Reasoning about Dynamic I nfor mation Displays

J.C. Campos (1) and G.J. Doherty (2)

(1) Departamento de Informatica, Universidade do Minho, Campus de Gualtar,
4710-057 Braga, Portugal. e-mail: Jose.Campos@di.uminho.pt

(2) Department of Computer Science,
Trinity College, Dublin 2, Ireland. e-mail: Gavin.Doherty@cs.tcd.ie

Abstract. With increasing use of computing systems while on the move and
in constantly changing conditions, whether it is via mobile devices, wearable
computers or embedded systems in the environment, time plays an increasingly
important role in interaction. The way in which information is represented in an
interface is fundamental to interaction with it, and how the information is used
in the users tasks and activities. Dynamic representations where the user must
perceive changes in the information displayed over time pose a further challenge
to the designer. Very often this information is integrated with information from
the environment in the performance of the user’s tasks. The diminutive size and
limited display capabilities of many ubiquitous and mobile computing devices
further motivate careful design of these displays. In this paper we look at how
time can be taken into account when reasoning about representational issues from
the early stages of design. We look at a model which can be used to reason about
these issues in a structured fashion, and apply it to an example.

1 Introduction

Reasoning about design, in the context of interactive systems, implies reasoning about
how useful and easy to use those systems will be. In this context, assessing the quality of
a design is no easy task. Although there are a number of human-factors oriented studies
which have resulted in design guidelines and rules, these cannot be turned directly into
a set of properties that all systems must obey. In a specific design context, whether
a guideline is applicable or not is always debatable. It might even be the case that a
guideline is wrong [19]. This is especially true when designing for novel interaction
techniques and paradigms.

Time plays an important role in the “interaction experience” [13], and as such
should be considered when designing interactive systems. For users learning a new
system, time plays a role in associating actions with their effects, and in building a suf-
ficiently good conceptual model of the system to predict future states of the system.
Even for experienced users, time plays a role in reasoning about the cause of events or
effects perceived in the system, particularly where continuous dynamic information is
involved.

Issues of representation are fundamental in what we perceive and the way we think
and solve problems [10]. The increasing use of novel physical form factors is likely to

increase the importance of external representations in information technology applica-
tions [23]. A particular subset of information representations are dynamic information
representations - those which rely on observation over a period of time.

In this paper we look at how time can be taken into account when reasoning about
issues of representation from the early stages of design. Thus our focus is on dynamic
information displays. Specifically, we propose a model for reasoning about represen-
tational issues where time is involved, and apply it to an example information display.
This work builds on previous work on representational reasoning in [6] and [5]. By
performing careful analysis of these issues we hope to identify useful properties and
guidelines for dynamic information displays, and to understand the scope and validity
of any properties proposed.

2 Information Representationsand Time

Time plays a role in both how systems are used and perceived. In [8] it is discussed
how small differences in the time it takes for a user to perform different actions can
influence the interaction strategies adopted. The time the system takes to react to user
input can also have a great impact on the usability of the system [4, 3, 20]. For example,
if the system takes too long to respond to user actions, it will be difficult for the user to
establish what effects are associated with his or her actions.

Time plays an even more important role in emerging interaction techniques and
paradigms. Mobile and wearable devices operate in environments where conditions are
continuously changing, but sensing and adapting to changing context, and accessing
remote resources may take time [11]. Attentional demands due to other tasks the user
is performing simultaneously may further reduce the time which can be spent observ-
ing information presented in the interface. In mobile applications, parameters such as
quality of service, or even intermittent provision of service, have a great impact on
interaction, and the time dimension is involved when studying how to design such in-
terfaces. Also, multimedia and augmented reality systems usually involve continuous
dynamic information being presented to the users. Listed below is a summary of some
of the different ways in which time can affect the interaction between user and system.

Attentional demands. Other simultaneous activities reduce the amount of the users
time which can be devoted to interaction.

Task demands. Task has a timed component, that is, some portion(s) of the task must
be completed within a certain tim interval.

Observation/learning/causal demands. If interface is not fast enough, then it does
not support learning, causal reasoning.

User satisfaction. Very slow interfaces are not engaging or satisfying to use.

