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Abstract. In this paper we introduce user-defined segmentation constraints within
the level set methods. Snake-driven methods are powerful and widely explored
techniques for object extraction. Level set representations is a mathematical frame-
work technique to implement such methods. This formulation is implicit, intrin-
sic and parameter/topology free. Introducing shape-driven knowledge within the
level set method for segmentation is a recently explored topic. User interactive
constraints are more simplistic forms of prior shape knowledge. To this end, we
propose a simple formulation that converts user interaction to objective function
terms that aim to guide the segmentation solution through the user edits.

1 Introduction

Image segmentation approaches are either boundary or region-based. Boundary-driven
techniques rely on the generation of a strength image and the extraction of prominent
edges, while region-based methods rely on the homogeneity of spatially localized fea-
tures and properties. Snake-driven [5] techniques is quite often the most appropriate tool
to derive boundary-based methods. A curve propagation technique is a common way to
implement such terms.

To this end, a parameter space that defines a curve in the image plane is considered.
Then, object extraction is equivalent with finding the lowest potential of an objective
function. Such a function involves internal and external terms. The internal term enforces
some desired geometric characteristics of the curve, while the external term moves the
curve to the desired image features. Level set methods [11] are among the most promising
techniques to address such an objective in various application domains [10].

The central idea behind the level set formulation is to consider the problem in a
higher dimension and represent the evolving curve as the zero-level set of an embedding
function. The evolution of this function can then be derived in a straightforward manner
from the original flow that guides the propagation of the curve. Such methods are implicit,
intrinsic and topology free leading to a natural handling of important shape deformations.

Their main limitation is being sensitive to noise and failing to capture/encode prior
knowledge shape-driven on the structure to be recovered. A geometric flow that evolves
the solution closer to the prior was proposed in [7] to introduce prior shape knowledge
within the segmentation process. A more elegant formulation was derived in [4,13,14]
where such constraints were introduced in the form of energy components that constrain
the solution space.
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User-interaction [8,1] is a simplistic but important component in medical segmenta-
tion where boundary tracing tools are quite popular. It can be considered as a different
form of prior knowledge to be added in the segmentation process. Recent advances
in medical imaging have made automated techniques accurate enough. However, quite
often clinical users have to correct their outcome. Although, level set methods are an
established segmentation technique in medical imaging they do not support user inter-
action.

In this paper we propose a novel term to encode user-interaction within level set
methods. This term is introduced in the form of an evolving shape prior [13] and trans-
forms user-edits to level set-based propagation constraints. In section 2, we present
level set methods, while interactive constraints are considered in section 3. Integration
of image-driven terms and user edits is addressed in section 4. Discussion appears in
section 5.

2 Level Set Representations

The level set method [11] consists of representing and evolving an evolving curve ∂R(p)
with the zero-level set of an embedding surface Φ : Ω → R:

Φ(p; t) =






0 , p ∈ ∂R(t)
+ D((p), ∂R(t)) > 0 , p ∈ R(t)
− D((p), ∂R(t)) < 0 , p ∈ [Ω −R(t)]

(1)

where Ω is the image domain (bounded) and D(p, ∂R(t)) is the minimum Euclidean
distance between the pixel p and the curve ∂R(t). The level set formulation can be
considered as an optimization framework. To this end, one can define the approximations
of Dirac and Heaviside distributions [15]:

δa(φ) =
{

0, |φ| > α
1
2α

(
1 + cos

(
πφ
a

))
, |φ| < α

Hα(φ) =






1, φ > α
0, φ < −α
1
2

(
1 + φ

α + 1
π sin

(
πφ
a

))
, |φ| < α

(2)

These functions could be used to define contour-based as well as region-based energetic
terms in the level set space [15]:

