A Forward-Secure Blind Signature Scheme
Based on the Strong RSA Assumption

Dang Nguyen Duc!, Jung Hee Cheon?, and Kwangjo Kim'

! International Research Center for Information Security (IRIS)
Information and Communication University (ICU)

58-4 Hwaam-dong, Yusong-gu, Deajeon, 305-732 Korea
{nguyenduc, kkj}@icu.ac.kr
http://www.iris.re.kr/

2 School of Mathematical Science, Seoul National University (SNU)
San 56-1 Shillim-Dong, Kwanak-Gu, Seoul 151-747, Korea
jhcheon@math.snu.ac.kr

Abstract. Key exposures bring out very serious problems in security
services. Especially, it is more severe in the applications such as electronic
cash or electronic payment where money is directly involved. Forward
secrecy is one of the security notions addressing the key exposure issues.
Roughly speaking, forward secrecy is aimed to protect the validity of
all actions using the secret key before the key exposure. In this paper,
we investigate the key exposure problem in blind signature (with an
application to the electronic cash in mind) and propose a blind signature
scheme which guarantees forward secrecy. Our scheme is constructed
from the provably secure Okamoto-Guillou-Quisquater (OGQ for short)
blind signature scheme. Using the forking lemma by Pointcheval and
Stern [4], we can show the equivalence between the existence of a forger
with the solvability of the strong RSA problem. Further we show that
our scheme introduces no significant communication overhead comparing
with the original OGQ scheme.

1 Introduction

Digital signatures are the most well-known public key cryptography ap-
plication which provides authentication of signing act. Clearly, the ability
to sign (i.e., owning the secret keys) must be available to the signer only.
In practice, it is very difficult to guarantee that secret keys cannot be
compromised since many implementation and administration errors can
be exploited. To relax the problem, an intuitive solution is to use many
secret keys - each valid only within a short period of time - and preferably
keeps the public key unchanged over its lifetime. Such strategy is called
key evolution.

However, key evolution must be designed carefully. For instance, if se-
cret keys used in the past can be easily computed from the compromised
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secret key then key evolution does not help dealing with the key exposure
problem. To address this issue, the notion of forward secrecy was intro-
duced by Anderson [2]. Intuitively speaking, forward secrecy preserves
security goal for all previous usage in case the current secret key is com-
promised. In other words, security goal is protected up to (forward) the
time of secret key exposure.

An interesting extension of digital signature is blind signature pro-
posed by Chaum [1]. Blind signature enables users to get a signer’s sig-
natures on their messages without revealing the message contents. Blind
signature plays one of key ingredients in electronic cash system where
the bank plays as the signer and customers play as users. Roughly, let’s
assume that a signature issued by the bank is equivalent to an electronic
coin. Now, we consider the key exposure problem in case of blind signature
(and so of an electronic cash system). It turns out that the key exposure
problem in blind signature is very serious. Specifically, in electronic cash
system, it is very severe since money is directly involved. When secret
keys of the bank are stolen, attacker can generate as many valid elec-
tronic coins as he wants. Suppose that the bank is aware of key exposure
and performs public key revocation. Since nobody can trust signature
generated by using the stolen key, people who withdrawn their electronic
coins but have not spent it, or who were paid electronic coins but have
not deposited it will lose their money.

The first solution, the bank can think of, is to make stealing his secret
keys essentially hard. For example, the bank can use secret sharing tech-
nique to distribute secret keys to several sites together with a threshold
blind signature scheme to issue signatures. Clearly, this approach makes
it more difficult for attackers to steal secret keys since they have to break
in all sites holding shared secrets to learn the bank’s secret keys. How-
ever, the above approach requires distributed computation that is very
costly. Again, we turn to key evolution and forward secrecy. Specifically,
the bank updates his secret key at discrete intervals and it is infeasible for
an adversary to forge any signature valid in the past even if the current
secret key is compromised. Blind signature is also seen to have other ap-
plications including electronic voting, auction, etc. All those applications
are clearly vulnerable against key exposure problem. Thus relaxing the
key exposure problem in blind signature is a useful feature not only in
electronic cash but also in many other cryptographic applications.

Our approach to construct a forward secure blind signature scheme
is to extend a well-studied blind signature scheme in the literature. We
choose the Okamoto-Guillou-Quisquater (OGQ for short) blind signature
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scheme as our candidate. This scheme is constructed from the witness in-
distinguishable identification protocol based on Guillou-Quisquater iden-
tification protocol by Okamoto [8]. This blind signature scheme works
on Zy where N is a product of two large primes. The security of this
scheme is proved by Pointcheval and Stern under random oracle model
[4]. The scheme seems not to be vulnerable against generalized birthday
attack [12] since this attack requires the knowledge of the order of the
base group which is equivalent to factoring N.