Error free interaction demands. There is a tradeoff between the pace at which the
user can or must perform a task, and the likelihood of making an error. Interface
design can have a big effect on the pace at which a task proceeds.

Dynamic perceptual demands. Only by observing interface over a period can the
needed information be extracted.

Another relevant area is that of supervisory and manual control, where users operate
or control a system in real time. Examples of analysis of this kind can be found in [21]

and [2]. In both cases the interaction between a pilot and the automation of an aircraft
is analysed regarding the control of the aircraft’s climbing behaviour. Both approaches
use model checking tools which are discrete in nature. [2] discusses how continuous
systems can be analysed with a discrete tool using abstraction. In [7] the use of hybrid
automata for the specification and analysis of continuous interaction is discussed. This
type of approach allows for a more direct representation of the continuous aspects of in-
teractive systems. All the approaches above tend to concentrate on behavioural aspects
of the system, that is, they are concerned with actions which might be taken by the user,
and the potential consequences (in terms of the state of the system) of these actions.
The issue of what the user can perceive in the interface and how this might affect the
actions they take is not addressed.

2.1 Empirical and Analytic Methods

Reasoning about design, in the context of interactive systems, implies reasoning about
how useful and easy to use those systems will be. Factors influencing the usability of a
system range from pure software engineering concerns to psychological, sociological,
or organisational concerns. Hence, in most situations, only actual deployment of the
system will give a final answer concerning its usability. It is still the case, however, that
there is a need to consider usability issues during the design process.

Usability evaluation methods can be divided into two major groups (see [15, Part
111]). Empirical techniques rely on building prototypes of the system being developed
and testing them using real users under controlled conditions. Analytic techniques rely
on confronting models of the system with how users are expected to behave. Empirical
methods based on detailed prototypes of the system being developed can be useful in
validating design decisions in conditions as close to actual usage conditions as possible.
The greatest drawback of such methods is that they are difficult to apply in the early
stages of design when most decisions have to be made, and hence exclusive use of
such methods would require extensive (and costly) development and evaluation cycles.
To address this issue discount approaches can be adopted where users more directly
participate on the design process by evaluating early prototypes or paper mock-ups of
the envisaged system, but it can be difficult to address subtle issues (eg. concerning time
and interaction context) using such techniques.

Analytic methods fill this gap. By being based on models of the system, and not
requiring a prototype to be built and placed in a plausible interaction context, analytic
methods have the potential to allow reasoning about the usability of a system to be
carried out early in the design process. The aim of such methods is to identify as many
potential problems as possible in the earliest stages of development, thus reducing the
number of development and evaluation cycles needed to produce a usable system. Their
drawback is that assumptions have to be made about user behaviour, and the results can
only be as good as the assumptions that are made.

Traditional analytic methods tend to be carried out manually and more or less in-
formally [15]. This can work in areas where the technology is well known, and the
design of the system is not too complex. However, as new interaction techniques and
paradigms emerge, or as systems become more complex, this type of approach becomes
less likely to deliver. Furthermore, where real-time issues are involved some problems

will be difficult to reason about without recourse to clear and concise representations of
system designs and properties.

The use of structured models which are amenable to rigorous analysis during devel-
opment can impact system design at two levels:

— the use of concise mathematical concepts and notations can help in the organisation
and communication of ideas.

— mathematical models can allow rigorous reasoning about properties of the system
being designed.

Although the modelling process itself can provide valuable insight into the system being
designed, the possibility of formally reasoning about the models with the aid of tool
support can bring additional benefits at relatively low cost. Hence, in recent years formal
verification of interactive systems has been an active area of research (see, for example,
[14,12,1]).

2.2 Properties and Guidelines

Traditionally, quality will be measured against a set of properties that the system or ar-
tifact must exhibit. Trying to devise a meaningful set of properties, that should be true
of an interactive system in order to guarantee its quality, is no easy task: there is no
magic recipe for easy interactive systems building. Guidelines are (or, at least, should
be) of a qualitative and high level nature, which means that they are not easy to verify in
a rigorous way. They must first be turned into concrete properties. A typical guideline
might be: “Reduce cognitive load” [18]. Design rules, on the other hand, are about very
specific interface features, which means that formal verification might not be, in many
cases, the best approach. A typical design rule might be: “A menu should not have more
than seven entries”. In a specific design context, whether a guideline is applicable or
not is always debatable. It might even be the case that, given a specific design context,
trying to make the system comply to some general purpose guideline might be detri-
mental [19]. This is especially true when designing for novel interaction techniques and
paradigms, which were not considered when devising currently available guidelines.

