
On Mobility Extensions of UML Statecharts.
A Pragmatic Approach�

Diego Latella and Mieke Massink

CNR/ISTI – A. Faedo, Via Moruzzi 1, I56124 Pisa, Italy
{d.latella,m.massink}@cnuce.cnr.it

Abstract. In this paper an extension of a behavioural subset of UML
Statecharts for modeling mobility issues is proposed. In this extension
we relax the unique association between each Statechart - in a collection
of Statecharts modeling a system - and its input-queue and we allow the
use of (queue) name variables in communication actions. The resulting
communication paradigm is much more flexible than the standard asym-
metric one and is well suited for the modelling of mobility-oriented as
well as fault tolerant systems.

1 Introduction

The Unified Modelling Language (UML) is a graphical modelling language for
object-oriented software and systems [12]1. It has been specifically designed for
visualizing, specifying, constructing and documenting several aspects of - or
views on - systems. In this paper we concentrate on a behavioural subset of UML
Statecharts (UMLSCs) and in particular on a simple but powerful extension of
this notation in order to deal with a notion of mobility which can be modeled by
the use of a dynamic communication structure and which is sometimes referred
to as mobile computing (as opposed to mobile computation) [1]. In [4] µCharts
have been introduced together with their formal semantics2. Briefly, a µChart
models the behaviour of a system and is a collection of UMLSCs, each UMLSC
being uniquely associated with its input queue. The computational model of
µCharts is an interleaving one with an asynchronous/asymmetric/static pattern
of communication. The semantics of a µChart is a Labelled Transition System
(LTS) where each state corresponds to the tuple of statuses of the component
UMLSCs, each status being composed by the current configuration and the
current input queue of the component UMLSC. A transition in the LTS models
a step-transition of a component UMLSC. Each step transition corresponds to
the selection of an event from the input queue of the component and to the
parallel firing of a maximal set of non-conflicting transitions of such component,
� This work has been carried out in the context of Project EU-IST IST-2001-32747

Architectures for Mobility (AGILE),
http://www.pst.informatik.uni-muenchen.de/projekte/agile/.

1 Although we base our work on UML 1.3, the main features of the notation of interest
for our work did not change in later versions.

2 Note that the name ‘µCharts’ is used also in [13], but with a different meaning.

E. Najm, U. Nestmann, and P. Stevens (Eds.): FMOODS 2003, LNCS 2884, pp. 199–213, 2003.
c© IFIP International Federation for Information Processing 2003

200 Diego Latella and Mieke Massink

which are enabled in its current configuration by the selected event and which
do not violate transition priority constraints. The firing of a transition implies
also the execution of the output actions associated with such a transition. An
output action consists of an output event to be sent and the specification of
a destination component (queue) to which it must be delivered. Its execution
consists in delivering the event to the destination queue. Thus the pattern of
communication is asynchronous, via the input queues, and asymmetric because
while the sender component specifies to which destination component an event
must be addressed, a destination component cannot choose from which sender
component to receive input events; it simply has to receive any event which has
been delivered to its input queue, possibly producing no reaction to such trigger
event. This is quite a common situation in the realm of object-oriented notations.
There are important features of mobile systems that cannot be expressed directly
using only an asymmetric style of communication. In fact there are situations in
which we want to make a receiver be able to get input events from more than one
queue, explicitly choosing when to receive events from which queue. An example
of the need of such pattern of communication is, a. o., the Hand-over protocol
for mobile telephones, which we shall deal with in the present paper. Moreover,
it is well-known [2] that patterns of communication which allow the explicit and
dynamic choice of the input queue/entity are essential for the development of
fault-tolerant systems since they contribute to fulfilling well established entity
isolation principles of error confinement much better than asymmetric patterns.
Thus, the extension we propose in this paper consists in letting the trigger event
specification of transition labels be equipped with the explicit reference to the
queue from which the event should be taken. Moreover, such a reference can
also be a queue name variable, thus allowing more dynamicity in the choice of
the queue(s) from which events are to be received by a UMLSC. Queue names
can thus be communicated around and assigned to variables in a way which
resembles the π−calculus [11], although in the more imperative-like framework
of UMLSCs.

