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Abstract. In this paper, we propose an approach to accurately mod-
elling tubular, anatomical structures as curvilinear entities. Current op-
timal path and centerline extraction techniques are either prone to intro-
ducing spurious tortuosity, or unable to consistently avoid taking short-
cuts at high curvature positions. These problems not only affect spatial
appreciation of the structure but may also significantly impact the accu-
racy of length, angle and tortuosity measurements. Our approach over-
comes the above deficiencies through the combination of a front propaga-
tion method and a model in which a priori shape knowledge is embedded.
This approach is designed to be used in endovascular and neurological
surgical planning. The efficacy of our method is demonstrated using syn-
thetic and clinical data.

1 Introduction

In neurosurgery or endovascular surgery, a precise understanding of the patient’s
vessel system is of fundamental importance. Accurate curvilinear modelling of
anatomical tubular structures is likely to become a crucial part of computer-
assisted surgery planning.

With existing centreline extraction algorithms, a high level of accuracy of
the curvilinear model cannot be guaranteed. A common drawback of the exist-
ing techniques is that they are not sufficiently resistant to neighbourhood inter-
ference. This may significantly affect the accuracy of any length and tortuosity
measurements based on such models.

In this paper, we address these problems using a combination of wave-
propagation and shape constraints using an adaptive tubular deformable model.

This paper is structured as follows: we review the relevant literature in Sec-
tion 2, we detail the different steps of our new algorithm in Section 3. In Sec-
tion 4, we demonstrate the accuracy of our method using Magnetic Resonance
Angiography (MRA) of the brain.
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2 A Brief Review of Existing Methods

We define accurate curvilinear modelling in the following way: an accurate curvi-
linear model (ACM) of a tubular entity is an abstraction of the object that
retains only those geometric properties that are essential to length, angle and
tortuosity measurements. It excludes all potentially interfering details such as
width, width change (e.g. aneurysms) and branching. This exclusion is a major
distinction from other, similar or related forms of representation, such as the
medial axis or M-Rep [2,13].

Due to the close relationship of curvilinear models to medial axes and center-
lines, we review methods for extracting centerlines (or medial axes) even though
in many situations they may not be suitable for constructing an ACM.

A classic method for extracting medial axis is the skeletonisation technique.
This is often achieved by topology-preserving thinning after region growing [12].
In a more recent development, ordered region growing is used, followed by prun-
ing [20].

Alternatively, voxels in the middle of a curvilinear structure can be located by
convolving the image with appropriate Gaussian kernels. On certain scales (vari-
ance of the Gaussian), a ridge appears in the middle of a tubular structure (e.g.
[1]). A model-based, scale-space filtering approach has also been proposed by
several authors [8,14,9]. The centerline is located by detecting optimal responses
derived from Hessian matrices at a range of scales of interest. This class of al-
gorithms produce good results but problems may occur at junctions or tangent
vessels.

Direct tracking from a seed point has also been used to extract the optimal
path. From a given point, the most likely local orientation of the vessel can be
searched or predicted [19,10]. Further iterative search or prediction and centering
is carried out until the end position is reached. The fidelity of the model to the
”true” centerline thus extracted depends heavily on the centering algorithm.

Graph-search principles can be used as well to calculate a Minimal Cost
Path (MCP). To achieve this, Dijkstra’s algorithm has proved to be the most
efficient and widely used [7]. However, this algorithm can fail because of the
ambiguity that arises from restricting the calculation of costs to the discrete
grid points.

A recent approach proposed by Deschamps et al incorporates multiple im-
provements over the standard Fast Marching Method (FMM) [15]. It includes a
technique of using multiple passes of FMM (from different initial positions) to
centre the track [6,18]. This technique corrects the inherent tendency of MCP
algortihms to discourage large curvatures. However, it can introduce artificial
tortuosity under certain circumstances (see Figure 1). While it is possible to
smooth the track by adding a relatively large constant into the cost integral,
such smoothing tends to cancel out the work performed by the path centering
technique, especially at high curvature positions. This is a dilemna. It is our belief
that only through the use of a priori knowledge can this issue be satisfactorally
resolved.



68 R. Li and S. Ourselin

initial vessel
entitie touching the vessel

another anatomicalvessel with branch vessel compression vessel with eneurysm

Fig. 1. Using a non-model based detection method, interference from foreign objects
may cause a shift in the detected center from its “true” position. Note that the main
structure is not perfectly circular but elliptical, which makes it even less resistant to
outside interference.