In the field of software engineering, lists of properties have also emerged (see, for
example, [22,9]). However, these tend to be governed mainly by the specific style of
specification being used, and what that style allows to be expressed. Their relevance
towards usability is not always completely clear.

Contributing to this problem is that fact that interactive systems form an increas-
ingly heterogeneous class of systems. In fact, the only common requirement is that
the system interacts with a human user effectively. This accounts for systems from air-
plane cockpits and control rooms of nuclear power plants, to mobile phones and set-top
boxes. Additionally, the presence of the human user means that assumptions must be
made about the capabilities (physical, cognitive, and perceptual) of the particular users
the system is intended to serve. So, instead of trying to establish a list of properties, we
should try to identify some specific issues related to interactive systems design, about
which the designer might wish to be assured that the system is satisfactory. We do this
by paying attention to what is generally true of all systems and all users.

3 A Framework for Analysis

Rather than conjecture about users internal representations of time, we wish to provide
a framework which illustrates qualitative differences between design alternatives. We
focus on representations of information in the interface which change over time, where
this change is relevant to the users tasks and activities.

We start with a reworked version of the model proposed by [6] (see Figure 1). In
[5] we show how this model can be used to reason about the properties of the inter-
action between a pilot and a cockpit instrument during the landing procedure. From

sState system
Perception Mental
interpretation, . Presentation O/ mode
p logical / g
presentation = E
perception . _ '
interpretation
mental State of system
model

Fig. 1. Basic model

the diagram in Figure 1 it is possible to identify the three basic entities involved in the
interaction:

— functional core - the system state and its operations;

— user interface - the presentation and possible user actions;

— user - the person using the interactive system (building a mental or conceptual
model of the system and trying to fulfill goals by issuing commands).

The diagram also introduces two basic mappings:

— p (presentation mapping) - this map expresses the fact that the presentation of the
system can be seen as a reification of the system’s state.

— perception - this mapping captures what is assumed the user will perceive of the
user interface presentation. It can be seen as a filter which the user applies to the
information presented at the interface, in order to construct a mental model of the
system state.

How users will perceive the user interface will depend on the actual system being anal-
ysed. The type of property and user being considered also has a bearing on what per-
ception relation to consider. Hence, defining an appropriate perception relation for a
specific system design requires discussion between software engineers and human-
factors experts. The diagram introduces two additional mappings: interpretation; .,

and interpretationyenta - VWhat these mappings express is that, in order for the presen-
tation to be found adequate, it must allow the user to build a mental model which is
sufficient for carrying out the required tasks and activities. Because we are dealing
with cognitive issues, assumptions must be made about how the user interprets the pre-
sentation. This is captured by the interpretation, ., mapping. Both mappings will be
dependent of the specific aspect/property under consideration.

Using this model, we can reason about whether a given presentation is adequate.
In purely representational terms, an interface is said to be correct if its presentation
enables the user to build (with a set of assumed perceptual and cognitive capabilities)
an accurate model of the underlying system state. This can be expressed as:

interpretation, .., (Perception o p(statesysiem)) =
interpretation; g c (Statesystem) (1)

That is, the user’s mental model of the system matches the system state, in so far as
the model relates to assumptions about what is considered relevant of the interaction
process. The equation above relates to what Norman calls the Gulf of Evaluation: “the
amount of effort that the person must exert to interpret the physical state of the system”
[16].

3.1 Dealing with Time

This basic model is static. No notion of change is present in either the system state, the
presentation, or the mental model. To better deal with change, [1] extends the model to
accommodate the notions of system operations, interface actions, and user goals. The
new version of the model introduces three additional mappings:

— operationg g,y — System operations map system states to system states. They are
intended to represent the basic functionality of the system.