We are not aware of any other work on extensions of UMLSCs formal se-
mantics with notions of mobile computing, like dynamic addressing, and name-
passing. For what concerns formal semantics of UMLSCs numerous contributions
can be found in the literature. For a discussion on such contributions and a com-
parison with our overall approach to UMLSCs semantics we refer the interested
reader to [4]. More recently, an SOS approach to (single) UMLSCs formal seman-
tics has been proposed in [15], which is partially based on [7, 10] and assumes the
standard UML single input queue per statechart paradigm. Some issues related
to communication concepts for (single) Harel statecharts are investigated in [14,
13]. The main focus there is the restriction of classical statechart broadcast by
means of explicit feedback interfaces rather than the issues of input queue selec-
tion and dynamic addressing in UML statecharts, which we are interested in, in
the present paper.

The paper is organized as follows: in Sect. 2 µCharts are briefly recalled
and some basic definitions are given. Sect. 3 describes the extension we propose,

On Mobility Extensions of UML Statecharts. A Pragmatic Approach 201

s10

s7

s11

s0

s1

s6

s8 s9

s2

s3

e1/f1

f1/r1

e2/e2

e2/e2 a1/r2

r2/a2
e2/e1

f2/- a2/e1

r1/a1 e1/-

s4

s5

s1s2 s3

s6 s7 s8 s9

s10 s11

A0

A1 A2

A3

t1

t2

t3

t4

t5

t11

t7 t9

t10

t6 t8

Fig. 1. A UMLSC and its HA.

Table 1. Transition Labels for the HA of Fig. 1.

t t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11
SR t {s6} ∅ ∅ {s8} ∅ ∅ ∅ ∅ ∅ ∅ {s10}
EV t r1 a1 e1 r2 a2 e1 f1 e2 f2 e2 e2
AC t a1 r2 ε a2 e1 f1 r1 e1 ε e2 e2
TD t ∅ {s6, s8} ∅ ∅ {s6, s9} {s10} ∅ ∅ ∅ ∅ ∅

including its formal semantics definition. The Hand-over protocol specification
example is given in Sect. 4. Finally in Sect. 5 some conclusions are drawn and
directions for further work are sketched. Detailed proofs relevant to the present
paper can be found in [9].

2 µCharts
In this section the basic definitions related to µCharts are briefly recalled. They
are treated in depth in [4] where the interested reader is referred to. We use
Hierarchical Automata (HAs) [10] as the abstract syntax for UMLSCs. HAs are
composed of simple sequential automata related by a refinement function. In [7]
an algorithm for mapping a UMLSC to a HA is given; the reader interested in
its technical details is referred to the above mentioned paper. Here we just recall
the main ingredients of this mapping, by means of a simple example. Consider
the UMLSC of Fig.1 (left). Its HA is shown on the right side of the figure.
Roughly speaking, each OR-state of the UMLSC is mapped into a sequential
automaton of the HA while basic and AND-states are mapped into states of the
sequential automaton corresponding to the OR-state immediately containing
them. Moreover, a refinement function maps each state in the HA corresponding
to an AND-state into the set of the sequential automata corresponding to its
component OR-states. In our example (Fig.1, right), OR-states s0, s4, s5 and s7
are mapped to sequential automata A0, A1, A2 and A3, while state s1 of A0,
corresponding to AND-state s1 of our UMLSC, is refined into {A1, A2}. Non-
interlevel transitions are represented in the obvious way: for instance transition
t8 of the HA represents the transition from state s8 to state s9 of the UMLSC.
The labels of transitions are collected in Table 1; for example the trigger event
of t8, namely EV t8, is e2 while its associated output event, namely AC t8 is
e1. An interlevel transition is represented as a transition t departing from (the
HA state corresponding to) its highest source and pointing to (the HA state

