
Using task knowledge to guide interactor
specifications analysis

José Creissac Campos

Departamento de Informática, Universidade do Minho, Campus de Gualtar
4710-057 Braga, Portugal.
Jose.Campos@di.uminho.pt

Abstract. This paper looks at how to extend the type of analysis that
can be done using interactor based models of interactive systems, the
i2smv tool, and SMV. Originally, the type of analysis performed with
i2smv/SMV was concerned with the exhaustive exploration of all possible
behaviours of a device, with little direct consideration of the tasks it
should support. The paper investigates how task related knowledge can
be introduced into the approach in order to extend the range of properties
that can be analysed.

1 Introduction

The development of software systems has proved to be an iterative process where
quality is achieved incrementally. As software evolves so does the cost of introduc-
ing changes. It is important that quality analysis be started as early as possible
in the development process.

The quality of interactive devices can be measured in terms of their usability.
Empirical approaches to the evaluation of systems designs attempt to analyse the
designs under real world usage conditions, but are typically expensive. This is so
both because the analysis is performed late in the design life-cycle, and because
setting up the analysis requires a lot of resources and time. Analytic approaches
to the analysis of system’s models have been proposed as a means to reason
about usability issues from the initial stages of design. These approaches use
models to focus the analysis in specific usability issues. In recent years the use of
formal (mathematically based) notations and tools in the context of reasoning
about usability has been proposed [10,2]. The main motivation has been the
possibility of performing thorough and repeatable analysis of usability related
issues from as early as possible in the design process.

One such approach is presented in [2]. Models of interactive devices are used
to reason about the usability of the envisaged system (device+user). The analysis
is performed by attempting to prove that the device’s behaviour exhibits certain
desired properties. Models are structured using the notion of interactor [6,4]
and expressed using modal action logic. The analysis is performed using SMV,
a model checker. A tool has been developed to translate the interactor models
into the SMV input language. The properties to be proved are written in CTL.

By analysing a model of the device we guarantee full coverage of its behaviour
(as modelled), but it becomes harder to analyse how the device reacts to specific
user behaviours. Put simply, an unpredictable user is assumed, that can take
any action at any time. This paper looks at how to extend the approach so that
specific behaviours are more easily analysed. The paper investigates how task
related knowledge can be introduced and used to analyse if envisaged tasks will
have the desired effect when performed correctly.

It must be stressed that the paper is not proposing formally based approaches
as substitutes for more traditional usability analysis techniques. Rather as one
more tool that can be used during development.

Section 2 will discuss the motivation to consider tasks during verification.
Section 3 introduces the interactor language and tool, and an example of analysis.
Section 4 introduces tasks, and section 5 shows how they can be used during the
analysis. Finally section 6 presents some discussion and conclusions.

2 Usability analysis with formal methods

Reasoning about usability means that considerations about the user(s) must
be brought to bear on the analysis. In the approach of [2] this is reflected in
the choice of what properties to prove, and in the interpretation of the results.
Typically, properties are expressed over the states that are reached by the device.
During verification all possible behaviours of the device are considered (i.e. device
behaviour is left unconstrained).

The advantage of this approach is that it forces the analysis to consider
previously unforeseen behaviours that might lead to undesired states. In practice
this can lead to a number of false negatives which must be investigated and
dealt with in turn during the analysis. Some of these behaviors will be discarded
because they appear due to the encoding of the model (for example, the use of
abstraction might mean that the model exhibits more behaviours than the actual
device), or because, despite being possible behaviours of the device, they are not
considered plausible/relevant from a human-factors stand point (for example, if
we are investigating how calls are made using some mobile phone, we might wish
to disregard behaviours where the user explicitly cancels the dialling process).

Filtering out unwanted behaviours can be done either by altering the model,
or the property to be proved. Safely altering the model might be difficult when
dealing with complex systems. Changing the property to filter out unwanted
behaviour can be complex and lead to difficult to read properties. CTL (Com-
putational Tree Logic — see section 3.2) is well suited for expressing properties
about which states a system might or not reach, it is not as suited for expressing
properties over the paths leading to those states. For example, it is easy to ex-
press that a state where prop holds can be reached (EF prop), it is not as simple
to write properties about the possible behaviours that lead to that state.