— actioninerface - iNterface actions map presentations to presentations. Each interface
action will typically be associated with one or a sequence of system operations.
Interface actions can occur as a consequence of user activity, or as a consequence
of a system operation.

— goal - goals map mental models to mental models. They are used to capture the
intentions of the users. Typically a user goal will cause a number of interface actions
to be executed. This mapping can also be used to capture changes in the user’s
mental model which are caused by changes in the presentation.

In this model change is represented explicitly, which allows us to reason about Nor-
man’s Gulf of Execution [16]: the distance between what the user wants to achieve (the
goal), and what is possible at the interface.

goal o perception o p(states,sem) = perception o actioNntertace © p(Statesysem) (2)

The equation compares the result of executing an interface action with the goal the user
had in mind. The model in Figure 2 is biased towards event based systems and it still

does not explicitly account for time. Furthermore, change is not always directly con-
nected to the concept of action. For example, the analysis in [6] concerns determining
whether the representation used in an information display (a progress bar) enables the
user to perform a task (to detect progress). The analysis concerns relationships between
system states and user mental models which change over time, regardless of how the
change comes about. In order to better express such situations we change the model to
that in Figure 3.

operation

T T gystem , operations
state o s o - state_ -2 20 ystem
P P P
action, ; actions.
presentation presentation’ = - - - - - presentation _ _ =7 5 interface
perception perception perception
goals

mental 94 memta ------- mental __ __ &
model model model

Fig. 2. Model based on actions Fig. 3. Model based on time

The diagram shows how all three levels of the model change continuously with
time.Note that if we define a number of discrete time slices we will be in the situation
of the previous model, since each time slice can then be seen as an action. Using this
model, the relation between system state and user’s mental model can be expressed
using the following type of equation:

V¢, ¢, - interpretationiogica(System, 1, t2) =
interpretationmental(MentalModel, t1,t2) (3)

What the equation expresses is that the evolution of the user’s mental model over time
must match the evolution of the state of the system. Similar equations can be written
to express relations between the presentation and the system state or the user’s mental
model.

4 An example

In this section we present an example of how the model introduced in the previous
section can be used to reason about the perceptual properties of a user interface. We
will show that we can use this reasoning to validate design decisions during the early
stages of development. The notation used is that of the PVS tool [17], which is also
used to explore some of the properties proposed.

Let us consider an interactive system with a dynamic information display - a GPS
device. Location and direction information is continuously updated (although there can

S\ ,,,,,,, feature 1
RS . .j .
: ; 4
_feature. 5 . _|_ featurez
* :
teat;.l[g, 4. f.ealure3
L gos "

Fig. 4. Initial design

be discontinuities in the data itself due to the nature of the technology). We will consider
a device that is capable of displaying the position of a number of features relative to its
current physical location. We assume that no device level actions are available to the
user, but the user can move the device around and look at the annotated map it presents.
We will consider a design goal which is relevant to common navigation tasks: users
should be able to know where they are.
Device model Developing the device and interface models is a relatively straightfor-
ward recording of the envisaged design. The state of the device can be defined by the
position of each relevant feature plus the location and heading of the device:

wposition: TYPE = [# ypos: real, xpos: real #]
State: TYPE = [# features: [name — woposition] ,
location: wposition,
heading: Angle #]
System: TYPE = [Time — State]

We are using cartesian coordinates, and assuming an infinite plane. This is a simpli-
fication, actual coordinates are polar. A polar coordinates based model is also being
developed and the results of the proofs are basically the same (even if the proofs are
slightly more complex). The present approach helps simplify the models and proofs,
and does not interfere with the properties that will be explored.

A possible interpretation, at the logical level, of the design goal is:

logical_at(s: System, p: wposition, t: Time): boolean =
location(s(t)) = p

Interface model The user interface presents to the user a window around the user’s
current position. The location of the device is always represented at the center of the
screen and features’ position represented in relation to that point. The display incor-
porates a compass (north attribute) and features’ coordinates are adjusted according to
how the device is positioned. Obviously some scaling factor will be needed, and only
those features that fall inside the window determined by the screen size and that scaling
factor are represented.