3 Description of the Method

The method presented here for accurate curvilinear modelling uses a priori shape
knowledge embedded in a deformable model. In addition, it also embodies front
propagation. We use a modified tubular deformable model to implement the
constraints. A distance field is first constructed and then uniformly thresholded
to obtain suitable propagation channels. A propagation map is then constructed
from a start point using FMM, and then backtracked when the end is reached
to generate the Minimal Cost Path.

At each point on the MCP, the original data is resampled in planes per-
pendicular to the local orientation of the MCP. A deformable tubular model is
constructed inside the resampled data and allowed to deform so that it recovers
the object of interest. Towards the end of the deformation, an adaptive defla-
tion force replaces the original inflation force. Finally, the curvilinear model is
obtained by extracting the spine of the tubular model and transforming it back
into the coordinates of the original data. This process ensures that rapid sym-
metric changes, such as a sharp turns, are not lessened while many asymmetric
changes, such as a branching event or aneurysms, can be removed to a large
extent. In addition, deforming the model in the transformed data domain vastly
simplifies the computation, making it efficient.

3.1 Distance Field Computation

Instead of being used to extract the centerline through topology-preserving thin-
ning or ridge enhancement as reviewed in Section 1, distance transforms are used
in our method as a pre-processing step for larger structures to reduce the widths
of propagation channels. Doing so achieves two purposes. Firstly, it helps the
tubular model in the next stage to remain faithful to the structure of inter-
est (especially at high curvature parts of the structure) and promotes faster
convergence of the deformation of the model. This is because better initializa-
tion for the tubular model can be achieved with narrower propagation channels
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relative to the axial curvature, and with those channels well inside the structure
of interest. This will become apparent in Section 3.3.

Secondly, higher efficiency can be achieved by reducing the size of propagation
channels. Apart from the reason shown in [6], another, perhaps more important,
rationale is that it reduces the extent of branching and neighbourhood touching
- two major causes of propagation leakage - in much the same way as erosion.

This pre-processing is performed by first thresholding the image, and then
computing a distance map using a chamfer algorithm [11]. Once the end points
and are selected, a connected-component analysis is performed to determine the
local peaks in their neighbourhoods in the distance map. The distance map is
thresholded if the values at those peaks exceed a target value.

By using the chamfer transform, we avoid the need to administer multiple
passes of FMM, as proposed by Deschamps et al and the additional system
complexity that it brings [6]. Although the resultant distances are not exactly
Euclidean, this does not affect our results. This is because only the order of
distances, rather than the distance values per se, are of interest to our method.
Using any of the common chamfer matrices [3], that order is preserved on any
size of grids for CT or MRI scans.

3.2 Minimal Cost Paths, Front Propagation, and Fast Marching

The MCP approach is both effective and robust for extracting curvilinear struc-
tures such as vasculature and the colon. It is robust to many conditions such as
vessel stenosis, partial volume effects and noise. Unfortunately, minimizing the
path integral of a cost function is an intractable NP-complete problem.

Simulated front propagation has recently emerged as a desirable approach to
finding the MCP. Not only is it efficient, but it can also give sub-grid accuracy.

A commonly used method for efficiently tracking the propagating front is the
FMM proposed by Sethian [15,16]. Provided that the speed of the propagation is
monotonic, interface arrival times are governed by the Eikonal equation |∇T |F =
1, where T is the arrival time of the front, and F its speed. The front speed is
defined as:

F =
Gσ ∗ I

max(Gσ ∗ I)
+ α,

where I is the image, Gσ is a Gaussian kernel and α is a small constant.
Efficient entropy-satisfying numerical methods have been developed by

Sethian and his associates based on the Hyperbolic Conservation Laws. After
a forward marching phase, backtracking from anywhere in the field in the di-
rection of steepest decent will reach the origin of the propagation. Thus, from a
pre-determined end point, a minimal cost path can be found via wave propaga-
tion simulated using FMM.

3.3 A priori Shape Knowledge

The safest way to avoid spurious tortuosity being introduced, while ensuring
that any real tortuosity is not under represented by the model, is to filter out
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any bumps, branches or foreign objects in the neighbourhood in a pre-processing
stage. However, to do so reliably, one needs to apply a priori knowledge about
the desired and irrelevant structures.

A tubular shape model. We use an active surface model as a vehicle to carry
knowledge about the structure of interest. The basic mechanisms of the model
is described in [17,5]. Unlike previous usages, however, the deformation of our
model only takes place in a tranformed image.

