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Abstract. The quality of cardiac images acquired with multi-detector
CT scanners has improved significantly, to the point where minimally
invasive examination of the coronary arteries became reality. The inter-
pretation of such images requires efficient post-processing tools to isolate
the vessels from other structures, such that they can be properly analyzed
quantitatively or visually. In this paper we evaluate a method for semi-
automated extraction of the central axis of coronary arteries in these
images. First the vessels are enhanced with a local filter that analyzes
the main modes of second-order variation in image intensity to deter-
mine the type of local structure. Secondly, the extremities of the axis
are indicated by the user. Finally, a connected path between the given
points is automatically determined with a minimum cost path algorithm,
where the cost corresponds to the reciprocal of the enhanced image. The
results obtained with different vessel enhancement filters are compared
with manually traced axes in the evaluation of 15 cases.

1 Introduction

The latest developments in multi-detector CT and reconstruction techniques
allow for fast acquisition of high-resolution images, opening up new possibilities
in medical imaging. In particular, the promise of assessment of coronary artery
disease in a less invasive manner than coronary angiography has created great
expectation in health care [1]. Cardiac multi-detector CT (CMDCT) images
are scanned after bolus injection (for blood enhancement), with high in-plane
resolution and small slice spacing (order of 0.4 mm, isotropic voxels). ECG-
gated retrospective reconstruction is used for improved temporal resolution. The
resulting images contain much detail of the complex heart structure, allowing
for the inspection of not only the coronary arteries, but also the heart chambers,
pulmonary veins and related structures. Due to the amount of detail contained
in CMDCT images, it is difficult to interpret them for coronary artery (CA)
assessment. CAs are narrow tubular structures with tortuous trajectories around
and between the heart chambers, therefore only small stretches can be visualized
on a single plane (see Fig. 1). Post-processing tools are needed to facilitate their
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inspection, since it seems unlikely that a proper analysis can be performed in
the usual slice-by-slice manner. For example, cross-sectional and longitudinal
views allow for vessel analysis using the vessel itself as a reference (see Fig. 1).
These views are generated using a description of the central vessel axis (CVA).
A number of other tasks can also be facilitated when the CVA is known, such as
initializing a wall segmentation method [2], or stenosis quantification. Usually
the CVA is obtained manually by indicating points along the vessel path, a task
that demands much time, and therefore is not suitable for daily practice.

Fig. 1. Illustration of a coronary artery segment in a CMDCT image: in a slice (left),
cross section (center) and longitudinal cut along the vessel (right).

Several automated methods for the extraction of the central axis of tubular
structures have been described in the literature (e.g., [3], [4], [5][6]). Our study
started by trying to apply one of these methods, namely that proposed by Wink
et al. in [3], to extract the CVA of coronary artery segments (CAS) in CMDCT
images. In this approach, the vessels are initially enhanced with a local filter
(Sect. 2), and the reciprocal of the enhanced image is used as cost function to
determine a connected path between two given points with the minimum cost
path algorithm (Sect. 3). Our motivation to apply this method for CMDCT im-
ages resides on the fact that this method is simple, fast, and has been sucessfully
adopted in other imaging modalities and vessel types (MR, coronaries [3], MR
carotids [2], MR, aorta [5]). In this study, however, we introduce a minor modi-
fication to the method described in [3]: instead of using the vessel enhancement
filter proposed by Frangi et al. [7], we also investigated other filters, namely those
proposed in [8] and [9]. The paths obtained with a number of CVA enhancement
options are evaluated and compared based on reference paths traced manually
(Sect. 4). Results as presented in Sect. 5 and discussed in Sect. 6.

2 CVA Enhancement with Hessian-Based Filters

The vessels are enhanced with filters that extract information from 2nd-order
derivatives at multiple scales to identify the type of local structure in the image
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(e.g. tubular-like, sheet-like, blob-like). This is achieved by inspecting the main
modes of variation in the Hessian matrix using eigenvalue decomposition. In this
study we considered the Hessian-based filters (HBVF) proposed by Lorenz et al.
[8], Sato et al. [9], and Frangi et al. [7].

In a multi-scale framework, a HBVF is defined as

F (x) = max
σ

f(x, σ), (1)

where x is a position in the image, f is the filter, and σ is the scale for calculating
Gaussian image derivatives. The filters calculate 2nd-order derivatives, build the
Hessian matrix H, decompose it into eigenvalues λ1, λ2 and λ3, and analyze them
to determine the likelihood of x belonging to a vessel. This analysis is based on
the following hypotheses (for bright vessels, dark background, and eigenvalues
ordered as |λ1| < |λ2| < |λ3|): (a) λ1 ≈ 0 corresponds to the eigenvector tangent
to the CVA; (b) λ2 ≈ λ3 < 0; and (c) |λ1| � |λ2|. The filters differ in how they
test the hypotheses and generate a quantity indicating vessel-likelihood. In all
cases, f(x, σ) = 0 if λ2 > 0 or λ3 > 0.