Some authors have proposed that user or task models should be coupled with
the device model for analysis [14,5,11,7]. This increases the complexity of the
final model but gives a greater focus to the analysis. Only those behaviours that

are consistent with the model of the user/task are considered during the analysis.
One main difference between the two approaches is that while user models try
to define how user behaviour is generated (by representing the mental structures
and activities of the user), task models directly define the behaviour that users
are supposed to exhibit. User models can be specially useful when analysing how
a novice user will behave when faced with the device. Unfortunately they are
very hard to develop. Task models are most useful in situations where prescribed
procedures are defined and should be followed.

One drawback of using a user or task model is that the scope of the analysis is
narrowed. If a user model is used, it will typically cover rational user behaviour,
and, possibly, typical classes of user error. This can leave out some unforeseen
anomalous behaviour that, though unlikely, might have a negative impact on
the device’s usability. If a task model is used then only those behaviours that
are defined as correct according to the task description will be considered during
the analysis. Once again anomalous behaviours with negative impact in usability
might go unnoticed. Errors may be introduced in the task model to alleviate this,
but full coverage cannot be guaranteed.

By not explicitly considering a user or task model, approaches such as the
one presented in [2] aim at full coverage of the device’s behaviour. This allows
for the detection of unexpected traces of behaviour that might jeopardise the
usability of the system. The drawback in this case is that this type of approach
makes it harder to analyse specific user behaviours and how they are supported
by the device. There is a strong focus on the device at the modelling level.

Clearly the ideal solution would be to have a mixed approach, allowing for
both exhaustive analysis of device’s behaviour, and analysis of how well the
device supports specific tasks.

3 Interactor analysis

This section briefly describes the language used to model interactive systems,
and the tool that enables analysis of the models using SMV. For further details
readers are referred to [2]. The section ends with a small example.

3.1 The interactor language

Interactors, as developed in [4], are a structuring mechanism for interactive sys-
tems’ models. They help in applying general purpose specification languages to
interactive systems modelling. Interactors do not prescribe a specific specifica-
tion language, rather a structuring of the models that is adequate to model an
interactive system.

Using interactors, models are structured around the notion of an object that
is capable of rendering (part of) its state into some presentation medium. Hence,
each interactor has a state (defined as a set of attributes), a number of events it
can engage in (defined as a set of actions), and a rendering relation specifying
which attributes/actions are perceivable/can be used by users. In the particular

notation used in this paper, the behaviour of the interactor is defined using
Modal Action Logic (MAL) [12].

There are four basic types of axioms to define behaviour:

– modal axioms are used to define the effect of actions in the state of the
interactor — for example, axiom [newcall] ringer’=on ∧ menu’=answercall ∧
keep(dialflag, endcallflag, state) asserts that after action newcall the value of
attribute ringer becomes on, the value of attribute menu becomes answer-
call, and attributes dialflag, endcallflag and state do not change. Priming is
used to reference the value of an attribute in the state after the action has
happened (non-primed attributes are calculated in the state prior to the ac-
tion happening). The keep(attrib) notation is used to specify that the value
of attrib does not change, and is equivalent to attrib’=attrib.

– permission axioms are used to define when actions are allowed to happen —
for example, axiom per(newcall) → ¬ringer asserts that action newcall can
only happen if ringer is false.

– obligation axioms are used to define that, under certain conditions, a given
action must happen — for example, axiom state=sending→ obl(sent) asserts
that when state is sending then action sent must happen at some point in
the future (it does not have to be immediately).

– initialisation axioms are used to define the initial state of the interactor — for
example, axiom [] ringer=off ∧menu=makecall ∧ dialflag=nil ∧ endcallflag=nil
∧ state=idle asserts the values of the different attributes in the initial state.

3.2 The i2smv tool

A tool has been developed that enables the automatic verification of the models
described above using the SMV tool [8]. SMV is a model checker which uses CTL
[3] as the logic to express properties. Models are defined as finite state machines,
and CTL used to express properties over the behaviour of the models.

