
An Information Theoretic Approach for
Non-rigid Image Registration Using Voxel Class

Probabilities

E. D’Agostino, F. Maes�, D. Vandermeulen, and P. Suetens

Katholieke Universiteit Leuven, Faculties of Medicine and Engineering, Medical
Image Computing (Radiology - ESAT/PSI), University Hospital Gasthuisberg,

Herestraat 49, B-3000 Leuven, Belgium
Emiliano.DAgostino@uz.kuleuven.ac.be

Abstract. We propose a multimodal free-form registration algorithm
that matches voxel class labels rather than image intensities. Individual
voxels are displaced such as to minimize the Kullback-Leibler distance
between the actual and ideal joint probability distribution of voxel class
labels, which are assigned to each image individually by a previous seg-
mentation process. We evaluate the performance of the method for inter-
subject brain registration with simulated deformations, using a viscous
fluid model for regularization. The root mean square difference between
recovered and ground truth deformations is smaller than 1 voxel.

1 Introduction

While maximization of mutual information (MMI) of corresponding voxel in-
tensities [4] has been demonstrated to be highly successful for affine image reg-
istration of multimodal medical images in a variety of different applications,
extending the MMI approach to non-rigid image registration is still an active
area of research. While changes in the affine registration parameters affect the
registration over the entire image domain and therefore in general have substan-
tial impact on the joint intensity histogram and on the MI criterion itself, local
non-rigid deformation changes typically result in only subtle histogram changes
that are more difficult to assess using MI. Various approaches have been pre-
sented that differ in the way the criterion is evaluated for local non-rigid changes
in the registration transformation and in the regularization that is applied to ex-
clude non-realistic deformations and to make the non-rigid registration problem
well-posed. Rueckert et al. [6] used a B-spline representation of the deformation
field to impose local smoothness, whose parameters are optimized iteratively
such that MI measured globally over the entire image domain is maximized.
Hermosillo et al. [2] and D’Agostino et al. [1] derived the gradient of MI with
respect to individual voxel displacements using a continuous and differentiable
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joint histogram constructed by Parzen windowing, yielding a voxel-wise force
field that was used to drive free-form deformation regularized by elastic [2] or
viscous fluid [1] deformation models.

However, all these approaches have so far considered MI of corresponding
voxel intensities, implicitly assuming that these are related to objects that are
to be aligned by registration. In fact, in the MMI criterion formulated by Maes et
al. [4], image segmentation and labelling is implicit by the intensity rescaling and
binning that is applied when contructing the joint intensity histogram. In this
paper, we explore the possibility of non-rigid image registration by maximizing
an information theoretic measure of the similarity of voxel object labels directly,
rather than of voxel intensities. In our application, which is inter-subject MR
brain image matching, such labels are obtained by intensity-based tissue seg-
mentation, assigning each voxel a probability to belong to a particular tissue
class. The advantage of this approach is two-fold. Firstly, the ideal correspon-
dence of object labels in both images is known, which is not the case for the
multimodal intensities themselves, which is exploited in the registration crite-
rion as explained in Section 2. Secondly, image segmentation allows to indirectly
incorporate complex object intensity models and spatial context in the registra-
tion process, which may help to guide and constrain the non-rigid matching in
regions where image information by itself is ambiguous. Our long term goal is
to merge image segmentation and non-rigid registration is a single framework,
whereby the result of each is iteratively improved by the output of the other.

2 Method

2.1 Similarity Measure

When two monomodal images are perfectly aligned, their joint histogram be-
comes diagonal, such that the quality of the registration can be evaluated by
off-diagonal histogram dispersion. For multimodal images however, the joint his-
togram at registration depends on the nature of the data itself and can in general
not be predicted in advance. However, by first segmenting each image separately
by assigning each voxel an object label, the multimodal image registration prob-
lem can be reduced to a monomodal one that consists of aligning identically
labelled voxels (subject to appropriate regularization constraints as described
below) rather than the multimodal intensities of the original images. If a unique
object label is assigned to each voxel in each image (and only a small number of
objects is considered), non-rigid registration of the resulting crisp label images
is likely to be hampered by the lack of registration features in homogeneously
labeled regions and by interpolation artefacts at object boundaries.