! The “lift" type is used to model partial functions. “lift[X]” is the type “XU{bottom}". “up: X
— lift[X]", and “bottom: lift[X]" are constructors. “up?: lift[X] — boolean” is a recognizer
(has the value been constructed with “up™?), and “down: lift[X] — X" is the accessor for “up”.

screenpos: TYPE = [# ypos: screenlat, xpos: screenlong #]

Display: TYPE = [# features: [name — Ilift[screenpos]],
north: Angle #]

Interface: TYPE = [Time — Display]

p(s: System): |Interface = XA (¢t Time):
(# features :=
A (n: name):
LET p = features(s(t))(n),
y = convertypos(p, location(s(t)), heading(s(t))),
x = convertxpos(p, location(s(t)), heading(s(t)))
IN IF up?(y) A up?(x) THEN % a valid screen position?
up((# ypos := down(y),
xpos := down(x) #))
ELSE bottom
ENDIF,
north := heading(s(t))#)

User’s mental model Based on the interface the user will form an image of the world
around. We will assume the mental image created of the relative position of a feature
is based both on the perceived distance of the feature and on the perceived angle of the
position of the feature in relation to the center of the screen and the direction the user is
heading.

uposition: TYPE = [# distance: nonneg.int, angle: Angle #]

Image: TYPE = [# features: [name — lift[uposition]],
angle: Angle #]

UserM: TYPE = [Time — Image]

perception(i: Interface) : UserM = X\ (¢ Time):
(# features := X (nm: name):
IF up?(features(i(t))(n)) THEN
LET origin = (# xpos := floor(screenw/2),
ypos := floor(screenh/2) #),
d = distance(down(features(i(¢t)) (n)), origin),
a = angletoheading(down(features(i(t)) (n)))
IN up((# distance := d, angle := a #))
ELSE bottom
ENDIF,
north := north(i(¢)) #)

Analysis - positioning subtask Based on the mental model above, a user knows he is
at some feature when the distance to that feature is zero. The interpretation of the first
design goal at the user level is:

userat(u: UserM, n: name, ¢ Time): boolean =
IF up?(features(u(t)) (n)) THEN

distance(down(features(u(t))(n))) = 0
ELSE FALSE
ENDIF

Following from the model introduced in Section 3, testing whether the user mental
model is an adequate representation for the identified subtask can be done by attempting
to prove the following theorem:

V (s: System, t: Time,
n: {ni: name | up?(features(p(s)(t))(n1))}):
user_at(perception(p(s)), n, t)=logical at(s, features(s(t))(n), t)

The initial attempt at proof fails because p decreases the definition of the coordi-
nates. Hence it might happen that the screen shows the user at some feature, when in
fact the user is not exactly there. The impact of this inaccuracy depends on the scale
factor used when presenting information on the screen. Ideally, the user will be able
to identify the feature by looking around — that is, if the resolution leaves the user
close enough to the feature. How can we analyse this notion of close enough at mod-
elling time? Users will be looking, not only at the user interface, but also at the world
around them. The interactive device is just another information resource for the user.
This means that the most relevant question is not whether the user mental model is in
sync with the system model (although that is relevant), but whether the user’s mental
model obtained from the device is consistent with the one obtained directly from the
world. We need to include some representation of the world in the analysis.
Environment model First we must consider the relation between the world and the
device. There are two aspects here that deserve consideration:

— the information that is received is inaccurate, and the degree of accuracy can vary.
— the information is not sensed continuously, the device will periodically sense infor-
mation from the environment (ie. satellites) using a defined sample rate.

We develop a simple environment model that accounts for the current (real) position of
the user/device only:

World: TYPE = [Time — wposition]

at(w: World, p: wposition, ¢: Time): boolean = w(t) = p

Updated system model We now update our system model to make its derivation from
the environment model explicit (see sense below). For brevity we present here only
what needs to be changed:

State: TYPE = [# features: [name — wposition] ,
locationl: wposition,
location2: wposition,
location3: whposition,
heading: Angle #]
features_map: Map

induce_error(p: wposition) : wposition
induce_error_def: LEMMA
YV (p: wposition) : distance(p, induce-error(p)) < error

sense(w: World) : System =
A (t: Time): (# features := features_map,

locationl := induce_error(w(t—lag)),
location2 := induce_error(w(t — lag — samplerate)) ,
location3 := induce_error(w(¢t — lag — 2 x samplerate)) ,

heading := heading(t) #)