The knowledge is embedded both in the mesh structure and the internal
forces of the model. Specifically, the combination of the intra-ring forces (see
below) and the inflation force alone favours such a resultant tubular model that
each cross-secontional ring is of a nearly constant area. The inter-ring forces
help enforce this. However, in the present application the inter-ring forces play
a secondary role. The internal forces can be designed so that the constant area
favoured by the model approximately corresponds to that of the structure being
modeled. The use of an adaptive deflation force (see below) near the end of the
deformation provides additional assurance. The image force localizes the model.

Model evolution in the transformed image domain. At each point on the
MCP, the original data are thresholded and resampled in planes perpendicular
to the local orientation of the MCP, and stacked up to form a new, transformed
data volume. An initial thin tube is constructed in the middle of the new data
and allowed to evolve to minimize the following ”energy” functional E of the
model in a space of permissible deformations [17,5]:
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∫
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where v is a parametric surface, and s and r are the parameterisation in the
cross-sectional-tangential and axial directions respectively. The potential P (v)
can be defined as −‖∇I(v)‖, where I is the image. Used in our model, the
coefficients w10 and w20 encode the strengths of the intra-ring forces mentioned
above, while w01 and w02 represent those of the inter-ring forces. w11 is associated
with a combination of intra and inter-ring forces. An inflation force is also used
throughout the entire process.

After the model converges at a local energy minimum, the evolution process
is repeated three times, each time using the previous result for the initialisation
(the first two rounds after shrinking the tube). This improves the deformable
model’s initialisation at places with significant curvature.

In the final round of the iterative deformation, the resultant model from
the previous round is not shrunken prior to the initialisation, but an additional
adaptive deflation force is used. Similar to the adaptive forces proposed in other
research (e.g. [4]), this force is almost inversely proportional to the magnitude
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of the local gradient. This force is used because the area targeted by the balance
between the intra-ring and inflation forces may not always be precise. To avoid
the need to use strong forces in the axial direction of the tube in such a situation,
we use adaptive deflation to reverse any ”leakage” because of gradient deficien-
cies. Finally, the medial axis is transformed back to the coordinate system of the
original data to form the ACM.

4 Results

We demonstrate that our approach can produce ACMs in two situations, re-
spectively representing the two opposite aspects of the dilemma mentioned in
Section 2. The same set of model parameters is used for both of the situations.

Synthetic data. Our approach is applied to a situation where there is sig-
nificant potential interference in the neighbourhood of a tubular structure. As
shown in Figure 2, the elliptical shape of the cross-section of the main structure
makes it less resistant to outside interference. Our result, specifically the ACM
shown inside the 3D visualisation, is not affected at all by the bulge in the middle
of the target structure.

Fig. 2. Form left to right: tubular structure with outside interference; 3 different cross-
section of the tubular structure; ACM with a 3D visualiation of the tubular structure.

Magnetic Resonance Angiography. We illustrate our method with one
MRA image with a resolution of 284 × 512 × 112 (0.48mm × 0.48 × 0.83mm).
We computed the curvilinear model of the internal carotids. This can be a pre-
pocessing step for a neurosurgey planning. The initial data and the results for
the two internal carotids are shown in Figure 3. In the bottom left panel of
Figure 3 we compare the MCP (dotted line) with the curvilinear model (solid
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Fig. 3. Curivilinear models of the internal carotids. Top left: axial, sagital and coronal
view of the original MRA; Top right: MIP of the vessels with the ACM superimposed;
bottom left: comparison of the MCP (dotted line) with the ACM (solid line); bottom
right: ACM with two cutting plans of the MRA superimposed.

line). In the top right panel the carotids are visualised using Maximum Intensity
Projection (MIP), along with their ACMs.

5 Discussion and Conclusion

We argue that to guarantee a high degree of accuracy in length, angle and
tortuositiy measurements for surgical (e.g. endovascular) planning purposes, po-
tentially interfering irrelevancies should be filtered out before extracting a model
suitable for the measurements. Furthermore, we believe that such filtering must
involve some a priori knowledge regarding the structures concerned. A particular
term, curvilinear modelling, has been used to describe procedures that satisfy
those criteria.
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In this paper, we have described one particular method for accurate curvilin-
ear modelling. We haved demonstrated that it is resistant to introducing spurious
curvatures (those that are not due to any change in the local orientation of the
object of interest), while faithfully reproducing “real” high curvatures (those
that are actually part of the object in question).