The filter defined by Lorenz et al. [8] was implemented as:

L(x) = ση
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where η normalizes responses across scales.
The filter defined by Sato et al. in [9] was implemented as follows:

S(x) =
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where ξ ≥ 0 controls cross-section asymmetry, τ ≥ 0 controls the sensitivity to
blob-like structures, 0 < ρ ≤ 1.0 controls sensitivity to the vessel curvature, and
σ2 normalizes responses across scales.
The filter defined by Frangi et al. in [7] was implemented as follows:

F(x) =
(

1 − e− A2

2α2

)

e
− B2

2β2

(

1 − e
− S2

2γ2

)

(4)

where A = |λ2|
|λ3| (controlled by α) discriminates plate- from line-like struc-

tures; B = |λ1|√
|λ2λ3| (controlled by β) discriminates from blob-like structures

and S =
√

λ1
2 + λ2

2 + λ3
2 (controlled by γ) eliminates background noise. Scale

normalization is achieved by multiplying H by σ2 before eigenvalue decomposi-
tion.

In this study, the filter response was calculated for 10 exponentially-
distributed scales in the interval [0.5, 5] mm. The parameter configuration for
each filter was determined in the study reported in [10], namely: Lorenz-Eq.(2):
η = 0, Sato-Eq.(3): ρ = 1, τ = 0.5, ξ = 1, Frangi-Eq.(4): α = 1, β = 0.1,
γ = 100. In the average, these configurations provided best CVA enhancements
for the CAS considered here.
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3 Minimum Cost Path Search

In [6], the problem of CVA tracking is formulated as finding a connected path
between two given points a and b in a cost image such that the total cost
along the path is minimum. Different search strategies are discussed in [6], e.g.,
unidirectional (expand the search front from a until it reaches b) or birectional
(simultaneously expand from a and b until the search fronts meet). In this study
we adopted bidirectional search because it is faster and provides the same results
as with unidirectional search.

The cost image in this case is the reciprocal of the vessel-enhanced image,
calculated as

C(x) =
{

F (x)−n, F (x) <= T
M, otherwise (5)

where T is a threshold indicating a lower bound for vessel enhancement, and M is
the cost given to non-vessel positions. We found that results are quite insensitive
to the values of n and T when the CVA enhancement is good; the adopted values
are n = 1, M = 105 and T = M− 1

n . Note: the search is restricted to a bounding
box determined from a dilated version of the CVA traced manually (diameter
≈ 10 mm). Prior to cost computation, the values of F (x) are normalized into
the [0, 1] range with respect to the highest response within the bounding box.

The initial and final positions used to initialize the MCP method correspond
to the first and last points in the manually traced CVA. The resulting path
was exported as a chain of voxel positions, which were then compared with the
manual CVA.

4 Evaluation Strategy

Fifteen coronary artery segments (CAS) in 5 CMDCT images acquired with
4-detector Philips CT scanners at different sites were used (spacing: in-plane
∈ [0.4, 0.55] mm, slice ∈ [0.6, 1.3] mm). The images were resampled to obtain
isotropic voxels. The CVA of 15 CAS, with lengths ∈ [17, 115] mm, were traced
manually by one operator using the Path Tracking Tool of the Philips EasyVi-
sion workstation. These curves were compared to the CVA determined auto-
matically by the MCP method using cost functions based on different HBVF.
Results are evaluated based on an error measure corresponding to the distance
DAR(t) between all points in the automatic path A(t) and the reference path
R(s) computed as follows:

DAR(t) = min
s

|A(t) − R(s)|, (6)

where t and s are path positions. The mean distance µD is used for general
quality assessment:

µD =
1
n

n∑

i=1

DAR(ti) (7)

where n is the number of points along the discrete path.
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5 Results

A summary of the results obtained in this study is presented in Table 1.

Table 1. Distance from A to R for cost functions based on CVA enhancement with
the Lorenz, Sato and Frangi filters (see Sect. 2): length (mm), minimum and maximum
values, mean (µD) and standard deviation, in mm.

