
LAWRENCE

N AT I O N A L

LABORATORY

LIVERMORE

May 7, 2003

105h European Parallel Virtual Machine
Interface Conference, Venice, Italy, Sep
3, 2003

G. D. Benson, K. Long, and P. S

The Performance of
Disk Write Methods
Multiprocessor Nod

UCRL-JC-153187
/Message Passing
tember 29 – October

. Pacheco

 Parallel
 for Linux
es

 DISCLAIMER

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

 This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

 This report has been reproduced directly from the best available copy.

 Available electronically at http://www.doc.gov/bridge

 Available for a processing fee to U.S. Department of Energy
 And its contractors in paper from

 U.S. Department of Energy
 Office of Scientific and Technical Information

 P.O. Box 62
 Oak Ridge, TN 37831-0062
 Telephone: (865) 576-8401
 Facsimile: (865) 576-5728

 E-mail: reports@adonis.osti.gov

 Available for the sale to the public from
 U.S. Department of Commerce

 National Technical Information Service
 5285 Port Royal Road
 Springfield, VA 22161

 Telephone: (800) 553-6847
 Facsimile: (703) 605-6900

 E-mail: orders@ntis.fedworld.gov
 Online ordering: http://www.ntis.gov/ordering.htm

 OR

 Lawrence Livermore National Laboratory
 Technical Information Department’s Digital Library

 http://www.llnl.gov/tid/Library.html

The Performance of Parallel Disk Write Methods

for Linux Multiprocessor Nodes?

Gregory D. Benson, Kai Long, and Peter S. Pacheco

Keck Cluster Research Group
Department of Computer Science

University of San Francisco
2130 Fulton Street, San Francisco, CA 94117-1080

{benson,klong,peter}@cs.usfca.edu

Abstract. Despite increasing attention paid to parallel I/O and the in-
troduction of MPI-IO, there is limited, practical data to help guide a
programmer in the choice of a good parallel write strategy in the ab-
sence of a parallel file system. In this study we experimentally evaluate
several methods for implementing parallel computations that interleave
a significant number of contiguous or strided writes to a local disk on
Linux-based multiprocessor nodes. Using synthetic benchmark programs
written with MPI and Pthreads, we have acquired detailed performance
data for different application characteristics of programs running on dual
processor nodes. In general, our results show that programs that perform
a significant amount of I/O relative to pure computation benefit greatly
from the use of threads, while programs that perform relatively little
I/O obtain excellent results using only MPI. For a pure MPI approach,
we have found that it is best to use two writing processes with mmap().
For Pthreads it is usually best to use write() for contiguous data and
writev() for strided data. Codes that use mmap() tend to benefit from
periodic syncs of the data of the data to the disk, while codes that use
write() or writev() tend to have better performance with few syncs. A
straightforward use of ROMIO usually does not perform as well as these
direct approaches for writing to the local disk.

? Disclaimer. This document was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Government nor
the University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy, complete-
ness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or the University of
California. The views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

1 Introduction

Many parallel simulation problems require a large number of writes to disk. Al-
most any time-dependent differential equation solver will interleave computation
with disk writes [9]. Examples are climate modeling, simulation of groundwater
flow, and circuit simulation. Such simulations require frequent writes to disk
because core memory must be used for support of the computation or simply
too much data is generated to fit into an in-core buffer. The resulting data files
can be used for simulation analysis and visualization. For example, we have de-
veloped a parallel program called NeuroSys [6] that, given a small set of initial
conditions, will simulate the behavior of a large network of biologically accurate
neurons. The output data consists of numerical data, such as membrane volt-
ages, that represent the state of each neuron. A moderate sized simulation can
result in several gigabytes of data.

This study investigates low-level, parallel disk write techniques for Linux
clusters. In particular, we focus on methods that optimize the usage of dual-
processor compute nodes with dedicated disks. We are interested in finding the
most efficient methods for pushing large amounts of data onto the dedicated
disks. Our goal is to establish the best write methods for a wide range of ap-
plications. Our results can be used to guide both application programmers and
systems programmers. In addition, the methods we study can be employed in
parallel programs written using Pthreads, MPI, and OpenMP.