Instead, for the brain MR images considered in this paper, we create label
images by intensity-based pixel classification using the fully automated model-
based algorithm by Van Leemput et al. [8]. Each voxel i is assigned a probability
ci,k to belong to one of four tissue classes k (gray matter, white matter, CSF, and
other), such that for each voxel

∑4
k=1 ci,k = 1. A 4 × 4 joint class distribution p
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can then be constructed assuming that the probability of corresponding voxels
in the two images to belong to a particular class are independent:
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with cTi,k and cRj,k the class probabilities of the pairs of corresponding voxels i
and j in the template image T and reference image R respectively. When the
images T and R are properly aligned, the matrix p is expected to be diagonally
dominant. By considering the ideal case whereby tissue labels in T and R are
identical and T has been perfectly warped onto R, a joint class probability
reference model can be constructed as
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(2)

We propose to use the Kullback-Leibler distance D(pideal||pactual) between the
ideal (fixed) and the actual (registration dependent) joint class probability dis-
tribution as registration measure, which needs to be minimized by optimization
of the registration parameters:

D(pideal||pactual) =
∑

k

pideal. log
pideal
pactual

(3)

with the sum taken over all 4 × 4 entries in pideal.
In practice, we construct p by transforming voxels from R into T , using

partial volume (PV) interpolation [4] in the space of voxel labels to distribute
the contribution of each sample i in R to the joint histogram over its 8 (in 3-D)
nearest neighbours j on the grid of T without need for interpolation of class
labels or probabilities directly:

preal =
∑

i

∑

j

wijP
T,R
ij (4)

with wij the trilinear interpolation weights and PT,R
ij as defined above. The

weights wij are continuous and differentiable functions of the transformation
u(x) from x in image R onto x − u(x) in image T [5].

2.2 Force Field Computation

The effect of a local displacement of a single voxel i along each of the three
coordinate axes on the registration criterion D(pideal||pactual) can be computed
by derivation of D with respect to the displacement ui = u(xi), using a similar
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approach as in [5] and assuming that the number of voxels within the region of
overlap of both images is constant:
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Hence, a voxel-wise force field F (x,u) can be defined that tends to displace each
voxel such as to minimize D:

F (xi,u) = − ∂D
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=
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 (7)

2.3 Viscous Fluid Regularization

To evaluate the merits of the new registration criterion, we adopt the free-form
registration approach of [1] and use the force field F (x,u) to drive a viscous
fluid regularizer by iteratively solving its Navier-Stokes governing equation:

∇2v + ∇ (∇.v) + F (x,u) = 0 (8)

with v(x, t) the deformation velocity experienced by a particle at position x. An
approximate solution of (8) is obtained by convolution with a Gaussian kernel
ψ:

v = ψ � F (9)

and the deformation field u(k+1) at iteration (k+1) is found by integration over
time:

R(k) = v(k) −
3∑

i=1

v
(k)
i

[
∂u(k)

∂xi

]

(10)

u(k+1) = u(k) + R(k).∆t (11)

The time step ∆t is constrained by ∆t ≤ max(‖R‖).∆u, with ∆u the maximal
voxel displacement that is allowed in one iteration. Regridding and template
propagation are used as in [1] to preserve topology.
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3 Results

The method described above was implemented in Matlab, with the image resam-
pling and histogram computation coded in C. The maximal voxel displacement
∆u at each iteration was set to 0.25 voxels and regridding was performed when
the Jacobian of the deformation field became smaller than 0.5. Iterations were
continued as long as the Kullback-Leibler distance D decreased, with a maximal
number of iterations of 180. Computation time for matching two images of size
128x128x80 is about 7 minutes on a Pentium IV 2.2 GHz PC.

We evaluated the performance of the method and compared it with the voxel
intensity based MMI method described in [1] using the same validation strategy
as in [1]. The method was validated on simulated images generated by the Brain-
Web MR simulator [7], which were non-rigidly deformed by known deformation
fields u∗. These were generated by matching the T1-weighted BrainWeb image
to real T1-weighted images of 3 periventricular leukomalacia patients, typically
showing enlarged ventricles. The ground truth deformation u∗ was generated
twice, once using the voxel intensity based MMI method of [1] and once using
the method described in this paper. We evaluate how well the recovered defor-
mation u, obtained by matching the original T1-weighted BrainWeb image to
its deformed version using either of both methods, resembles the ground truth
u∗. Both deformations were compared by their root mean square (RMS) error
∆u evaluated in voxel units over all brain voxels B:

∆T =

√
1
NB

∑

B
(|u(x) − u∗(x)|)2 (12)

Error values for 3 different cases are summarized in table 1. Although the RMS
error is subvoxel small in all cases, the method that generated the ground truth
deformation performs generally better. A typical registration result obtained
with the method proposed in this paper is illustrated in figure 1, showing the
template, target and matched template images and the corresponding WM and
GM maps. Deformation fields obtained with both methods are shown in figure 2.