Lorenz Sato Frangi
CAS Length min max µD dev min max µD dev min max µD dev

1 25 0.02 1.20 0.64 0.06 0.01 0.57 0.24 0.01 0.02 0.96 0.48 0.06
2 30 0.06 1.78 0.53 0.16 0.06 1.31 0.66 0.11 0.06 1.87 0.78 0.21
3 28 0.09 2.53 1.01 0.47 0.10 1.20 0.53 0.08 0.10 1.54 0.69 0.18
4 60 0.17 26.86 14.73 51.07 0.11 1.01 0.47 0.04 0.17 25.96 15.09 33.14
5 20 0.01 1.03 0.51 0.11 0.07 1.11 0.45 0.07 0.10 1.94 0.87 0.28
6 23 0.12 0.95 0.50 0.05 0.05 3.85 1.53 1.11 0.17 3.85 1.61 0.88
7 17 0.08 0.66 0.31 0.02 0.05 0.85 0.29 0.03 0.09 0.85 0.34 0.03
8 43 0.05 1.23 0.43 0.06 0.07 1.01 0.42 0.04 0.06 1.07 0.47 0.06
9 35 0.10 3.01 1.72 0.40 0.10 1.16 0.57 0.08 0.10 1.45 0.73 0.12

10 62 0.03 1.52 0.60 0.11 0.02 1.02 0.46 0.07 0.06 1.50 0.59 0.11
11 38 0.12 1.45 0.58 0.10 0.06 1.02 0.37 0.05 0.13 14.08 9.04 13.70
12 19 0.07 1.03 0.41 0.06 0.12 1.46 0.61 0.14 0.08 1.73 0.68 0.22
13 34 0.17 2.16 0.73 0.25 0.06 1.38 0.49 0.11 0.07 1.52 0.57 0.15
14 115 0.13 9.78 5.17 7.27 0.04 1.60 0.56 0.09 0.09 2.33 0.73 0.17
15 54 0.10 1.74 1.02 0.15 0.01 0.97 0.44 0.05 0.10 23.09 14.00 35.26

For the Sato filter, µD < 2mm for all CAS, with DAR(t) ∈ [0, 1.6] mm with
the exception of one case. For the Lorenz filter, µD < 2mm for 13 CAS, with
DAR(t) ∈ [0, 3] mm. For the Frangi filter, µD < 2mm for 12 CAS, DAR(t) ∈
[0, 3.85] mm. Figure 2 illustrates the overall mean performance. The average
results obtained on the basis of the Sato filter are best in 12 cases, while Lorenz
was best in the remaining three (CAS 2, 6 and 12).

Figure 3-left illustrates a typical automatic path (µD ≤ 0.85 mm, max dis-
tance ≈ 1 mm). Note that staircase effect on the automatic path is responsible
for most of the differences with respect to the reference. This is also observed
for the majority of paths where the average distance is small. Figure 3-right
illustrates an erroneous result obtained with the Frangi filter. In this case, the
differences between the automatic path and the reference are due to a wrong
trajectory induced by neighboring structures that also respond strongly to this
filter.

6 Discussion and Conclusions

The results presented in Sect. 5 show that reasonable central axis tracking can
be achieved for short coronary segments in most cases, adopting all filters, with
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Fig. 2. Mean distance of automatic CVA obtained based on the Lorenz (squares), Sato
(circles) and Frangi (triangles) filters. The horizontal line indicates 0.75 mm. Mean
errors larger than 3 mm are not shown.
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Fig. 3. Illustration of selected paths generated with the MCP method (projections
where the differences between the automatic and reference paths are most visible).
Left: Typical result (CAS 7, Sato filter). Right: Segment of erroneous result obtained
with the Frangi filter (CAS 11) where another vessel is followed buy the MCP.

µD usually smaller than 1.5 mm, which represents errors in the order of 1-2
voxels. In a few cases, specially with the Frangi filter, erroneous results were
obtained due to a high filter response in the neighbourhood of the CVA, caused
by a neighboring structure, and a low response near or at the CVA, caused by
a decrease in intensity inside the vessel. In such situations, the MCP method
is unable to follow the desired path, since it is “interrupted” by the low filter
response. The Sato filter, however, seems to be less sensitive to this problem,
with a more stable behaviour and smaller errors (µ ≤ 0.85 mm) in most CVAs.
Note that the essential differences between the Sato and Frangi filters resides in
the background noise elimination term S (Eq.(4)), which could explain a weak
response when the contrast is low.

The next step is to determine whether the error margin found in these exper-
iments would be acceptable for using the CVAs tracked automatically in further
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processing, for example to generate cross-sectional and longitudinal views. Fig-
ure 4 illustrates the longitudinal views for 3 CAS obtained with the manual and
with the automatic CVAs. The differences are small, nearly unnoticeable. As for
the cross-sectional view, the differences are larger. This is expected, since the
staircase effect has large impact on the tangent along the path, which determines
the orientation of the cross-sectional plane. Smoothing the automatic path could
be a solution to reduce this problem.