Updated interface model The interface model presents the current location as a mean
value of the system’s last measured locations. The p mapping becomes:

p(s: System): |Interface = X (¢t Time):
(# features := X (m: name): LET p = features(s(t)) (n),
location = mean_location(s(%)),
y = convertypos(p, location),
X = convertxpos(p, location)
IN IF up?(y) A up?(x) THEN
up((# ypos := down(y),
Xpos := down(x) #))
ELSE bottom
ENDIF,
north: = - heading(s(t)) #)

Updated user model Finally, the user model must be updated to consider also the
image obtained from the world:

inviewingdistance(p: wposition, n: name): boolean =
distance(p, features.map(n)) < viewingdistance
observe(w: World): UserM = X (¢ Time):
(# features := X (m: name):
IF inviewingdistance(w(t), n) THEN
LET d = distance(features_-map(n), w(t)),
a = angletonorth(features map(n), w(t))

IN up((# distance := floor(d), angle := a #))
ELSE bottom

ENDIF,
north : = bottom #)

We are considering that by direct observation of the world the user will not be able to
know where the North is.

Analysis - integrating device and environment information We now have to test
whether both images are consistent. The theorem for this is:

V (w: World, ¢ Time,
n: {ni: name | inviewingdistance(w(t), n1)}):
user_at(perception(p(sense(w))), mn, t) = user.at(observe(w), mn, t)

During the proof it becomes necessary to prove that the user will build the same
perception of being at some specific point, regardless of that perception being obtained
from the interface or directly from the environment. There are a number of factors that
prevent us from proving this equivalence:

— the scale factor used to convert to screen coordinates;
— the error margin introduced by the sensing process;
— the time lag in screen refresh introduced by the sample rate.

Starting with the simplest case we can consider a user who is stationary at some loca-
tion. In this case the effect of the sample rate is eliminated since all readings are being
taken from the same location. The error margin and the scaling factor, however, can
interact to create problems. Two situations can be considered:

— the error margin is smaller than the scaling factor — in this case the screen will
indicate a zero distance when the user is at a feature. However, if the scale factor is
too large the screen might indicate the user is at a feature even if the user is not.

— the error margin is greater than the scaling factor — in this case the screen might
indicate that the user is not at the feature even when he/she is. In this case it can
also be shown that the user interface is not stable over time. Even when the user
does not move, the position indicated by the screen will change as the error affects
the sensing procedure. The larger the difference between error margin and scaling
factor, the greater this effect will be.

The problem is that there is uncertainty introduced by the device (both at the logical
level and at the presentation level) that is not presented to the user - an approximation
is presented as a precise position. Using more samples for the approximation will only
reduce uncertainty if the user is stationary, and will decrease the responsiveness of the
device. The alternative is to make the uncertainty apparent on screen. This can be done
by presenting not the position, but a set of possible positions to the user. One way of
doing this is to present a circle indicating the uncertainty margin. Anther possibility
would be to present all of the different readings made by the device. In this latter case
it can be expected that the cognitive load on the user will be greater than in the former
case. This is because the user would have to infer, from the points, the likely area of
uncertainty. If we choose the former possibility the interface model becomes:

Display: TYPE = [# features: [name — Ilift[screenpos]],
north: Angle,
uncertainty: nonneg_int #]

With this model the definition of being somewhere becomes:

userat(u: UserM, n: name, ¢ Time): boolean =
IF up?(features(u(t)) (n))
THEN distance(down(features(w(t)) (n))) < uncertainty(u(t))
ELSE FALSE
ENDIF

That is, the user is considered to be at some location if the location falls inside the area
of uncertainty. Initially a reasonable value for the uncertainty can be defined based on
the known error margin and scaling factor(screen size).