We have developed a synthetic benchmarking program that allows us to
experimentally evaluate the performance of different methods given different ap-
plication characteristics. The methods we evaluate consist of matching different
Linux write mechanisms, such as write(), writev(), mmap(), and file syncing,
with different strategies for parallelizing computation and I/O among multiple
processes or threads on a multiprocessor node. For example, a straightforward,
but sometimes inefficient strategy is to have two independent threads or MPI
processes perform both computation and I/O on behalf of the simulation. It
turns out that on a node with a single disk, uncoordinated file sync requests can
compete for the disk and result in poor disk utilization. We also give preliminary
results for the MPI-IO function, MPI_File_write_all() [3].

We also consider different simulation characteristics such as the ratio of I/O
to computation on each simulation step. If a simulation may produce very little
output per simulation step, it is more important to ensure a balance in com-
putation among the threads or processes and it is unlikely that the disk write
strategy will greatly impact application performance as long as the OS can buffer
write requests and issue the disk writes asynchronously. However, as the output
per simulation step increases it becomes less likely that the OS will be able to
buffer all of the write requests, and it will be required to push the buffers to
the disk. In this case, the write mechanism usage can determine how and when
buffers are sync to disk.

Another application characteristic we consider is contiguous writes versus
strided writes. Scientific simulations will often use strided writes to extract sig-
nificant values from large vectors. The write() system call is well suited for

contiguous writes, but not for strided writes unless memory copying is used
within the application. Both writev() and mmap() files accommodate strided
data. In MPI-IO, derived datatypes can be used to identify the strided data.

In our study we use a typical hardware and software configuration: However,
our testbed configuration represents a typical Linux cluster installation. a Linux
cluster of nodes each with dual Pentium III 1GHz processors and an 18GB
SCSI disk. Our testbed nodes run Linux kernel version 2.4.20 and we use the
ext3 file system. For the benchmarks using MPI, we use MPICH-GM.1.2.5..8
and shared memory communication. For MPI-IO we use ROMIO 1.2.5.1. For
parallel applications we assume that processes or threads running on a single
node will write directly to the local disk. Such applications can benefit from
the inherent I/O parallelism and achieve better communication bandwidth by
eliminating I/O traffic on the network. We have not experimented with other
I/O configurations such as NFS mounted file systems or parallel file systems
such as PVFS [2] backed by one or more dedicated I/O nodes.

Our results show that when a program performs a large amount of I/O
relative to computation, its performance can be substantially improved if it uses
Pthreads. This result is in accordance with previous research in which threads
are used to support asynchronous I/O [4]. However, programs with relatively
little I/O obtain excellent performance using only MPI. Indeed, such programs
may actually obtain better performance than a threaded program. For pure MPI
programs, it is usually better to have both processes writing to the disk, and
using the system call mmap() instead of write() or writev() usually results in
better performance. On the other hand, programs that use Pthreads — especially
programs with a large amount of I/O — often obtain the best results with
write() or writev(). Furthermore, for programs that use Pthreads the relative
performance of one and two writers can depend heavily on both the amount of
I/O relative to computation and the layout of the data in memory. Programs
that use mmap() instead of write() or writev() perform best if data is regularly
synced to disk. Programs that use write() or writev() usually obtain little
benefit from periodic syncing. If consistent performance is more important than
raw speed, it is often better to use mmap() rather write() or writev(). A
straightforward use of the ROMIO [8] implementation MPI-IO does not perform
as well as the direct approaches for writing to the local disk.

This work was motived by a practical need to implement efficient parallel disk
writing in a locally developed scientific application, NeuroSys [6]. We found very
little guidance in the research literature to help us optimize its I/O. Ideally, we
would have liked to find experience summaries on a Linux cluster similar to ours
(a cluster of 64 dual-processor nodes connected by Myrinet). A notable parallel
I/O benchmark is b eff io [7], which is used to characterize the total parallel
I/O performance of a parallel system. Unlike our benchmarks, which serve to
identify an optimal disk write method for a specific system, b eff io is suited for
comparing the I/O bandwidth of different systems. Furthermore, b eff io does
not simulate computation, so while it can give an indication of the raw I/O

throughput of a system, it does not reveal how well a system can overlap I/O
with computation.

Our work is complementary to work in parallel file systems [2] and MPI-
IO implementations [8]. The results of our parallel write experiments can be
used to help guide in implementation of these I/O systems on Linux clusters.
In addition, our benchmarks could be used as a framework for comparing the
write performance of these I/O systems. However, earlier results [5] indicate that
performance gains from mixing MPI with explicit threading is not worth the
added programming complexity when the application involves primarily in core
sparse-matrix computations. Our results show that for I/O intensive applications
mixing threads with MPI is well worth the added complexity.