(i)
∫∫

Ω

Hα(Φ(p))r(I(p))dxdy

︸ ︷︷ ︸
regional module

, (ii)
∫∫

Ω

δα(Φ(p))b(I(p))|∇Φ(p)|dxdy

︸ ︷︷ ︸
boundary module

where r and g are region and boundary positive monotonically decreasing data-driven
functions. The first term [i] is a grouping component that accounts for some regional
properties (modulo the definition of r) of the area defined by the evolving curve. The
second term [ii] is a combination of a boundary attraction term (modulo the definition
of b) and a smoothness component [2,6].
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3 User-Interactive Constraints

Segmentation techniques require often local corrections in particular when the visual
information does not support the user-preferred solution. User interaction is a common
technique to address this issue. One can consider the case of ultrasonic images. The low
signal-to-noise ratio can lead to segmentation discrepancies. Correcting these results will
take much lesser time than the complete hand drawing of the cardiac contours, which is
the standard procedure.

Level set methods do perform propagation at the pixel level and therefore can account
for important local deformations. On the other hand, one can claim that they are sensitive
to noise. User interactive editing tools can be considered either as local or global con-
straints, a standard editing procedure to perform correction on the recovered solution.
To this end, the user is asked to introduce some constraints on critical or miss-classified
parts of the segmentation map.

We consider two forms of interaction. The first, consists of a single control point
- used to correct local discrepancies - , while the second of a sequence of points that
are connected. In order to derive shape constraints within a level set framework, we
use linear or quadratic interpolation to converted the user edits into closed structures
(shapes).

3.1 Construction of the Constraint

Quadratic interpolation aims at finding the value of a function at an unknown intermediate
point given three data points. That is equivalent with fitting a parabola to the three data
points ((xi−1, yi−1), (xi, yi), and (xi+1, yi+1))

y = Ax2 + Bx + C

where A, B, and C are unknowns to be recovered. The data points, (xi−1, yi−1), (xi, yi),
and (xi+1, yi+1) must all lie on the curve and are used to determine A, B, and C. The
simplest method to recover these parameters is using the determinants:

A =
∆x

∆
, B =

∆b

∆
, C =

∆c

∆
(3)

where
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We consider two forms of acceptable constraints; (i) independent control points (ii)
multiple connected control points provided in a clock-wise order.

3.2 User Interaction Using a Single Control Point

Quite often segmentation maps fail to capture important details due to the absence of
strong visual support. One can address this limitation by enforcing the solution to go



User-Aided Boundary Delineation 681

through such a problematic segment. Within our approach, a core point (p̂) provided
by the user and smoothness constraints on the solution are used to correct such local
discrepancies.

One can consider improving the solution locally by replacing a small segment of the
actual solution with the interactive part. Therefore, given a point (p̂) the curve points that
lie within a distance d1 are considered. The use of distance maps as embedding function
for the level set representations, provide a straightforward manner to determine these
points2

Np̂ = {pi ∈ Ω : | Φ(p)− d | < δ} (4)

where δ ← 0. For convex shapes and control points that lie on the object, it can be
proved that Np̂ consists of two points (for a reasonable small selection for d). Such
assumption does not hold for any shape. Therefore, more than two points can satisfy the
constraint. In order to introduce the interactive segment, only two points of the curve
will be considered. We select the ones with maximum angular separation at (p̂):

(pl, pr) : argmax{i,j} | pi − pj |
(pi, pj) ∈ Np̂ × Np̂

(5)

The next step is to perform a quadratic interpolation between (pl, pr, p̂) and determine
the interactive segment. Within the level set representations, the current position of the
curve is recovered from the zero-level set of the embedding function. The curve points
are four-connected (zero-crossings on the image plane), and using a simple connected
component rule, we can recover them in a clock-wise order;

∂R = (p0, ..., pr, ..., pl, ..., pN ) (6)

where p0 is an arbitrary selected point. Towardss introducing the interactive segment,
one can replace the segment between pl and pr with the one determined by the quadratic
interpolation between the control point p̂ and pl and pr;

∂UI = (p0, ..., pr, q1, ..., qM , pl, ..., pN ) (7)

One can embed such a shape in a level set function using the Euclidean distance as
embedding function;

ΦC(p) =

{
0 , p ∈ ∂UI

+ D(p, ∂UI) > 0 , p ∈ RUI
− D(p, ∂UI) < 0 , p ∈ [Ω − RUI ]

(8)

Such a representation encodes the user edits in a global fashion using the existing solution
in areas where user interaction is absent where one should tolerate important deviations

1 This distance should be greater than the minimum distance between the curve and the control
point; d = D(p̂, ∂R(t)) + ε.