Table 1. Root mean square error ∆u in voxels between ground thruth (u∗) and
recovered (u) deformation fields for 3 different cases, computed either with method
presented here or with the voxel intensity based MMI approach of [1].

u∗ MMI D
u MMI D MMI D

Case 1 0.42 0.53 0.54 0.38
Case 2 0.46 0.56 0.45 0.35
Case 3 0.47 0.46 0.43 0.33
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Initial: Final: Model:
.1669 .0926 .0131 .0031
.0509 .2512 .0606 .0109
.0070 .0546 .0788 .0135
.0039 .0296 .0434 .1198

.1579 .0634 .0045 .0021

.0637 .2908 .0589 .0092

.0049 .0619 .1076 .0196

.0022 .0121 .0249 .1164

.1586 .0636 .0044 .0021

.0636 .2937 .0603 .0105

.0044 .0603 .1093 .0218

.0021 .0105 .0218 .1129
Final - Initial:

-.0090 -.0292 -.0086 -.0010
.0128 .0395 -.0017 -.0017
-.0021 .0073 .0288 .0060
-.0017 -.0175 -.0185 -.0034

Fig. 1. Original intensity image and GM and WM maps for the template image (left),
template image warped to reference image (middle) and reference image (right). The
joint class distributions capture the coincidence of WM, GM, CSF and OTHER class
voxels in the reference (columns) and template (rows) images.
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Fig. 2. Left: Deformation recovered by the MMI based method of [1]; right: deformation
recovered by method proposed here.

4 Discussion

We present an algorithm for non-rigid image registration that optimizes an in-
formation theoretic measure of voxel class probabilities rather than voxel inten-
sities directly. Class probabilities are assigned to each voxel by intensity-based
tissue classification of each image individually and the joint class distribution is
obtained by assuming that corresponding voxel class labels in each image are in-
dependent. The segmentation introduces correspondence information about the
voxel features in each image, which is not available with intensity-based multi-
modality image registration. Hence, a good model for the joint class distribution
at registration can be estimated by considering the case of perfect alignment of
an image with itself. We propose to use the Kullback-Leibler distance between
the observed and the model class distribution as a new registration measure.
Inspection of the initial and final actual histograms pactual and of the model
histogram pmodel depicted in figure 1, demonstrates that the joint class his-
togram after non-rigid matching is indeed much more similar to the model than
before registration. The change in joint class probabilities prior and after regis-
tration shows that a clustering has occurred along each column, such that after
registration template class labels corresponding to a particular reference class
label are distributed similarly as in the model distribution.

The joint class distribution pactual is estimated during registration using
PV interpolation [4] such that it varies smoothly with individual voxel displace-
ments and can be analytically differentiated. A force field is thus obtained that
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acts to displace individual voxels such that the Kullback-Leibler distance be-
tween the observed and the model distribution is minimized. In the approach
presented in [1], the gradient of MI is computed with respect to individual voxel
displacements by modelling the joint intensity histogram as a continuous and dif-
ferentiable function of the image intensity itself using a Parzen estimator. The
approach presented here however is completely discrete due to the PV interpola-
tion scheme. Also, in contrast with the method of [1], the force field (7) does not
depend on the image intensity gradient of the template image, which may explain
the larger smoothness of the resulting deformation field as observed in figure 2.
We demonstrated how the force field can be applied to drive free-form non-rigid
registration using a viscous fluid regularization model. However, while the vis-
cous fluid model is appropriate for inter-subject brain registration as focussed
on here (whereby large deformations have to be recovered in patients showing
enlarged ventricles), other regularization schemes (e.g. elastic [2]) could be used
as well. Validating the performance of various regularization schemes for specific
non-rigid registration applications is an important research topic and outside
the scope of this paper.

A main advantage of this approach is that a priori model knowledge regard-
ing intensity appearance or spatial context of the objects in each image can be
incorporated by a model-based segmentation strategy. In our case for instance,
focussing on inter-subject brain image registration, WM, GM and CSF are seg-
mented assuming a Gaussian mixture intensity model, while also accounting
for MR intensity inhomogeneity and incorporating a priori information of the
expected spatial distribution of tissues in the brain [8]. Using class labels as
features for non-rigid image registration opens perspectives for integrating regis-
tration and segmentation as two cooperative processes in a single framework, for
instance by considering one of the images as an atlas that is non-rigidly warped
onto the other and that provides a priori tissue distribution maps to guide the
segmentation of the other image. Future work will be directed towards this goal.
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