The rest of this paper is organized as follows. Section 2 describes the write
methods we analyze in this paper. Section 3 describes our benchmarking ap-
proach. Section 4 evaluates our results and provides recommendations for appli-
cation and system programmers who implement parallel I/O libraries. Finally,
Section 5 makes some concluding remarks and discusses future work.

Acknowledgements. The first and third author thank the W.M. Keck
Foundation for a grant to build a cluster for use in research and education and
partial support of this research. The work of the third author was performed
under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract W-7405-ENG-48.

2 Parallel Write Methods

We refer to a parallel write method as a write mechanism combined with a par-
allelization strategy.

Disk Write Mechanisms Linux and most UNIX implementations support
disk writing with the write() and writev() systems calls. Linux also supports
memory mapped files with the mmap() system call. Both write() and writev()

collect data from user space and transfer it to a kernel-space buffer. The buffer
is usually written to the disk at a later time depending on system behavior
and configuration. While write() supports the transfer of a single contiguous
buffer, writev() allows a program to transfer a set of non-contiguous buffers.
Using mmap() a program can establish a range of virtual memory in process
address space to directly map to a named file. Thus writing to the file is as
simple as writing directly to memory. The caching of memory mapped files is
similar to ordinary file caching.

Programmers can affect when the kernel actually writes data to disk by “sync-
ing” the data associated with a file. For writing with write() and writev() the
fsync() system call can be used. On execution, fsync() blocks until all in-
memory parts of a file are written to disk, including the file metadata. The
fdatasync() system call is supposed to sync just the file data to disk, but as
of Linux 2.4.20, fdatasync() is the same as fsync(), therefore introducing un-
necessary disk writes. For mmap() regions, the msync() system call can be used.
By syncing data to disk, it may be possible to achieve better disk write control

and enable overlapping of computation with I/O. In a system with enough main
memory, an application may write all its data to kernel buffers and only after
the buffers have aged long enough or come under memory pressure, will the data
be written to disk. Such behavior can result in large delays at the end of the
program.

The mmap() system call can be used in two ways to write data to a file. The
most straightforward technique is to use mmap() to map the entire length of the
file into the user’s virtual address space. In this mode, the user uses mmap()

once and simply writes to contiguous memory locations. However, this approach
limits the maximum file length to the amount of mappable virtual memory,
which is just under 2 GB in Linux (for a default kernel configuration in Linux
2.4.20 and on a 32 bit x86 architecture). An alternate technique for writing files
with mmap() is to map only a portion of the file into virtual memory. Once this
window has been written to, it is unmapped with munmap(). The next window is
mapped with mmap(). This approach does not place any limits on the maximum
file size and it gives the programmer more control over the amount of memory
used for file buffering.

The data to be written to a file may be contiguous or strided. Writing con-
tiguous data is more straightforward than writing strided data. For example,
using write() on a contiguous buffer simply requires the starting address and
the length of the buffer to be written. Using write() on strided data requires
several small writes or the non-contiguous data must be copied to an interme-
diate buffer. Alternatively, writev() can by used to directly write strided data.
For mmap(), strided data must be copied into the mmapped memory region.

Parallelization Strategies When assigning work to a dual processor node,
the goal is to best utilize the processors for both the computation and I/O oper-
ations. Such utilization can be achieved with separate threads using Pthreads or
separate MPI processes. For example, if very little data needs to be written to
disk, then it makes sense to divide the computation between two threads or two
processes. However, as an application writes more data to disk relative to the
amount of computation it becomes less clear how the work should be divided.
One consideration is whether to write two individual files, one for each thread,
or have the threads combine the output data and write to a single file. The latter
case may work better on nodes with a single disk. The parallelization strategies
used for our study are listed in Table 1.

3 Experimental Methodology

We have developed a set of synthetic benchmarks that employ the disk write
implementations given in Section 2. In this discussion the term “thread” is used
to mean either Pthread or MPI process. The programs take several parameters:
iters, comptime, bufsize, syncsize, and winsize. The iters parameter deter-
mines how many loop iterations to simulate. Each iteration represents a possible
iteration in a real simulation. The comptime parameter determines how much
total computation time should be simulated across all loop iters. The computa-

MPI Implementations

S1A Two MPI processes compute and write to their own files. Each process performs periodic
syncs to disk.

S1B Similar to S1A except the periodic syncs are coordinated so that only one sync is issued

at a time to the kernel.