Further improvements. A deformable tubular model and a front propagation
approach are the two main elements used in the filtering and the extraction.
However, it may be worth investigating modifications to, or even replacement of,
either of those. For example, in addition to the implicit constant area constraint,
explicitly incorporating the following adaptivity in the intra-ring forces might
help improve the robustness of this approach:

w01(i, i + 1) = α [max(ai, ai+1) − min(ai, ai+1)] + β,

where ai and ai+1 are the areas of two successive rings of the model, with α and
β two parameters to tune.
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of Henri Mondor Hospital (Créteil, France) for the MRA image. We would also
like to thank Neil Killeen and Bhautik Joshi for proofreading of this article.

References

1. S. Aylward and E. Bullitt. Initialization, Noise, Singularities and Scale in Height
Ridge Traversal for Tubular Object Centerline Extraction. IEEE TMI, 21(2):61–
75, 2002.

2. H. Blum. A transformation for extracting new descriptors of shape. In D. Wathen,
editor, Models for the Perception of Speech and Visual Form, pages 363–380. MIT
Press, Cambridge MA, 1967.

3. G. Borgefors. Distance transformations in arbitrary dimensions. Comput. Vision
Graphics Image Process, 27:321–345, 1984.

4. V. Chalana, W. Costa, and Y. Kim. Integrating region growing and edge detection
using regularization. In SPIE, volume 2434, pages 262–271, 1995.

5. L. Cohen and I. Cohen. Finite-Element Methods for Active Contour Models and
Balloons for 2-D and 3-D Images. IEEE PAMI, 15(11):1131–1147, November 1993.

6. T. Deschamps and L.D. Cohen. Fast extraction of minimal path in 3D images and
applications to virtual endoscopy. Medical Image Analysis, 5:281–299, 2001.

7. Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

8. A.F. Frangi, W.J. Niessen, K. Vinken, and M.A. Viergever. Multi-scale vessel
enhancement filtering. . In MICCAI’98, volume 1496 of Lecture Notes in Computer
Science, pages 130–137, Cambridge (USA), October 1998. Springer.

9. K. Krissian, G. Malandain, N. Ayache, R. Vaillant, and Y. Trousset. Model-Based
Detection of Tubular Structures in 3D Images. CVIU, 80:130–171, 2000.

10. R. Li, S. Brown, L. Wilson, J. Young, and S. Luo. Progressively Refined Patient-
Specific Vessel System Models from Generic Representations. In DICTA’02, pages
184–189, Melbourne, Australia, October 2001.



74 R. Li and S. Ourselin

11. G Lohmann. Volumetric Image Analysis. Wiley, 1998.
12. N. Nikolaidis and I. Pitas. 3-D Image Processing Algorithms. John Wiley, 2001.
13. S.M. Pizer, A.L. Thall, and D.T. Chen. M-reps: A New Object Representation for

Graphics. Technical Report TR99-030, Uni. N. Carolina, Chapel Hill, Sep. 1999.
14. Y. Sato, S. Nakajima, N. Shiraga, H. Atsumi, S. Yoshida, T. Koller, G. Gerig,

and R. Kikinis. Three-Dimensional Multi-Scale Line Filter for Segmentation and
Visualization of Curvilinear Structures in Medical Images. Medical Image Analysis,
2(2):143–168, 1998.

15. J.A. Sethian. A fast marching level set method for monotonically advancing fronts.
Proc. of the National Academy of Sciences of the USA, 93(4):1591–1595, Feb 1996.

16. J.A. Sethian. Level set methods: Evolving interfaces in geometry, fluid mechanics,
computer vision, and materials science. Number 3 in Cambridge monographs on
applied and computational mathematics. Cambridge University Press, 1999.

17. D. Terzopoulos, A. Witkin, and M. Kass. Constraints on deformable models:
Recovering 3D shape and nonrigid motion. Artif. Int., 36(1):91–123, 1988.

18. R. Truyen, T. Deschamps, and L.D. Cohen. Clinical Evaluation of an Automatic
Path Tracker for Virtual Colonoscopy. In MICCAI’01, pages 169–176, Utrecht,
The Netherlands, October 2001.

19. O. Wink, W.J. Niessen, and Viergever M. Fast Delineation and Visualization of
Vessels in 3-D Angiographic Images. IEEE TMI, 19(4):337–346, 2000.

20. P.J. Yim, P.L. Choyke, and R.M. Summers. Gray-Scale Skeletonisation of Small
Vessels in Magnetic Resonance Angiography. IEEE TMI, 19(6):568–576, 2000.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