In this paper, we present a forward secure blind signature scheme
by extending the OGQ blind signature scheme. Our scheme exhibits an
efficient key updating protocol and introduces no significant overhead
comparing to the OGQ scheme.

The organization of the paper is as follows: In Section 2, we present
background and definitions. The description of our forward secure blind
signature scheme is given in Section 3. In Section 4, we analyze correct-
ness, efficiency and security of our proposed scheme. Section 5 will be our
conclusion and future work.

2 Background

2.1 The Key-evolving Blind Signature

In this section, we demonstrate a formal definition of a key-evolving blind
signature scheme. The definition is adopted from the definition for a key-
evolving digital signature given in [6].

Definition 1. A key-evolving blind signature scheme consists of five algo-
rithms, FBSIG = <FBSIG.Setup, FBSIG.Update, FBSIG.Signer, FBSIG.User,
FBSIG.Verify>, where

1. FBSIG.Setup is a probabilistic polynomial-time algorithm which takes
the security parameter k as its input and outputs system parameters
including the initial secret key SKi and the public key PK of the
signer.

2. FBSIG.Update is either deterministic or probabilistic algorithm. It
takes the secret key SK; for current time period, period i, as its input,
and outputs a new secret key SK;11 for time period ¢ + 1.

3. FBSIG.Signer and FBSIG.User are a pair of probabilistic interactive
Turing machines which model the signer and an user involving in a
signature issuing session, respectively. Both machines have the follow-
ing tapes: a read-only input tape, a write-only output tape, a read/write
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work tape, a read-only random tape and two communication tapes (one
read-only and one write-only). The two machines may share a com-
mon read-only input tape as well. FBSIG.Signer has its secret key
SK; on its input tape in time period i. FBSIG.User has a message m
and the signer’s public key PK; on its input tape. FBSIG.Signer and
FBSIG.User engage in a signature issuing protocol. After the proto-
col ends, FBSIG.Signer either outputs ‘complete’ or ‘incomplete’, and
FBSIG.User either outputs signature of the message m, (i,o(m)), or
L (i.e., error) respectively.

4. FBSIG.Verify is a deterministic algorithm which takes the public key
of the signer, PK, and message, signature pair (m,i,o(m)) as its
input. It outputs either ‘accept’ or ‘reject’. Clearly, for every wvalid
signature, FBSIG.Verify must output ‘accept’.

We should emphasize that the period index, ¢, must be embedded
into every signature. Otherwise, we cannot tell in which time period, the
signature is issued.

2.2 Security Notions for a key-evolving Blind Signature with
forward secrecy

Blindness. One characteristic of the ordinary cash is anonymity, mean-
ing that user’s buying activities can not be traced by the bank who is-
sues cash. Blind signature clearly needs to address this issue since it is
a means of cash issuance in electronic cash system. In fact, blindness is
stronger than “obtaining signature without revealing message”. To satis-
fies anonymity, blindness property implies that the signer cannot statis-
tically distinguish signatures.

In a key-evolving blind signature, one may argue that since the time
period index must be included in every signature. Then, the signer may
use the time period index to uniquely identify every signature if he up-
dates his secret keys after issuing each signature. So blindness property
will be lost. However, the time period index j is publicly available and the
signer must agree with all involved parties on when his secret keys should
be updated. Another issue one may concern is that if a time period is too
short, then there will be only a few signatures issued in that period. It
may make the signer easier to identify signatures later on. This can be
prevented by requiring a more rigorous blindness property. Let’s consider
the following game played by the signer (or any adversary that controls
the signer) and two honest users, say Uy and Uy .

— The signer chooses two messages mg and my.
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— A referee chooses a random bit b and then m; and mi_; are given to
Up and Uy, respectively.

— Uy and U; engage with the signer to get signatures on their messages,
myp and mq_p, respectively (not necessery in two different time periods
since blindness property must be satisfied for all signatures, not just
for signatures issued in one time period). Then, The two signatures
are given to the signer. Finally, the signer outputs a guess for b, say
b'. The signer wins the game if b = b'.

If probability that the signer wins the game is no better probability
of guessing the random bit b given no information (i.e., probability of %),
the signer cannot link a signature to its owner. We say that blindness
property is satisfied.