S2 Two MPI processes compute. One of the processes is a designated writer. The non-writing

process sends its data to the writing process on each iteration. The writer issues periodic
syncs.

S2DT Similar to S2 except that derived datatypes are used to send strided data from the non-
writer to the writer.

S3 Two MPI processes. One computes and one writes. The compute process sends data to
the write process on each iteration.

S3DT Similar to S3 except that derived datatypes are used to send strided data from the

compute process to the write process.

MPI-IO Two MPI processes compute and write using the MPI_File_write_all() function. Derived

datatypes are used for strided data.

Pthread Implementations

S1A Two threads compute and write their own files. Each thread performs periodic syncs to
disk.

S1B Similar to S1A except the periodic syncs are coordinated so that only one sync is issued
at a time to the kernel.

S2 Two threads compute. One of the threads is the designated writer. The non-writing

thread passes a buffer to the writing thread on each iteration. The writer issues periodic
syncs.

S3 Two threads. One computes and one writes. The compute thread passes a buffer to the
write thread on each iteration.

S5 Similar to S2 except a separate sync thread is used. The writing thread notifies the
sync thread when the sync size is reached. The sync thread allows disk flushing to occur

asynchronously with the computation.

Table 1. Implementation Details for the Parallel Write Methods

tion time per loop is comptime / iters. If there are two compute threads, the
compute time per iteration is further divided between the two threads. If there
are two write threads, the bufsize parameter is the amount of data to be written
on each loop iteration by each thread. If there is only one write thread, then 2 ×

bufsize bytes are written by this thread on each iteration. Similarly, if there are
two compute threads, each generates bufsize bytes of data for transferring to
disk on each iteration, while if there is only one write thread, it will generate 2
× bufsize bytes. Thus, the total amount of data written to disk is 2 × iters ×

bufsize. Data is synced to disk every syncsize bytes if at all. Finally, winsize is
used with mmap() to determine the maximum size of an mmap region. Note that
syncsize should be less than or equal to winsize. For the strided benchmarks
two additional parameters are used: len and stride. The len is the number of
bytes in a contiguous chunk of data. The stride is the number of bytes between
the beginnings of successive chunks.

In the benchmarks, the compute time is generated by filling the compute
buffer and having the process spin on the gettimeofday() system call. In current
versions of Linux, this function has microsecond resolution, which is more than
adequate for our purposes.

Each synthetic benchmark follows a common template: (1) Create threads or
processes; (2) Warm up disk with writes; (3) Barrier; (4) Loop of (4a) Simulate
computation and fill buffer, (4b) Barrier, (4c) Write buffer or transfer buffer,
(4d) Possible sync; and (5) A final sync to ensure all data is flushed to disk. To
record times, we start timing after (3) and end timing after (5).

4 Experimental Results

Using the benchmarks described in Section 3 we have obtained performance
results for each parallel write method. We use cluster nodes each with dual
Pentium III 1GHz processors and an 18 GB SCSI disk. Our testbed nodes run
Linux kernel version 2.4.20 and we use the ext3 file system. For the benchmarks
using MPI, we use MPICH-GM.1.2.5..8 and shared memory communication. For
MPI-IO we use ROMIO 1.2.5.1.

We have chosen parameters that are representative of realistic computations.
One of our main goals is to explore the impact of computation time relative to
I/O time on each of the parallel write methods. We have chosen parameters that
range from no compute time to a relatively large amount of compute time. The
intuition is that some methods may do a better job at overlapping computation
and I/O. Another goal is to determine the interaction between write mechanisms
and parallelization strategies for our cluster configuration.

The specific parameters consist of 1024 iterations with 64 KB buffers. The
total amount of data written for each simulation is 128 MB. For S1A and S1B,
this data will be split across two 64 MB files. For the other methods, this data
will be stored in a single 128 MB file. We found that sync size and window sizes
gave unpredictable results, so we experimented with a large range of values.
We considered the following sync sizes (syncsize): 128 KB, 256 KB, 512 KB,

1 MB, 2 MB, 4 MB, 8 MB, 16 MB, 32 MB, 64 MB, and 128 MB. We also
consider the following window sizes (winsize) for the mmap() write mechanism:
1 MB, 2 MB, 4 MB, 8 MB, 16 MB, 32 MB, 64 MB, and 128 MB. Note that
we only run experiments with syncsize ≤ winsize. Each test is repeated 10
times and we compute a 10% trimmed mean. For the strided data we used a
stride of 32 bytes and a len of 8 bytes. For the MPI-IO results, we used a call
to MPI_File_write_all() during each loop, a single call to MPI_File_sync()

upon completion of the loop, and the the default ROMIO hints.