The properties that can be written/verified deal mainly with which states
can or cannot be reached. Typical properties include:

– X is an invariant — AG(X) (X holds in all states of all behaviours);

– X is inevitable — AF(X) (for all possible behaviours, X will eventually hold);

– X is possible — EF(X) (for at least one behaviour X will eventually hold).

Different combinations of the operators can be used to express more complex
properties. For example, AG(X → AF(Y)) expresses the property that it is an
invariant that whenever X holds it is inevitable that Y will hold.

The i2smv [2] tool translates interactor models into the SMV input language.
In this way it becomes possible to verify properties of the interactors’ behaviour
expressed in CTL. Because SMV does not have the notion of action, a spe-
cial attribute “action” is used at the CTL level to refer to the action that has
happened.

Make Call

C OK

2 3

5 6

8 9

0 #

1

4

7

*

Fig. 1. Mobile phone

���
�

make call

ok

dial

ok

end callok

next

next
send sms

ok

send

ok

dial
ok

Fig. 2. Menu navigation

3.3 An example

As an example consider a simple mobile phone with capabilities for receiving
and making phone calls, and receiving and sending SMS messages (see figure 1).
Operation of the phone is based on a menu. At each moment the menu presents
one single option to the user. Besides the usual number keys, the user interface
of the phone has an OK key (to select the current menu option), a Cancel key
(to reset the menu), and a key for menu navigation (advance to the next option).

The structure of menu navigation during operation of the device is presented
in figure 2. In normal operation the menu option displayed will toggle between
“make call” and “send sms”. If, for example, the user selects “make call” (by
pressing OK while that option is presented on screen), the menu changes to
“dial”. The user is expected to enter the number to call and press OK to dial it.
Once the number is dialled, the menu option changes to “end call”, which the

user can select by pressing OK once more. We are not considering the possibility
of the call not being established. This is a reasonable simplification, mainly since
the use of voice mail is nowadays widespread.

There are three exceptions to the “normal” behaviour represented in figure 2.
When a call is received the menu option displayed changes to “answer call”. This
option will remain active until the user accepts (by pressing OK) or rejects (by
pressing Cancel) the call, or until the caller gives up. When a new SMS arrives
the menu option displayed changes to “read sms”. The option will remain active
until the user accepts or rejects reading the sms message. Finally, the Cancel
button can be used at any time to reset the dialogue.

An interactor model of a device which supports this behaviour was developed
(see appendix A for the full model). The state of the device is modelled by two
main attributes: ringer and state. Attribute ringer models the ringing behaviour
of the phone. It starts ringing whenever a new call or sms arrives (see axioms
15 and 18). It stops ringing when the user answers the call/reads the message.
If the user does none of the above it eventually stops ringing (see axioms 21
to 23). Attribute state models the over all state of the device. This is done at
an high level of abstraction, nevertheless detailed enough to allow the analysis.
The possible states are: idle (nothing is happening); dialling (a number is being
dialled); calling (a call is in progress); reading (a sms is being displayed); writing
(a sms is being written); and sending (a sms is being sent).

Two additional attributes are used to distinguish between dialling a number
for a phone call or for a sms (attribute dialflag), and making or receiving a
call (attribute endcallflag). This is relevant since the behaviour of the device is
different in each case.

With this model it is possible to test some features of the design. For that it
is first necessary to define an interactor named main:

interactor main
includes

mobile via phone
test

...

To test if it is possible to make a call the following test would be made:

EF(phone.state=calling)

The answer is that the property holds. We now know that it is possible to have
the phone in the calling state. We know nothing, however, of how that state can
be reached. One possibility to investigate this is to verify the property:

¬EF(phone.state=calling)

This property is obviously false and the trace ok→ok is presented as a possible
behaviour that leads to a call being in progress. This is expected behaviour, but
there might be others. Unfortunately there is no direct way of finding out all
possible behaviours that falsify the property.