2 The assumption that the control point lies on the interior of the data-driven solution has been
considered within this condition to recover these points. On can easily modify the condition
as follows Np̂ = {pi ∈ Ω : | Φ(p) + d | < δ} to deal with control points that lie on the
background.



682 N. Paragios

from the constraint. We consider the distance between the control point and the image
plane as an indicator for the importance of the constraint.

σC(p) = 1 + |p− p̂|, p ∈ Ω (9)

Such a measure will be small for the area around the interactive segment while being
significant for the segments that are far from the user edits. The same principle can be
used to account for multiple, independent user edits.

3.3 User Interaction Using Multiple Control Points

Very often, data-driven solution cannot recover a meaningful segmentation map and
in order to correct errors an enormous amount of local interaction is required. Global
constraints is a different form of user-interaction, that could guide the segmentation
process from the very beginning.A simplistic but rather realistic scenario is the following:
the user provides a minimum number of control points in a clock- wise order (p̂1, ..., p̂N )
that when connected define a closed curve.

The objective is to recover a global constraint that forces the solution that be recovered
to go through the control points. To this end, we wish to approximate the original function
in a piecewise fashion. For any y over the entire domain of x, we must simply select the
proper segment to perform the interpolation. Since the shape functions are only defined
on each element we can approximate y by

y(x) = αi−1(x)yi−1 + βi(x)yi + γi(x)yi+1

where p̂i = (xi, yi) and

αi−1(x) =
(xi+1 − xi)(xi+1 − x)(x − xi)

∆

βi(x) =
−(xi+1 − xi−1)(xi − x)(x − xi−1)

∆

γi+1(x) =
(xi − xi−1)(xi − x)(x − xi−1)

∆

This procedure can convert user interaction into a closed structure (shape) RUI . The
level set representation ΦC of this structure can be considered to enforce the user input.
The importance of the constraint varies across the image domain and at a given image
location is inversely proportional to the minimum distance from the set of control points:

σC(p) = 1 + argmini |p− p̂i|, p ∈ Ω, i ∈ [1, N ] (10)

3.4 Introduction of the Constraint

The user-edits are taken into account when the evolving level set representation becomes
similar to the one derived from the constraint. To this end, we consider the distance
between the constraint and the evolving representation Φ.

E(Φ) =
∫∫

Ω

Hα(Φ(x, y)) (Φ(x, y)− ΦC(x, y))2 dΩ (11)
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that is equivalent with seeking a curve that goes through the user-defined seed points.
This is done by minimizing the distance between the evolving curve and the interactive
constraint.

During the model construction, we have considered that the importance of the user-
interactive is determined according to the distance from the control points. It is natural
to harder enforce the constraint close to the user seeds while consider the data to guide
the segmentation process when there is not input from the user. The distance between
the constructed prior and the control points of the constraint can be used to implement
such strategy;

Einteraction(Φ) =
∫∫

Ω

Hα(Φ(x, y))
(Φ(x, y)− ΦC(x, y))2

σ2
C(x, y)

dΩ (12)

The user interaction is optimally considered when finding the Φ that corresponds to the
lowest potential of the objective function. The calculus of variations within a gradient
descent method can be used to determine the optimal flow that forces the evolving curve
to respect the user-defined constraints;

d

dt
Φ = − 2Hα(Φ)

Φ − ΦC

σ2
C︸ ︷︷ ︸

user−interactive force

− δα(Φ)
(Φ − ΦC)2

σ2
C︸ ︷︷ ︸

deflation force

(13)

This flow consists of two terms. The first evolves the curve locally Towardss the preferred
topology as defined by the user. On the other hand, the second is a constant deflation
force that tends to shrink the curve and consequently minimize the objective function.
Therefore, we can ignore the second term - the deflation component - and use only the
first term to account for the user interaction. The proposed flow enforces the preferred
topology in a qualitative fashion. The variability (σC) of the interaction constraint is
used to down-scale the effect of the term in image locations where the user input is
not strong. Propagation/segmentation in these areas will be data-driven. To this end, the
next step is to define an image-based term for segmentation. In the recent years, several
variational frameworks have been proposed for image segmentation [12].