The results for our MPI and Pthread experiments are listed in Figure 1. The
data in the table include the total execution time in seconds (we do not include
program startup), the best syncsize found for the method (f), and the best
winsize found for mmap() methods (w).

Pthreads and MPI The results show that for our system configuration and
the given parameters, if there is a large amount of I/O relative to computation,
then using Pthreads provides much better performance than MPI. For contiguous
data the best Pthread code for 0 seconds of compute provides a 60% improvement
over the best MPI code for this time, and the best Pthread code for 2 seconds of
compute provides a 28% improvement. For strided data the best Pthreads code
for 0 and 2 seconds provided improvements of 36% and 10%, respectively. On
the other hand, if the application is carrying out a relatively little amount I/O
(8 and 32 second compute), then the best MPI implementations do as well or
somewhat better than the best Pthread implementations. Our straightforward
use of ROMIO was not competitive with the other methods unless the amount
of computation was very large (32 seconds), and even in these cases it performed
somewhat worse than MPI with mmap().

Write method For MPI codes, mmap() always outperforms write() and
writev(). For example, for a compute time of 2 seconds, the best strided mmap()

code provided an 18% improvement over the best writev() code. For Pthreads,
the situation is almost reversed: in almost every case write() or writev() out-
performed the corresponding mmap() code. The exceptions occur for contiguous
buffers and relatively large amounts of compute time (8 and 32 seconds). In
these situations, S5 with mmap performed best among the Pthreads codes. We
expect that for these relatively large amounts of compute time, the extra sync
thread is able to provide a significant amount of overlap with computation.

Distribution of work among threads For the MPI codes, it is almost
invariably the case that S1A or S1B performs best. In both methods, the pro-
cesses perform equal amounts of computation and each writes to its own file.
S1B differs from S1A in that it schedules the syncs, and, in most cases this
seemed to either give some benefit or it didn’t cause any degradation. The only
clear exception to preferring S1A or S1B occurs in the strided benchmark with
2 seconds of compute time. In this situation, S3DT, is clearly superior.

For Pthreads making an optimal choice of the work distribution is more
complicated. For contiguous data and small amounts of computation (0 and 2
seconds), we need to look at the variability in the times. Unfortunately, there
wasn’t enough space to report this, but the relatively large variability in the

Table 1: MPI Contiguous Data

Comp write() mmap()
time S1A S1B S2 S3 S1A S1B S2 S3 MPI-IO

0 4.97 4.95 5.28 5.00 4.72 4.39 4.37 5.05 5.28
64Mf 64Mf 128Mf 128Mf 8Mf 2Mf 512Kf 512Kf

64Mw 2Mw 1Mw 1Mw

2 6.63 6.77 7.35 8.29 6.78 6.37 6.67 7.96 6.81

64Mf 64Mf 128Mf 128Mf 2Mf 2Mf 4Mf 256Kf
64Mw 4Mw 8Mw 32Mw

8 10.1 10.40 10.70 17.5 9.54 9.05 9.22 16.4 10.70
64Mf 64Mf 128Mf 128Mf 256Kf 2Mf 256Kf 256Kf

1Mw 4Mw 1Mw 128Mw

32 33.10 33.00 33.60 64.50 33.00 33.00 33.3 64.4 33.70

64Mf 64Mf 128Mf 128Mf 512Kf 2Mf 256Kf 256Kf
2Mw 2Mw 2Mw 1Mw

Table 2: MPI Strided Data

Comp writev() mmap()
time S1A S1B S2 S2DT S3 S3DT S1A S1B S2 S2DT S3 S3DT MPI-IO

0 8.35 8.80 10.60 8.76 12.30 7.60 9.54 7.00 8.59 7.62 9.14 7.30 9.71

64Mf 64Mf 128Mf 128Mf 128Mf 128Mf 512Kf 1Mf 256Kf 512Kf 128Kf 512Kf
2Mw 2Mw 8Mw 32Mw 1Mw 128Mw

2 9.82 10.00 11.00 9.85 11.50 9.75 9.20 8.64 9.67 8.54 9.51 7.98 10.00
64Mf 64Mf 128Mf 128Mf 128Mf 128Mf 128Kf 512Kf 256Kf 512Kf 512Kf 512Kf