Another test that can be performed is whether the phone always rings when
a new call is received. The property to check would be:

AG(phone.action=newcall → phone.ringer=on)

Again the answer is that the property is true. Note that questions such as
whether the user will be aware of the phone ringing fall outside the scope of
this type of approach. Nevertheless, it is useful to know that the phone works
properly.

It is one thing to have the phone ringing whenever there is a new call, it is
another for the user to be able to answer the call. To test whether a call can
always be answered the property is:

AG(phone.menu=answercall → AF(phone.state=calling))

This property is false and the counter example presented shows that the user
can cancel the call instead of answering it. This is correct behaviour but we want
to consider situations where the user wants to answer the call. To filter out the
above behaviour we rework the property to be:

AG(phone.menu=answercall →
AF(phone.state=calling ∨ phone.action ∈ {cancel}))

A new counter-example is produced. This time showing that the caller can give
up on the call before the user answers. This is also correct behaviour but one that
we do not want to consider further at this stage. Filtering out this behaviour,
a further counter-example shows that a sms message can arrive before the user
answers a call. In fact in the current design, the arrival of an sms message cancels
any incoming or ongoing call. This is most likely unwanted behaviour and the
design should be changed to address this issue.

The above analysis shows how this type of approach can be useful in detecting
potential usability problems. The analysis implies going through a process where
unwanted behaviour is filtered out by encoding constraints into the property.
This process is useful in building an understanding of the contextual conditions
under which a given property of the system holds. The process, however, can
become time consuming and difficult for complex systems.

For complex devices more elaborate constraints might be necessary than
those possible to encode directly in CTL formulae. It is also not easy to verify if
a given user behaviour has the desired effect on the device. The properties that
can be written are mostly about the state the device is in, not the behaviour the
user/device system is having. Thinking about how a goal is actually achieved
is done indirectly. What the constraints mostly represent is what should not
happen for the goal to be reached.

If we want to reason about whether a certain specific behaviour will achieve
the goal, some representation of the intended behaviour must be incorporated
into the model. To address this, we will introduce tasks into the approach.

OK OKplace1 place3

button

OK

place2

Fig. 3. C/E-system for making a call

4 Modelling tasks

The analysis proposed in the previous section enables the exploration of all
possible behaviours of a device model, thus supporting the identification of un-
foreseen usability problems. It does not, however, enable the analysis of how well
the device supports prescribed usage behaviour. This section addresses this issue
by introducing task related knowledge into the interactor modelling framework.
First an encoding for tasks is chosen, then the expressions of this encoding using
interactors is explained.

4.1 Expressing task related knowledge

Task analysis is a well studied field. It is not the purpose of this paper to put
forward a new proposal for a task description language. In fact, we will abstract
away from concrete task notations and consider simply what is fundamental in
the notion of task.

Whatever the specific language used, tasks will describe the valid sequences
of events leading to some desired goal. To keep the approach independent from a
specific task modelling language we will model these sequences of events directly
using Condition/Event-systems (C/E-systems - a subclass of Petri nets where
places can have at most one token). We are not proposing Petri nets as a task
modelling language, rather as an intermediate notation to which other languages
can be translated (cf. [9,7]).

As an example consider the task of making a phone call in the mobile phone
described above. Starting from the initial state this can be achieved by pressing
OK, dialling the number, and pressing OK again. To finish the call, OK must
be pressed once more. This behaviour (OK→button∗ →OK→OK) can be rep-
resented with the C/E-system in figure 3. Actions are modelled by transitions
between places, and places are created so that the valid sequences of actions are
modelled by sequences of transitions’ firing.

Note that we are modelling user behaviour only. It is possible to include user
and system behaviour in the model also. To decide on the best approach to take
it is necessary to consider the goal of the analysis. If the objective is to analyse
the task structure itself, then both user and device behaviour must be included
in the task model. This would allow reasoning about whether the proposed task

interactor making a call
attributes

place1, place2, place3: boolean
actions

OK button
axioms

per(OK) → ((place1 ∧ ¬place2) ∨ (place2 ∧ ¬place3) ∨ (place3 ∧ ¬place1))
(place1 ∧ ¬place2) → [OK] ¬place1’ ∧ place2’ ∧ keep(place3)
(place2 ∧ ¬place3) → [OK] ¬place2’ ∧ place3’ ∧ keep(place1)
(place3 ∧ ¬place1) → [OK] ¬place3’ ∧ place1’ ∧ keep(place2)
per(button) → place2
[button] keep(place1,place2,place3)