Forward Secrecy in Key-evolving Blind Signature. In differ-
ent cryptographic schemes, forward secrecy may have different meanings
depending on security goals for the schemes. In blind signature context,
forward secrecy means unforgeability of signatures valid in previous time
periods even if the current secret key of the signer is compromised.

2.3 Security Assumption

The security assumption of our scheme depends on the intractability of
the strong RSA problem. The strong RSA problem is described as follows:
Given a RSA modulus N (which is a product of two large primes) and
a random element ¢ € Z%;, find m and r € Z% such that m" = ¢ mod
N. The strong RSA assumption implies that the strong RSA problem is
intractable.

The strong RSA assumption is usually used with a special modulus
N, i.e., that is a product of two numbers, so called safe primes. We give
definition of a safe prime as follows:

Definition 2. Given a prime number ¢, if ¢ = 2¢' + 1 is also prime, we
call q is a safe prime number. (¢’ is known as Sophie Germain prime.).

3 Our Forward Secure Blind Signature Scheme

In this section, we describe our forward secure variant of the OGQ blind
signature scheme. We denotes + by a division operation which gives the
result as the quotient of the division (i.e., if @ = gb+ r then a + b = q).
The || denotes string concatenation. Also, we assume that a collision-free
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hash function H is available where its domain and codomain are {0, 1}*
and Z3 (X is a prime), respectively.

Firstly, we explain our idea on implementing a key-evolving protocol
for the OGQ blind signature scheme. The OGQ scheme works on the
multiplicative group Z3, where N is a product of two primes. Its secret
key is a pair (r, s) and the corresponding public key is V' = a~"s~* where
a and A are public () is also prime). Updating the secret s is easy, we
just compute s’ from s by squaring, say s’ = s?. However, updating
(in a way the new public key is related to the old public key) is difficult
because we do not know the order of a in Z}. If we compute V2, we get
V2 =a"?"(s2)"* mod N. We cannot take (2r, s?) as a new secret key pair
since it is trivially easy to get r from 2r. To add randomness to the new 7,
we take a random exponent e from Z% and compute V2a® = a=2r+¢(s%)~*
mod N. [ and r’ denote the quotient and the remainder of (2r —e) divided
by A, respectively. Then, we have V?2a® = a”l(als2)*)‘ mod N. Now, we
can take V2a® as a new public key, (r/,s" = a's?) as a new secret key.
This key-evolving protocol is forward secure because in order to compute
r or s from the new key pair (r/, s") and a® mod N, one needs to compute
e from a® or s from s2. Since e is taken randomly, both of problems are
very root finding problem in Z3;, which is equivalent to factoring N [14].

In an offline electronic cash system, payment can be made without
online communication with the bank. In other words, verifiers should be
able to verify signature without online communication with the signer.
Therefore, in our case, a® should be embedded into every signature so
that verifier can compute the public key from V' and the period index.
One may argue that it is no better than generating the new key pair
at random and including the public key into every signature. However,
in blind signature, users are in charge of hashing their messages. Thus,
users are under no obligation to embed the correct time period index
into signatures (which means forward secrecy is lost). In contrast, the
public key in our scheme is continuously squared after every period. So
for verifiers to compute correct public key using period index (i.e., V%),
users must embed the correct time period index into signatures.

We now describe each component of a five-tuple FBSIG = <FBSIG.Setup,
FBSIG.Update, FBSIG.Signer, FBSIG.User, FBSIG.Verify>.

algorithm FBSIG.Setup(k)
Generate randomly two safe primes p and g of length k/2 bits
N < pq
e(N) — (¢—1)(p—1)
Generate a random prime A such that it is co-prime with ¢(N)
Choose a from Zj of order greater than A
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Choose o €r ZX s0,e €Er Zn
V afmso_)‘ mod N
fi—a®mod N

v1 — V?a® mod N
l—2ro—e)+ A

r1 < (2ro — e) mod A

S§1 — als(z) mod N

Erase p, q, e, 70, so and p(N)
SK1 — (1,7’1,81,1)1,f1)

PK « (N,a,V,))
RETURN (PK,SK)

algorithm FBSIG.Update(SKj;)
(i, Ti,Si, Vi, fz) — SKZ
Choose e €r Z}y
Vig1 wfae mod N
fiv1 — f?a® mod N
l—(2r;—e) =X
rit1 < (2r; —e) mod A
Sig1 — alsl2 mod N
SKiy1 — (i 4+ 1,741, Sit1,Vit1, fit1)
Erase SK;,e and [
RETURN (SKit1)