Fig. 4. Illustration of longitudinal views obtained with the EasyVision Visualization
Tool for CAS 7,8,9 using the reference path (upper row) and the automatic path
determined on the basis of the Sato filter (lower row). From left to right: LAD, LCX,
RCA.

Finally, better results are expected for images acquired with 16-detector CT
scanners. In a preliminary test with images recently acquired at our hospital
(Philips scanner, 0.4 mm3 voxels), we could trace the CVA of the main coronary
arteries (RCA, LAD, LCX) for longer trajectories as presented in Sect. 5 (85 mm,
74 mm, 28 mm) with only two mouse clicks. The Sato filter was used to generate
the cost function, with the same settings described in Sect. 2. In the 3 CAS,
DAR ∈ [0, 0.9] and µD ∈ [0.31, 0.38], which is below the voxel size. Although a
higher level of automation would be desired for the extraction of the complete
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coronary artery tree (e.g., [11]), we believe that our approach can be useful for
cases where it is necessary to inspect a given segment of the CA, or when image
quality is degraded by artifacts that cause the vessels to contain gaps or large
discontinuities between slices.

Acknowledgements. We are grateful to the following institutions for providing
the 4-detector CT data for this study: Univ. Hosp. Cleveland (USA); Diagnostico
Maipu (Argentina); Klinik Mue-Pasing (Prof. Haberl, Germany) and Rad. Klinik
Univ. Bonn (Germany). We also acknowledge the collaboration of radiologists in
the University Medical Center Utrecht (Dr. E.J.Vonken and Dr. M. Prokop) for
helping us with image interpretation and for providing the 16-detector dataset
used in the study. This research is funded by Philips Medical Systems, Medical
IT - Advanced Development, Best (NL).

References

1. S. Schroeder, A.F. Kopp, B. Ohnesorge, H. Loke-Gie, A. Kuettner, A. Baumbach,
C. Herdeg, C.D. Claussen, and K.R. Karsch. Virtual coronary angioscopy using
multislice computed tomography. Heart, 87(3):195–197, March 2002.

2. C.M. van Bemmel, L. Spreeuwers, M.A. Viergever, and W.J. Niessen. Level-set
based carotid artery segmentation for stenosis grading. In MICCAI, pages 36–43,
2002.

3. O. Wink, W.J. Niessen, A.F. Frangi, B. Verdonk, and M.A. Viergever. 3D MRA
coronary axis determination using a minimum cost approach. Magnetic Resonance
in Medicine, 47(6):1169–1175, 2002.

4. S.R. Aylward and E. Bullit. Initialization, noise, singularities, and scale in height
ridge traversal for tubular object centerline extraction. IEEE TMI, 21(2):61–75,
2002.

5. O. Wink, W.J. Niessen, B. Verdonk, and M.A. Viergever. Vessel axis determination
using wave front propagation analysis. In MICCAI, pages 845–853, 2001.

6. O. Wink, W. J. Niessen, and M. A. Viergever. Minimum cost path determination
using a simple heuristic function. In ICPR, 2000.

7. A.F. Frangi, W.J. Niessen, K.L. Vincken, and M.A. Viergever. Multiscale vessel
enhancement filtering. In MICCAI, pages 130–137. Springer Verlag, 1998.

8. C. Lorenz, I.-C. Carlsen, T.M. Buzug, C. Fassnacht, and J. Weese. Multi-scale line
segmentation with automatic estimation of width, contrast and tangential direction
in 2d and 3d medical images. In CRVMed and MRCAS, pages 233–242, 1997.

9. Y. Sato, S. Nakajima, N. Shigara, H. Atsumi, T. Koller, G. Gerig, and R. Kiki-
nis. Three-dimensional multi-scale line filter for segmentation and visualization of
curvilinear structures in medical images. Med.Img.Analysis, 2(2):143–168, 1998.

10. S.D. Olabarriaga, M. Breeuwer, and W.J. Niessen. Evaluation of Hessian-based
filters to enhance the axis of coronary arteries in CT images. In CARS, pages
1191–1196. Elsevier, June 2003.

11. C. Lorenz, S. Reinisch, and T. Bullow T. Schlatholter. Simultaneous segmentation
and tree reconstruction of the coronary arteries in msct images. In SPIE Medical
Imaging, page 5031. SPIE, 2003.


	Introduction
	CVA Enhancement with Hessian-Based Filters
	Minimum Cost Path Search
	Evaluation Strategy
	Results
	Discussion and Conclusions