Fig. 4. Interactor for making a call

accomplishes the desired goal. If the objective is to analyse the device, then
by including user actions only we can test how the device reacts to the user
actions and whether the user will achieve the goal by performing the task. This
latter approach is less normative since it leaves the device’s behaviour free. This
allows for the identification of situations where, despite the user following the
prescribed procedures, the device deviates from intended behaviour.

4.2 Mapping tasks to interactors

Expressing tasks using interactors is now reduced to expressing the C/E-systems
using the MAL logic. To translate a C/E-system into an interactor, each place is
modelled by a boolean state variable representing whether the place is marked or
not, and each transition is modelled by two axioms. A permission axiom stating
when the transition is allowed to fire, and a modal axiom stating the effect of
the transition on the marking of the net.

For example, transition OK from place1 to place2 above generates the per-
mission axiom: per(OK) → place1 ∧ ¬place2 (that is, OK can fire when place 1
is marked and place2 is unmarked), and the modal axiom: (place1 ∧ ¬place2)→
[ok] ¬place1’ ∧ place2’ ∧ keep(place3) which reads, under the conditions defined
by the permission axiom (this is necessary because in this case other transitions
are labelled OK also) the effect of firing OK is to leave place1 unmarked, place2
marked, and place3 unchanged.

When different transitions are associated with the same event, as is the case
above, the permission axioms are joined by disjunction. The interactor expressing
the task introduced above is presented in figure 4. Note that the modal axiom
for button does not need a guard since there is only one transition for that event.

4.3 Linking task to device

The next step, in order to check the device model against the task model, is to
link both models together. For that a new version of interactor main is developed:

interactor main
includes

mobile via device
making a call via task

axioms
task.action 6=nil → task.action=device.action
task.action=nil → device.action 6∈ {button,ok,cancel,Next}

This interactor links the task model to the model of the device that should
support it. The link between the two models is established at the level of actions.
The first axiom establishes that when an action occurs at the task level, then the
same action must occur at the device level. The axiom can use the expression
task.action=device.action since the same actions names are used in both mod-
els. The second axiom restricts the action that can happen at the device level
independently from the task level. In this case they cannot be actions performed
by the user. Together the two axioms restrict the behaviour of the system so
that user actions can only happen according to the task description, and device
actions can happen freely according to the device’s semantics.

5 Revisiting the example

This section looks at how we can use task knowledge as encoded above to explore
the design of the mobile phone.

5.1 Using task knowledge

Using the model above it is possible to perform more in-depth analysis of how
the system reacts to intended user behaviour. A first property that could be
checked is whether following the prescribed task procedure it is possible to make
a call. The property to check is

EF(phone.state=calling ∧ task.place3)

Note that it is important to check whether the task has reached place3. If only the
device state was considered,we could get false positives. Consider, for example,
the event sequence: device.newcall→task.ok; it is a trace that fits into the task
description, and leaves the device in the calling state, without the task procedure
being completely carried out (only the first step of the task would be performed).
This trace can be obtained by checking: !EF(phone.state=calling).

The property above is verified by the model checker. The next step is to
check whether performing the task always results in a call being established. To
this end we check the property:

OKplace1 place2 place4place3 OK place5abutton abutton

OK

Fig. 5. C/E-system for making a call (revised version)

AF(phone.state=calling ∧ task.place3)

This property fails with the following trace: task.ok→device.newcall→device.
giveup→task continues (but phone is no longer in the expected state)... What
this show is that if the phone rings while a number is being input, then that
number cannot be dialled. In fact, in the phone as modelled, the arrival of a
phone call or of a sms message, preempts any task that is being carried out. For
example, checking the property:

AG((phone.state=calling ∧ task.place3) →
AF(task.action=ok ∧ phone.state=idle))

(it is always possible to end an ongoing call by pressing ok) shows that if during
a call a sms message arrives then the call is lost (or at least the ability to end
it!).