Note that, ¢, v; and f; of SK; are not secret anyway. We prefer to keep
PK unchanged to avoid confusion because if public key is changed, we
need to perform public key revocation. The signature issuing protocol is
given as follows:

algorithm FBSIG.Signer(SK;) algorithm FBSIG.User(PK,m)
On Error RETURN ‘incomplete’ On Error RETURN L

(i, N, )\, Qa,Ti,Sq, fl) — SK,

Choose t €r Z5

Choose u €r Zx

z — a*u® mod N

Send z to FBSIG.User
Get z from FBSIG.Signer
(N, X a,V) — PK
Choose blinding factors o,y €r Z3 and B €r Zx
2’ za®B*v] mod N
¢ — HG || fi | m | o)
¢+~ (¢ =) mod A
Send c to FBSIG.Signer

Get ¢ from FBSIG.User

y «— (t+ cr;) mod A

w— (t+cry) + A
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z «— a"usj mod N

Send y, z to FBSIG.User
Get y, z from FBSIG.Signer
Yy« (y+ a) mod A
w— (y+a)+A
w’ — (=)= A
2 a“’/vi_w”zﬁ mod N
U(m) — (fh Clv ylv Z/)

RETURN ‘complete’ RETURN (i,0(m))

We assume that when users contact with the signer, ¢,v; and f; are
available to users (i.e., in the signer’s read-only public directory). All
users can access those information anonymously. The ‘On Error’ pseudo-
code can be interpreted as ‘Whenever an (unrecoverable) error occurs’.
In practice, an error will be caused by a communication error between
FBSIG.User and FBSIG.Signer.

To express the signature of a message, we will omit the index i on
fi since attackers (when try to forge a signature) do not have to use the
correct f for a period).

algorithm FBSIG.Verify(m,i,0(m), PK)
(N, )\ a,V) — PK
(f7 Cl? y/7 Z,) — U(m)
Vi — V2lf mod N

’ A ’
2" «—a¥ 2’"v{ mod N

Ifc=H@| f|| m| 2”) then RETURN ‘accept’ else RETURN ‘reject’

4 Analysis of FBSIG

4.1 Correctness

Theorem 1. Suppose that FBSIG.Signer and FBSIG.User engage in a
signature issuing protocol in period i such that FBSIG.Signer returns
‘complete’ and FBSIG.User returns signature on a message m, (i,0(m)).
Then, FBSIG.Verify always returns ‘accept’ on input (PK,i,o(m)).

Proof. We will show that 2/ = a¥' 2/ (VZ f;)¥ = 2/ mod N. If the signa-
ture issuing protocol ends successfully then f = f; and we have:

ay/z')‘(VQifi)cl = ay/(aw’v;w”zﬂ)Avf/ mod N
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= a¥ a2 3¢ " mod N

= a¥ TN (0% us ) M T mod N
— CLy+aG,W)\U)\SiC)\,3)\’UZ~C/_w”>\ mod N

— ay+w)\aau)\8ic)\/8)\vic’—w")\ mod N

— at+°”a°‘u/\8f)‘/8’\vf/7w”)‘ mod N

= atu’\ao‘(a_”si_)‘)_cﬁ’\vf/_w”)‘ mod N
= xa“ﬂ’\vi_cvfl_w”’\ mod N

= za®p* mod N

' —c)—w'' A
_ a QA 7
=za®( =1z mod N

v
v

Hence H(i || f || m ||2”)=H(i || f || m || ') = ¢ always holds which
means that FBSIG.Verify always returns ‘accept’. O

4.2 Efficiency

We compare the key and signature sizes (in bits) of our key-evolving blind
signature scheme and the OGQ blind signature scheme in the following
table.

Scheme Public Key Size |Secret Key Size| Signature Size
Our FBSIG |5k + log A + log(7) kE+logA |2k + 2log A + log(i)
IOGQ Scheme[ 3k + log A [ k + log A [ k+ 2log A ‘

Note that log(i) is bit length of time period index. In terms of com-
putational cost, the signature issuing procedure remains the same as the
OGQ scheme. In verification process, we need to so some squaring oper-
ations to compute v;. Our key updating is quite efficient. It needs three
squaring operations, two exponentiations, one division and three multi-
plications in Z%.

4.3 Security

SECURITY OF OGQ BLIND SIGNATURE. In [4], the authors showed that
one-more unforgeability is related to security of RSA cryptosystem. Even
though the complexity of reduction step in their security proof is not
polynomial in all security parameters, it is still one of the best result for
blind signature.