8Mw 16Mw 2Mw 32Mw 1Mw 16Mw

8 12.70 12.80 15.90 13.00 19.90 18.60 11.60 11.90 14.70 12.20 18.70 17.70 15.00

64Mf 64Mf 128Mf 128Mf 128Mf 128Mf 1Mf 4Mf 128Kf 512Kf 128Kf 128Kf
1Mw 4Mw 1Mw 2Mw 128Mw 128Mw

32 36.20 36.20 40.10 36.50 67.30 66.10 35.50 35.10 38.70 35.50 66.70 65.70 38.70
64Mf 64Mf 128Mf 128Mf 128Mf 128Kf 256Kf 4Mf 512Kf 256Kf 256Kf 128Kf

1Mw 4Mw 4Mw 1Mw 128Mw 128Mw

Table 3: Pthreads Contiguous Data

Comp write() mmap()
time S1A S1B S2 S3 S5 S1A S1B S2 S3 S5

0 2.27 2.30 2.01 1.75 3.95 5.20 5.07 5.37 5.39 3.58

64Mf 64Mf 128Mf 64Mf 128Mf 32Mf 32Mf 64Mf 64Mf 8Mf

64Mw 64Mw 64Mw 64Mw 16Mw

2 4.56 4.97 4.84 4.66 6.10 7.31 7.28 7.35 8.51 5.11

64Mf 64Mf 128Mf 64Mf 128Mf 32Mf 16Mf 2Mf 2Mf 32Mf
64Mw 64Mw 4Mw 4Mw 64Mw

8 9.91 9.92 9.90 16.23 10.32 12.93 12.85 13.13 16.43 9.31

64Mf 64Mf 128Mf 64Mf 128Mf 64Mf 64Mf 64Mf 128Kf 1Mf

64Mw 64Mw 64Mw 1Mw 64Mw

32 33.43 33.48 33.32 64.12 33.22 37.01 36.36 37.09 64.12 33.12

64Mf 64Mf 128Mf 128Kf 256Kf 64Mf 256Kf 64Mf 256Kf 512Kf
64Mw 1Mw 64Mw 1Mw 16Mw

Table 4: Pthreads Strided Data

Comp writev() mmap()

time S1A S1B S2 S3 S5 S1A S1B S2 S3 S5

0 4.68 4.65 7.15 7.19 9.27 7.46 7.37 10.06 10.07 6.94

64Mf 64Mf 128Mf 128Mf 128Mf 32Mf 32Mf 32Mf 32Mf 4Mf
64Mw 64Mw 64Mw 64Mw 64Mw

2 8.46 8.18 9.83 7.22 9.99 9.93 9.92 11.93 10.07 8.58

64Mf 64Mf 128Mf 128Mf 128Mf 32Mf 32Mf 512Kf 512Kf 2Mf

64Mw 64Mw 1Mw 1Mw 64Mw

8 12.45 12.48 14.93 16.37 15.41 15.81 15.47 18.28 17.30 14.48

64Mf 64Mf 64Mf 64Mf 128Mf 64Mf 256Kf 64Mf 128Kf 1Mf
64Mw 1Mw 64Mw 4Mw 64Mw

32 36.26 36.28 38.32 64.13 38.17 39.86 39.73 42.25 64.13 38.38

64Mf 64Mf 128Mf 128Kf 128Kf 64Mf 64Mf 512Kf 256Kf 512Kf

64Mw 64Mw 1Mw 1Mw 16Mw

Fig. 1. Expermental Results for Parallel Write Methods (times in seconds, f is sync
size, w is window size, K is kilobytes, M is megabytes)

times indicated that there was little reason to prefer any one of S1A, S1B, S2, or
S3. As we noted earlier, for contiguous data and large amounts of compute time,
S5 gives the best performance with Pthreads. For strided data, it is usually the
case that S1A or S1B is superior. The exception is S3, which is clearly superior
for 2 seconds of compute time.

Syncing and Window Size Syncing allows the application to force the ker-
nel to flush disk buffers to disk. However, we found that attempting to perform
fdatasync() with write() or writev() with the benchmarks almost invari-
ably resulted in worse performance than simply using one sync at the end of
the benchmark. The degradation in performance is likely due to the current im-
plementation of fdatasync() in the Linux kernel, which is really an fsync()

[1]. The exception to this occurs with S3 and Pthreads. Evidently with a single
compute thread and a single I/O thread, the threaded implementations benefit
from an extra call to fsync().