To solve this problem a redesign of the device is needed. For now we can
filter out such behaviour by writing:

AF((phone.state=calling ∧ task.place3) ∨ device.action ∈ {newcall,newsms})

Checking the property above reveals a problem with the task model. There
is no upper bound on the number of times the user can press a button. This
means that, according to the task description, the user can keep pressing buttons
indefinitely, thus not accomplishing the goal of making a call. To solve this we
could make the task description more concrete. Without loss of generality we
would consider a task where a 2-digit number is dialed. The C/E-system for this
version of the task is presented in figure 5.

5.2 Redesigning the device

The problem with the arrival of new calls and sms messages has been circum-
vented above by adapting the property being checked. This has enabled the
analysis to progress, but the problem with the device remains. To solve it, it is
necessary to redesign the phone. It is not the purpose of this paper to present a
full specification for a mobile phone. However, for the sake of argument, a simple
redesign will be presented here.

The problem with the current design is the interference of device triggered
behaviour (the arrival of a new call or sms message) with user triggered behaviour

���
�

make call
next

send sms

oknext [not sms]

next [sms]
read sms

next

ok

ok

dial send

ok ok

end call

ok

dial

ok

done
ok

Fig. 6. Menu navigation (redesign)

(making a call or sending a sms message). The solution is to isolate the two types
of behaviour. Assuming we attach more relevance to the user triggered behaviour
we will leave it as is, and change the behaviour of the device when new calls/sms
messages arrive, so that its response is not intrusive regarding the user current
activity.

Regarding sms messages, the basic idea is that the phone should give an
indication that new messages have arrived, but otherwise leave the state of the
phone unchanged. This can be achieved by incorporating a indication of new
messages on the phone screen (an icon that is turned on whenever there are
unread messages). Regarding incoming calls the simplistic solution (probably
too simplistic) is to reject calls when the phone is in use. With this changes the
menu now must offer the possibility of accessing unread messages (see figure 6).

These design options cause some changes in the model. A new boolean at-
tribute (sms) is introduced to represent whether the sms icon is being displayed
or not. A five message queue is also introduced to hold the messages that are
received. If the queue is full no new messages can be received. The queue is
represented by an attribute (queue) with values in the range 0 to 5.

The receiving sms and call sections of the behaviour definition must be up-
dated accordingly. For incoming sms messages the axioms become:

per(newsms) → queue<5
[newsms] sms’ ∧ queue’=queue+1
menu=readsms→ [ok] queue’=queue-1 ∧ menu’=done ∧ state’=reading
∧ keep(ringer,sms,dialflag, endcallflag)
menu=done → [ok] sms’=(queue’>0) ∧ state’=idle ∧ menu’=makecall
∧ keep(ringer,queue,dialflag, endcallflag)

for incoming calls the permission axiom becomes:

per(newcall) → state=idle ∧ ¬ringer

All other axioms in the interactor are updated to take account of the new at-
tributes. With the resulting model it becomes possible to prove that following
the prescribed task procedure always results in a call being established.

The same type of reasoning can be performed for other tasks. In the case of
sending an sms message, for example, the results show that a task similar to the
one above enables the user to send sms messages, except when a new call arrives
before the user selects the “send sms” option.

6 Discussion and Conclusions

To guarantee the quality of designs at the lowest cost it is necessary to start
analysing quality from as early as possible. Interactive systems quality can be
measured in terms of their usability. A number of analytic methods have been
proposed for the early analysis of interactive systems’ designs, including methods
based on the use of formal methods and reasoning techniques.

In [2] one such proposal is put forward that focus on the analysis of device
behaviour in order to identify potentially dangerous and unexpected behaviours
that might jeopardise usability. This paper presents an approach to the integra-
tion of task knowledge into the analysis of interactive systems devices found in
[2]. This broadens the scope of analysis made possible with the original approach.