We state two theorems regarding the security of our scheme as follows:

Theorem 2. Our proposed scheme satisfies blindness property of a blind
signature scheme.
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Proof. Let’s consider the game played by an adversary A (the signer or
the one controls the signer) and two honest users, Uy and U; described in
Section 2.2. If A receives | from one of users, then he has no information
to help guessing b other than a wild guess. Now suppose that he gets
(1, 0(mp)) = (4, fi, b, Yy, 2's) and (5,0(ma-s)) = (4, f, 1=, Y145 Z'1-5)
from two users instead of 1. Note that, what are exchanged between
the signer and an user during signature issuing protocol are ¢, y and z.
We call (c,y, z) is a view of the signer. We should show that, given any
view (c,y, z) and any signature (m,i,0(m)), there always exist uniquely
blinding factors such that the resulting signature is (m,i,0(m)) and the
view of the signer is (c,y, z). This fact prevents the signer from decid-
ing a given view corresponding to which signature since blinding factors
are chosen randomly. The blinding factors «, 8 and + can be uniquely
computed given (c¢,y,z) and (m,i,0(m)) = (m,i, f,c,y,2") as follows:
y=¢ —cmod \, a =y —y mod X and 8= 2//(a* v;"" z) mod N where
w’ and w” are computed just like in the signature issuing protocol and
v; = V% f mod N. To conclude, in any case, any adversary A cannot gain
any helpful information during the signing protocol to guess b. In other
words, his probability of success in guessing b is 1/2. O

Theorem 3. If there exists a forger which can break forward security
of our scheme. Then, with non-negligible probability, we can violate the
strong RSA assumption.

Proof. A forger F obtains PK of the signer as its input, and interacts
with the signer in an arbitrary way to get a set of message (of his choice)
signature pairs MS. Whenever he wants, he breaks in the system (let say
at time period b) and learns SKj. Finally, with non-negligible probability,
F outputs a forged message/signature pair for a time period j < b which
is not in the set M.S. We need to simulate the signer to interact with F
during signature issuing protocol and provide an hashing oracle to answer
F’s hashing queries. As usual, F can only interact with the signer poly-
nomially many sessions and ask the hashing oracle polynomially many
queries. We also need to provide a random tape for F. First, we guess the
period j that F will output a forged signature for that period. The break-
in time of F must be period b > j. We can easily compute SK} to answer
F’s break-in query by using the key setup and update procedure properly.
We will run F twice with the same input PK. At the first time, assume
that F outputs a forged signature (j,o1(m)) = (4, f, ¢}, 91, 21) on a mes-
sage m and the h-th query on the hashing oracle is (j || f || m || 7). It is
expected that V% f = v; mod N. Otherwise, we retry from the beginning.
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For the second time, we run F with the same random tape and answer
to its hashing oracle queries the same values as in the first run until the
h-th query, (j || f || m || «}). Due to the forking lemma [4], with non-
negligible probability, F will again output a forged signature on message
m for the period j, (j,01(m)) = (4, f, ¢, Y5, 25). Then it must be the case
thay a?llzi)‘(VQJf)cll = ayézé/\(VWf)Cé mod N. Thus, a¥1~%2(z}/25)* =
v;T(C?_Cl) mod N (v; = V¥ f mod N). Since v; = a~"s;7* mod N, we
can come up with the following equation a” = b* mod N for some inte-
ger number p and b. This equation enables us to violate the strong RSA
assumption due to the following lemma.

Lemma 1. Givena,bc (Z/NZ)*, along with p,\ € Z, such that a” = b*
mod N and ged(p, \) = 1, one can efficiently compute p € Zy; such that
p =a mod N.

Proof. Since ged(p, \) = 1 we can use extended Euclidean algorithm to
compute two integers p’ and X such that pp’ = 1+AN. Then, y = b”'a=V
mod N satisfies 4 = a mod N.

Using the above lemma we can compute a A-th root of a which contra-
dicts with our security assumption, the RSA assumption since it is very
likely that ged(p, A) =1 (since A is prime). O

5 Conclusions and Future Work

We presented the first forward secure blind signature scheme and analyzed
its security. We believe that forward secrecy provides really useful features
for a blind signature scheme, considering its applications such as electronic
cash or electronic payment systems. Our scheme is as efficient as the
original OGQ scheme. The key evolving protocol is efficient and supports
unlimited time periods. However, the signature size of our scheme is two
times of the original signature. Reducing the signature size is left as the
future work.

Our scheme can also be extended to general groups whose orders are
hard to find. In this case, the security assumption also changes to the
strong root assumption [13] which is an analogy of the strong RSA as-
sumption. An example of groups of unknown orders are class groups of
imaginary quadratic orders. This generalization will be described in the
full version of this paper.
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