So far we have considered a stationary user. It is also relevant to consider what hap-
pens when the user is moving. If we suppose the user moves in order to reach some
location, then it is relevant that he or she knows when he/she has arrived at the desti-
nation (consider a driver using the GPS device and wanting to leave the road at some
specific junction). We can write a function “has_arrived(m: UserM, (¢1, £2): Time, n:
Name): boolean” which tests if between two instants in time the user has arrived at
a location. A useful property of the system would be to guarantee that when the user
arrives at the location, the device also indicates arrival. This can be expressed as:

V (w: World, (t1,¢2): Time,
n: {ni: name | inviewingdistance(w(t), n1)}):
has_arrived(perception(p(sense(w))), tl, t2, n)

has_arrived(observe(w) , t1, t2, n)

We find however that this theorem cannot be proved. If the user is moving fast
enough he/she might reach the destination before the device is able to indicate that on
screen (in the example of the driver mentioned above, this would amount to going by
the junction before the GPS device had time to warn him about it). This is because, due
to the sampling rate, when the velocity of the user increases the readings of position
become further apart. If the user is moving the uncertainty increases. Since the uncer-
tainty presented at the screen has a fixed value, at some point the “real” uncertainty will
exceed that presented and the user might already be at the destination while the screen
still shows him some way apart.

Several solutions to this could be considered. Interpolation of the position based
on current velocity is one possibility. The use of a variable uncertainty area is another.
In the first case we try to diminish the uncertainty by making predictions about future
readings. This solution might present problems if there are quick variations on the head-
ing and speed. In the second case an attempt is made to better represent uncertainty on
screen. This does not solve the problem, it simply highlights that the user’s position
cannot be determined exactly. To completely solve the problem it is necessary to make
changes at the device level, in order to obtain more exact readings of position, which is
beyond the scope of the interface design.

We have presented an analysis which relates speed of movement, scale, display size,
accuracy of device and frequency of updates, size and distance of features. The value
of the analysis is in the complex issues which are raised, in a framework which allows
clear and careful consideration.

This discussion gives an idea of the sort of tradeoffs and problems that must be
considered and addressed when designing system with a dynamic component. It also
shows how the model proposed in Section 3 can be used to reason about representational
aspects in the presence of time considerations. Additional design alternatives could of
course be considered and analysed in a similar manner. While it is always tempting to
simply add more information (percepts), the limited “real estate” in many ubiquitous

devices motivates careful consideration of the representational aspects of a display with
respect to the user’s tasks and activities.

5 Conclusions

The manner in which information is presented in an interactive system has a profound
affect on our ability to perceive and reason about that information. This issue is even
more vital in modern computing systems, where the technology and form factor can
constrain the interaction. Furthermore, the variety of environments and situations of
use (which may not always be amenable to a given form of interaction) add further
challenges, many of which are time-related. Given that dynamically sensed informa-
tion is a central part of many ubiquitous computing applications, dynamic information
displays will be increasingly common. The constraints imposed by the physical form
factors motivate careful design of these displays. We believe that work on the signif-
icance of information representations such as that of Hutchins [10] to be particularly
relevant to these emerging technologies. However, such work does not provide a con-
crete and methodical basis for analysis (although it does provide a potential theoretical
basis for analysis).

In previous work we have examined the issue of representational reasoning [6, 5].
This work, however, did not explicitly take time into consideration. To address this
issue, we have presented a model which allows both time and environmental factors to
be considered when reasoning about the usability of a representation. The example has
shown how considerations about the users’ goals, and scenarios of usage, can help in
analysing alternative design options. By using rigorous analysis, it is possible to uncover
assumptions concerning interaction and perception, which are implicitly made during
the design of the interface. It can be used whenever deemed useful to validate specific
aspects of the rationale behind a design decision, this can be particularly valuable where
there is a complex relationship between real-world information available to the user, and
sensed information displayed dynamically on the device.

One important aspect of the use of rigorous approaches is the possibility of provid-
ing automated support for the reasoning process. In this case we have used a first order
theorem proving tool (PVS) to explore the proposed properties. While it is fair to argue
that theorem proving tools can be hard to apply, we have found PVS to be helpful in
validating the models for consistency, and quickly highlighting design problems when
attempting to prove the theorems.