Other authors have proposed similar approaches, integrating knowledge of
device usage into the analysis of the device’s design. Fields [7] also uses separate
device and task models, and uses Murφ, a state exploration tool, to explore
the behaviour resulting from the combination of both models. One advantage
of using SMV is that it enables greater expressiveness in the properties that
can be explored. Rushby [11] uses SMV to analyse joint models of device and
user. In this case however, there is no clear separation between the two models.
While Rushby refers to models of the user, it is not completely clear if they are
user models of models of user activity (i.e. task models). For a review of the
application of automated reasoning techniques in usability analysis see [1].

A different style of approach is proposed by Thimbleby [13]. Mathematica
is used to perform analysis of a mobile phone’s menu structure design. In this
case, however, the analysis is not concerned with the effect of actions on the
device state, or with the outcome of performing some specific task. The device is
assumed to behave correctly and its interface is analysed regarding complexity.
Complexity is measured in terms of the number of user actions needed to reach
desired functions in the menu structure. The analysis is based on probabilistic
distributions of usage of device functions and interface actions. This is a style of
approach which is complementary to the one presented here.

In this paper, tasks have been used to restrict the device’s behaviour to a
suitable subset of all possible behaviours. In the original, device only, approach
constraints on behaviour were encoded into the properties being verified since not
all possible behaviours might be considered relevant. At first it might look that
we are simply looking at different strategies to achieve the same goal. There is,
however, a relevant difference. Task knowledge must be known from the outset, it
represents the prescribed behaviour for system usage. The goal of the analysis is
to see if the device adequately support such prescribed behaviour. In the device
oriented approach little knowledge is assumed. The constraints emerge from

the attempts made at proving properties. These constraints encode knowledge
that is elicited by the analysis. It becomes clear that the two types of approach
complement each other in performing early analysis of designs. This should help
in reducing the number of problems found later in development.

Regarding future work, one aspect worth pursuing is the exploration of task
patterns. Thus far, the equivalence between task level actions and device level
actions has been done at the level of action names. It would be useful to have
generic task patterns which could be instantiated as needed. For that to be possi-
ble the interactor language needs to be extended to allow actions as parameters.

Acknowledgments

The author thanks Michael D. Harrison and the reviewers for their comments.

References

1. José C. Campos. Automated Deduction and Usability Reasoning. D.Phil. thesis,
Department of Computer Science, University of York, 1999.

2. José C. Campos and Michael D. Harrison. Model checking interactor specifications.
Automated Software Engineering, 8(3-4):275–310, August 2001.

3. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transactions
on Programming Languages and Systems, 8(2):244–263, April 1986.

4. David J. Duke and Michael D. Harrison. Abstract interaction objects. Computer
Graphics Forum, 12(3):25–36, 1993.

5. D.J. Duke, P.J. Barnard, D.A. Duce, and J. May. Syndetic modelling. Human-
Computer Interaction, 13(4):337–393, 1998.

6. G. Faconti and F. Paternò. An approach to the formal specification of the com-
ponents of an interaction. In C. Vandoni and D. Duce, editors, Eurographics ’90,
pages 481–494. North-Holland, 1990.

7. Robert E. Fields. Analysis of erroneous actions in the design of critical systems.
D.Phil. thesis, Department of Computer Science, University of York, 2001.

8. Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
1993.

9. Ph. Palanque, R. Bastide, and V. Senges. Task model - system model: towards an
unifying formalism. In Proceedings of HCI International conference, pages 489–494,
Yokoohama, Japan, July 1995. Elsevier.

10. Fabio D. Paternò. A Method for Formal Specification and Verification of Interactive
Systems. PhD thesis, Department of Computer Science, University of York, 1995.
Available as Technical Report YCST 96/03.

11. John Rushby. Using model checking to help discover mode confusions and other
automation surprises. Reliability Engineering and System Safety, 75(2):167–177,
February 2002.

12. Mark Ryan, José Fiadeiro, and Tom Maibaum. Sharing actions and attributes
in modal action logic. In T. Ito and A. R. Meyer, editors, Theoretical Aspects
of Computer Software, volume 526 of Lecture Notes in Computer Science, pages
569–593. Springer-Verlag, 1991.