For mmap(), it is clear that periodic syncing provides significant benefits to
performance. In the case of the contiguous MPI benchmarks, a 2 MB sync size
provided the best performance. For the other benchmarks, though, a range of
sync sizes resulted in optimal performance: We found that a sync size of 512
Kbytes to 4 Mbytes gave the best results.

The range of optimal window sizes is even larger than the range of optimal
sync sizes. Each size we tested, from 1 MB to 128 MB, was in some situation
optimal. Perhaps noteworthy in this context is the fact that it was almost always
the case that the optimal window size for a given situation was less than the file
size. So unmapping and remapping windows provides a clear benefit.

Variability As we noted earlier, we do not have sufficient space to report the
variability in the data we collected. We found a very wide range: the difference
between the fastest and slowest times for a given benchmark could vary by as
much as 300%. In general, however, it seems that for a given method, the use of
mmap() results in somewhat less variation.

5 Conclusions and Future Work

Our study experimentally compares the performance of several parallel disk write
methods using both MPI and Pthreads. We provide experimental results for one
specific hardware configuration, a configuration that is typical of Linux clusters.
Each benchmark was run on a constrained set of simulation parameters. The
parameter set we studied was quite large, and we found that no one approach to
I/O invariably results in the best performance. In particular, we have shown that
using Pthreads gives the best performance when the ratio of I/O to computation
is high, but that MPI provides excellent performance when the ration of I/O to
computation is low. We also found considerable differences in the performance
of write(), writev(), and mmap(), and in the use of various other parameters.
This suggests that any optimal implementation of I/O for dual processor nodes
will need to use adaptive methods to identify the best combination of parameters.

Many directions for future work are available. Specifically, we want to ex-
plore the new asynchronous I/O API (aio) for Linux kernels. We also would like
to implement benchmarks using the O_DIRECT option for writing files. This op-
tion allows applications to bypass the kernel disk caching mechanism. As of the
writing of this paper, the O_DIRECT option is not supported in the Linux 2.4.20
kernel for the ext3 file system. We also want to increase our parameter space in
a sensible way to make our results more general. Ideally, we would like to use our
benchmarks to find the proper parallel write method for a specific application.

References

1. Daniel P. Bovet and Marco Cesati. Understanding the Linux Kernel. O’Reilly &
Associates, Inc., 2nd edition, 2001.

2. Philip H. Carns, Walter B. Ligon III, Robert B. Ross, and Rajeev Thakur. PVFS:
A parallel file system for linux clusters. In Proceedings of the 4th Annual Linux
Showcase and Conference, pages 317–327, Atlanta, GA, 2000. USENIX Association.

3. William Gropp, Ewing Lusk, and Rajeev Thakur. Using MPI-2: Advanced Features
of the Message Passing Interface. Scientific and Engineering Computation. MIT
Press, Cambridge, MA, USA, November 1999.

4. S. More, A. Choudhary, I. Foster, and M. Xu. MTIO: A multi-threaded parallel
I/O system. In Proceedings of the 11th International Parallel Processing Symposium
(IPPS-97), pages 368–373, Los Alamitos, April 1–5 1997. IEEE Computer Society
Press.

5. Leonid Oliker, Xiaoye Li, Parry Husbands, and Rupak Biswas. Effects of order-
ing strategies and programming paradigms on sparse matrix computations. SIAM
Review, 44(3):373–393, September 2002.

6. P. Pacheco, M. Camperi, and T Uchino. PARALLEL NEUROSYS: A system for
the simulation of very large networks of biologically accurate neurons on parallel
computers. Neurocomputing, 32–33(1–4):1095–1102, 2000.

7. Rolf Rabenseifner and Alice E. Koniges. Effective file-I/O bandwidth benchmark.
Lecture Notes in Computer Science, 1900:1273–1283, 2001.

8. Rajeev Thakur, William Gropp, and Ewing Lusk. On implementing MPI-IO
portably and with high performance. In Proceedings of the Sixth Workshop on
Input/Output in Parallel a nd Distributed Systems, pages 23–32, 1999.

9. Rajeev Thakur, Ewing Lusk, and William Gropp. I/O in parallel applications: The
weakest link. The International Journal of High Performance Computing Applica-
tions, 12(4):389–395, Winter 1998.