4 User-Interactive Geodesic Active Regions

The geodesic active contour [2,6] can be used for example to perform boundary extrac-
tion.

Eboundary(Φ) =
∫∫

Ω

δα(Φ)b(|∇I|)|∇Φ|dΩ (14)

where b : R+ → [0, 1] is a monotonically decreasing function. The lowest potential of
this functional corresponds to a minimal length geodesic curve attracted by the bound-
aries of the structure of interest. Regional/global information can improve performance
of boundary-based flows [12] that suffer of being sensitive to the initial conditions. The
central idea behind this module is to use the evolving curve to define an image partition
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(a)

(b)

Fig. 1. User-Interactive Segmentation (white) versus Manual Segmentation (red; more that twenty
edits) for the Left Ventricle in Ultrasonic polar images for different subjects. (a) Constraints on
the Valve, (b) Constraints on the Valve and the Apex.

that is optimal with respect to some grouping criterion. The Mumford-Shah framework
[9] has been used frequently within level set formulations [3] as global region-based
grouping term using piece-wise constant functions;

Eregion(Φ) =
∫∫

Ω

Hα(Φ)(I − µO)2 + (1−Hα(Φ))(I − µB)2dΩ (15)

where µB , µO is the mean intensity for the background and the object region. The
distance from the mean value is considered as a region descriptor. The mean values are
dynamically updated according to the evolving segmentation map.

Integration of the boundary and the region-driven term can be considered to perform
segmentation [12], namely the geodesic active region model. In the absence of noise,
occlusions and corrupted visual information, such method can be efficient and deal with
local deformations. One can also integrate the visual terms with the user-interactive
constraint when available as follows;

E(Φ) = w1Eboundary(Φ) + w2Eregion(Φ) + w3Einteraction(Φ)

The calculus of variations as shown earlier for each component separately, will provide a
curve propagation flow that integrates visual support and user interaction. Modification
of the user preferences can update the constraint on-the-fly. To this end, first a solution
derived from the visual terms is recovered and then the user introduce seeds (points) for
corrections. Such interaction is then converted to propagation force and refines the seg-
mentation map Towardsss the user preferred solution with minimal edits. It is important
to note that user interaction is introduced in the form of soft-to-hard constraint. The final
solution is an equilibrium between the user edits and the solution provided by the data.

5 Conclusions

In summary, we have proposed a framework for user-interaction within the propagation of
curves using level set representations. Segmentation techniques based on the propagation
of curves are very popular in image processing and computer vision. Level set methods
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is an emerging formulation to implement these techniques with certain strengths as well
as some limitations.

Important local deformations as well as topological changes can be captured by these
techniques. At the same time, they refer to an implicit geometry where local properties
of the evolving curve can be easily determined. Although, some of the limitations of
these methods - like their inability to account for prior knowledge - have been dealt
with, to our knowledge user interaction has not been addressed. Our approach converts
interactive editing into propagation constraints that force the solution to respect the user
edits. The construction of the such constraints is simple and does not require additional
computational resources.

Encouraging experimental results [Figure (1)] demonstrate the potentials of our
method for interactive segmentation3. To this end, we have considered a medical exam-
ple, the segmentation of the left ventricle in polar [Figure (1)] for ultrasonic images. This
modality suffers from high signal-to-noise ratio and visual support is not sufficient to
provide accurate segmentation results. Global interactive constraints have been used to
improve segmentation performance of the polar domain (5 points; 2 points on the valve
and 3 points on the apex).
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