13. Harold Thimbleby. Analysis and simulation of user interfaces. In S. McDonald,
Y. Waern, and G. Cockton, editors, Proc. BCS Human Computer Interaction,
volume XIV, pages 221–237, 2000.

14. Richard M. Young, T. R. G. Green, and Tony Simon. Programmable user models
for predictive evaluation of interface designs. In K. Bice and C. Lewis, editors,
CHI’89 Proceedings, pages 15–19. ACM Press, NY, May 1989.

A Mobile phone model

interactor mobile
attributes

vis ringer: {on, off}
vis menu: {makecall, sendsms, dial, send, endcall, readsms, answercall, done}

state: {idle, dialling, calling, reading, writing, sending}
dialflag: {nil, call, sms}
endcallflag: {nil, make, answer}

actions

vis button ok cancel Next
newcall newsms giveup sent

axioms
menu navigation
(1) menu=makecall → [Next] menu’=sendsms ∧ keep(ringer,dialflag,endcallflag,state)
(2) menu=sendsms → [Next] menu’=makecall ∧ keep(ringer,dialflag,endcallflag,state)
(3) menu 6∈ {makecall,sendsms} → [Next] keep(ringer,menu,dialflag,endcallflag,state)
making a call / sending a SMS
(4) menu=makecall → [ok] menu’=dial ∧ dialflag’=call ∧ state’=dialling

∧ keep(ringer,endcallflag)
(5) (menu=dial ∧ dialflag=call) → [ok] menu’=endcall ∧ dialflag’=nil ∧ state’=calling

∧ endcallflag’=make ∧ keep(ringer)
(6) (menu=endcall ∧ endcallflag=make) → [ok] menu’=makecall ∧ endcallflag’=nil

∧ state’=idle ∧ keep(ringer,dialflag)
(7) [button] keep(menu,ringer,dialflag,endcallflag,state)
(8) menu=sendsms → [ok] menu’=send ∧ state’=writing ∧ keep(ringer,dialflag,endcallflag)
(9) menu=send → [ok] menu’=dial ∧ dialflag’=sms ∧ state’=dialling

∧ keep(ringer,endcallflag)
(10)(menu=dial ∧ dialflag=sms) → [ok] menu’=makecall ∧ dialflag’=nil

∧ state’=sending ∧ keep(ringer,endcallflag)
(11)per(sent) → state=sending
(12)state=sending → obl(sent)
(13)[sent] state’=idle → keep(ringer,menu,dialflag,endcallflag)
receiving a call / SMS
(14)per(newcall) → ringer6=on
(15)[newcall] ringer’=on → menu’=answercall ∧ keep(dialflag,endcallflag,state)
(16)menu=answercall → [ok] menu’=endcall ∧ endcallflag’=answer ∧ ringer’=off

∧ state’=calling ∧ keep(dialflag)
(17)(menu=endcall ∧ endcallflag=answer) → [ok] menu’ ∈ {makecall, readsms}

∧ endcallflag’=nil∧ state’=idle ∧ keep(ringer,dialflag)
(18)[newsms] ringer’=on ∧ menu’=readsms ∧ keep(dialflag,endcallflag,state)

(19)menu=readsms → [ok] menu’=done ∧ ringer’=off ∧ state’=reading
∧ keep(dialflag,endcallflag)

(20)menu=done → [ok] menu’ ∈ {makecall, readsms} ∧ state’=idle
∧ keep(ringer, dialflag,endcallflag)

(21)per(giveup) → ringer=on
(22)menu=answercall → [giveup] ringer’=off ∧ menu’ ∈ {makecall, readsms}

∧ state’=idle ∧ keep(dialflag,endcallflag)
(23)menu=readsms → [giveup] ringer’=off ∧ keep(menu,dialflag,endcallflag,state)
cancel
(24)[cancel] ringer’=off ∧ menu’=makecall ∧ dialflag’=nil ∧ endcallflag’=nil ∧ state’=idle
state at power up
(25)[] ringer=off ∧ menu=makecall ∧ dialflag=nil ∧ endcallflag=nil ∧ state=idle

