that equation 2 can be used for intensity transformation,
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or bin’s width changes, or also to regularize the discrete probability density
function p(xi) by

ps(xj) =
I∑

i=0

p(xi)
∫ xmax

j −xi

xmin
j −xi

Ks(x)dx (3)

Of course, previous expressions can be simplified if an analytical form of a prim-
itive function if known. For example, if the Gaussian is chosen as kernel, it leads

to p̃s(yj) = 1
2

∑I
i=0 p(xi)

(
erf

(
ymax

j −xi√
2 σ

)
− erf

(
ymin

j −xi√
2 σ

))
.

Fig. 1. A sample (n = 100) drawn from a Gaussian distribution (small vertical seg-
ments at the left) has been transformed by an affine function y = 1.2x + 2.5 (at the
right). Continuous curves: original Gaussian distributions; vertical segments topped
by circles: discrete pdfs computed from the samples; dashed curves: continuous pdfs
estimated from the discrete ones (equation 1, σ = 0.5).

3 Histogram Matching

Consider two discrete histograms or equivalently two discrete pdfs p(xi) and
q(yj). Histogram matching consists in computing the best function f̂ , y = f(x),
with respect to some similarity measure S: f̂ = arg min

f∈F
S(p(xi), q(yj), f). As

p(yj) and q(xi) are not directly comparable, we transform the above problem to

f̂ = arg min
f∈F

S(p̃s(xi), (̃q ◦ f)s(xi))

where p̃s(xi) comes from equation 3 and

(̃q ◦ f)s(xi) =
J∑

j=0

q(yj)
∫ f(xmax

i )−yj

f(xmin
i )−yj

Ks(u)du (4)

is the discrete pdf built at each value xi by integrating from f(xmin
i ) to f(xmax

i )
the continuous pdf deriving from the q(yj). This way, we build a (smoothed)
discrete pdf q̃s(xi) from q(yj) at the same values xi than the ones of p(xi), but
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also with consistent bin widths. This last characteristic is the main contribution
of our approach.

Figure 1 presents the discrete pdfs, q(yj) and p(xi) of one sample drawn
from a Gaussian distribution, with and without being transformed by an affine
function. The same bin width is used to compute both discrete pdfs.

Applying above formulas to get both p̃s(xi) and (̃q ◦ f)s(xi), the similarity
between the two original discrete pdfs, p(xi) and q(yj), can then be more eas-

ily estimated (see figure 2) by the similarity between p(xi) and (̃q ◦ f)s(xi), or

preferably between p̃s(xi) and (̃q ◦ f)s(xi).

Fig. 2. Segments topped by cir-
cles: the original discrete pdf p(xi);
segments topped by squares: the
smoothed discrete pdfa (̃q ◦ f)s(xi)
estimated from the q(yj); segments
topped by triangles: the smoothed
original discrete pdf p̃s(xi).

As the above criteria is not symmetrical, we prefer to change it into

f̂ = arg min
f∈F

(
S

(
p̃s(xi), (̃q ◦ f)s(xi)

)
+ S

(
˜(p ◦ f−1)s(yj), q̃s(yj)

))
(5)

when f is invertible.
Our practical choices are to use parametric functions f (polynomials), and

minimization is done with a classical Powell-Brent procedure. We implemented
several similarity measures, from the sum of squared differences to the maximum
of the likelihood.

4 Results

4.1 Monkey’s Brain Autoradiographies

The MAPAWAMO european project aims at mapping visual cortical regions in
awake, behaving monkey using functional MR images (fMRI). One of the inno-
vative aspects of this project is to compare within the same monkey activation
maps measured with fMRI and those obtained by metabolic labelling (double la-
bel 2-deoxyglucose technique [VTO00]), thus allowing to compare two mapping
techniques with each other, the 2DG serving as “ground truth”, and advance
the understanding of the nature of the fMRI signal.
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Fig. 3. Monkey’s brain autoradiographies. Three orthogonal slices of the realigned
stack of 2D autoradiographies before (left) and after (right) intensity normalisation.
Upper left images: histograms of contiguous sections (viewed as an elevation surface
from above, each line of these figures corresponding to the histogram of a given section;
blue and red correspond respectively to lowest and highest probabilities; the main left
strip corresponds to grey matter, the right strip to white matter) before (left) and after
(right) intensity normalisation.

Acquisition of the 2DG data was carried out by autoradiography, after mon-
key’s sacrifice and histological procedure, leading to series of 417 contiguous
40 µm thin sections. The first task consisted in the realignment of these disorga-
nized serial sections into a geometrically consistent volume. This was carried out
using the block matching algorithm [ORS+01,MB03], an intensity-based itera-
tive two-steps method consisting in selective local-based correspondance com-
putation, followed by robust transformation estimation. Due to the acquisition
and digitalisation processes, variations in intensity from slice to slice were ob-
served in the reconstructed volume (Fig. 3) Therefore intensity normalisation
was needed before further 3-D analysis of this volume, as activations result in
intensity hyposignals in cortical regions. Normalisation was performed with the
methodology presented in this paper (see Section 3), using an affine function,
the symmetrical sum of squared differences as similarity measure, with Gaussian
kernel sigma set to 5.0.

4.2 Human Brain Optical Sections

In functional neurosurgery, there is a need for accurate localisation of the func-
tional targets. The SIERA project aims at constructing a three dimensional,
anatomical and functional, as well as registrable, cartography of the basal gan-
glia, based on histology [BOM+02]. For doing this, a post mortem MR study
was conducted on a cadaver’s head, 36 hours after death, and the brain was
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then extracted and processed for histology. Fusion of MR and histological data
will allow to report this cartography on the patient’s anatomy, by its registration
with the patient’s MR image.

Fig. 4. Three orthogonal slices of the realigned stack of 2D optical sections of the
human brain before (left) and after (right) intensity correction.

One hemisphere of the brain was stored frozen at −40oC and cut into 70µm
thin sections which were collected serially. Sectioning was done on a Tetrander
Jung freezing microtome and photographs of the unstained surface of the frozen
brain were taken for one out of ten sections. As for monkey’s autoradiographies,
realignment of these optical sections was done with the block matching algorithm
[ORS+01]. Large variations in intensity were observed in the reconstructed vol-
ume, due to acquisition and scanning of the optical data. Therefore intensity
normalisation was needed before further intensity-based registration with the
post mortem MR images. Normalisation was similarly performed using an affine
function, the symmetrical sum of squared differences as similarity measure, with
Gaussian kernel sigma set to 5.0.

5 Conclusion

In this work, we have developed a formal framework to compare discrete proba-
bility density functions. Applying an intensity function to an discrete pdf p(xi)
was then not done by applying the function to the discrete intensities xi as usual,
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but to the bins of the histogram leading to a more consistent histogram trans-
formation. We have based our approach on windowing techniques. This way,
we used implicitly an estimated continuous pdf, which allowed us to get rid of
intensity discretisation problems.

We have presented results on real data, monkey’s brain autoradiographs and
human brain optical sections. With the proposed method, we obtained homoge-
neous reconstructions: it allows first a visual qualitative inspection of the recon-
structed volume, and second to use this volume for a further registration with
3-D corresponding images (e.g. MRI).

Methodological developments will include multi-scale approach, by changing
the bin’s width, and more detailed study of similarity measures (surprisingly, we
found out that the sum of squared differences seemed to perform better than
other, and more evolved, implemented measures).
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