References

1. J. C. Campos. Automated Deduction and Usability Reasoning. DPhil thesis, Department
of Computer Science, University of York, 1999. Also available as Technical Report YCST
2000/9, Department of Computer Science, University of York.

2. José C. Campos and Michael D. Harrison. Model checking interactor specifications. Auto-
mated Software Engineering, 8(3/4):275-310, August 2001.

3. A.Dixand G. Abowd. Delays and temporal incoherence due to mediated status-status map-
pings. SIGCHI Bulletin, 28(2):47-49, 1996.

10.
11.

12.

13.

14.

15.

16.
17.

18.
19.
20.

21.

22.

23.

Alan Dix. The myth of the infinitely fast machine. In D. Diaper and R. Winder, editors,
People and Computers 111 — Proceedings of HCI’87, pages 215—228. Cambridge University
Press, 1987.

G. Doherty, J. C. Campos, and M. D. Harrison. Representational reasoning and verification.
Formal Aspects of Computing, 12:260—277, 2000.

Gavin Doherty and Michael D. Harrison. A representational approach to the specification
of presentations. In M. D. Harrison and J. C. Torres, editors, Design, Specification and Ver-
ification of Interactive Systems ’97, Springer Computer Science, pages 273—290. Springer-
Verlag/Wien, June 1997.

Gavin Doherty, Mieke Massink, and Giorgio Faconti. Using hybrid automata to support hu-
man factors analysis in a critical system. Formal Methods in System Design, 19(2), Septem-
ber 2001.

Wayne D. Gray and Deborah A. Boehm-Davis. Milliseconds matter: An introduction to
microstrategies and to their use in describing and predicting interactive behaviour. Journal
of Experimental Psychology: Applied, 6(4):322—335, 2000.

M. D. Harrison and D.J. Duke. A review of formalisms for describing interactive behaviour.
In R. Taylor and J. Coutaz, editors, Software Engineering and Human Computer Interaction,
number 896 in Lecture Notes in Computer Science, pages 49—75. Springer-Verlag, 1995.

E. Hutchins. How a cockpit remembers its speeds. Cognitive Science, 19:265—-288, 1995.

C. Johnson. The impact of time and place on the operation of mobile computing devices.
In B. O’Conaill H. Theimbleby and P. Thomas, editors, Proceedings of HCI 97. Springer-
Verlag, 1997.

C. Johnson, editor. Proceedings of 8th International Workshop on Interactive Systems, De-
sign Specification and Verification, volume 2220 of Lecture Notes in Computer Science.
Springer, 2001.

Chris Johnson and Phil Gray. Temporal aspects of usability (workshop report). SIGCHI
Bulletin, 28(2), 1996.

P. Markopoulos and P. Johnson, editors. Design, Specification and Verification of Interactive
Systems *98, Springer Computer Science. Eurographics, Springer-Verlag/Wien, 1998.
William M. Newman and Michael G. Lamming. Interactive System Design. Addison-Wesley,
1995.

Donald E. Norman. The Psychology of Everyday Things. Basic Book Inc., 1988.

S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system. In D. Kapur,
editor, Automated Deduction — CADE-11, number 607 in Lecture Notes in Artificial Intel-
ligence (subseries of Lecture Notes in Computer Science), pages 748—752. Springer-Verlag,
1992.

J. Preece et al. Human-Computer Interaction. Addison-Wesley, 1994.

Jef Raskin. The Humane Interface. ACM press, 2000.

Chris Roast. Designing for delay in interactive information retrieval. Interacting with Com-
puters, 10:87—104, 1998.

John Rushby. Using model checking to help discover mode confusions and other automa-
tion surprises. In (Pre-) Proceedings of the Workshop on Human Error, Safety, and System
Development (HESSD) 1999, Liege, Belgium, June 1999.

Bernard Sufrin and Jifeng He. Specification, analysis and refinment of interactive processes.
In M. Harrison and H. Thimbleby, editors, Formal Methods in Human-Computer Interaction,
Cambridge Series on Human-Computer Interaction, chapter 6, pages 154—200. Cambridge
University Press, 1990.

B. Ullmer and H. Ishii. Emerging frameworks for tangible user interfaces. IBM Systems
Journal, 39(3&4), 2000.