202 Diego Latella and Mieke Massink

corresponding to) its highest target. The set of the other sources, resp., targets,
are recorded in the source restriction - SR t, resp. target determinator TD t,
of t. So, for instance, SR t1 = {s6} means that a necessary condition for t1
to be enabled is that the current state configuration contains not only s1 (the
source of t1), but also s6. Similarly, when firing t2 the new state configuration
will contain s6 and s8, besides s1. Finally, each transition has a guard G t,
not shown in this example. The structure of transition labels will be properly
accommodated later on in this paper in order to support the mobility extensions.
Transitions originating from the same state are said to be in conflict. The notion
of conflict between transitions needs to be extended in order to deal with state
hierarchy. When transitions t and t′ are in conflict we write t#t′. The complete
formal definition of conflict for HAs can be found in [7, 4] where also the notion
of priority for (conflicting) transitions is defined. Intuitively transitions coming
from deeper states have higher priority. For the purposes of the present paper
it is sufficient to say that priorities form a partial order. We let πt denote the
priority of transition t and πt � πt′ mean that t has lower priority than (the
same priority as) t′. In the sequel we will be concerned only with HAs.

A µChart is a collection of UML Statecharts (actually HAs) communicating
via input queues. We consider a restricted subset of UML Statcharts, which, nev-
ertheless includes all the interesting conceptual issues related to concurrency in
the dynamic behaviour, like sequentialisation, non-determinism and parallelism.
We call such a subset a “Behavioural subset of UML Statecharts”, UMLSCs in
short. More specifically, we do not consider history, action and activity states; we
restrict events to signal ones without parameters (actually we do not interpret
events at all); time and change events, object creation and destruction events,
and deferred events are not considered as are branch transitions; for the sake of
simplicity, given that in the present paper our main focus is on the manipula-
tion of queues for achieving dynamic communication structures, we restrict data
values to a single type, namely queue names. We also abstract from entry and
exit actions of states. The interested reader can find a complete discussion on
the above choices together with their motivations in [4].

2.1 Basic Definitions

The first notion we need to define is that of (sequential) automaton3.
3 In the following we shall freely use a functional-like notation in our definitions where:

(i) currying will be used in function application, i.e. f a1 a2 . . . an will be used in-
stead of f(a1, a2, . . . , an) and function application will be considered left-associative;
(ii) for function f : X → Y and Z ⊆ X, f Z = {y ∈ Y | ∃x ∈ Z. y = fx}, rng f
denotes the range of f and f|Z is the restriction of f to Z. (iii) by ∃1x. P x we mean
“there exists a unique x such that P x”. Finally, for set X, we let X∗ denote the
set of finite sequences over D. The empty sequence will be denoted by ε and the
concatenation of sequnce x with sequence y will be indicated by xy. For sequences
x, y and z we let predicate mrg x y z hold iff z is a non-deterministic merge of x
and y, that is z is a permutation of xy such that the occurrence order in x (resp.
y) of the elements of x (resp. y) is preserved in z; its extension mrgn

j=1 xj z to n
sequences is defined in the obvious way.

On Mobility Extensions of UML Statecharts. A Pragmatic Approach 203

Definition 1 (Sequential Automata). A sequential automaton A is a 4-tuple
(σA, s0

A, λA, δA) where σA is a finite set of states with s0
A ∈ σA the initial state,

λA is a finite set of transition labels and δA ⊆ σA × λA × σA is the transition
relation.

The labels in λA have a particular structure as we briefly mentioned above and
we shall discuss later in more detail. Moreover, we assume that all transitions
are uniquely identifiable. This can be easily achieved by just assigning them
arbitrary unique names, as we shall do throughout this paper. For sequential
automaton A let functions SRC, TGT : δA → σA be defined as SRC(s, l, s′) = s
and TGT (s, l, s′) = s′. Let N be a set of (queue) names. HAs are defined as
follows:

Definition 2 (Hierarchical Automata). A HA H is a 3-tuple (F, E, ρ) where
F is a finite set of sequential automata with mutually disjoint sets of states, i.e.
∀A1, A2 ∈ F. σA1 ∩ σA2 = ∅ and E is a finite set of events, with E ⊆ N ; the
refinement function ρ :

⋃
A∈F σA → 2F imposes a tree structure to F , i.e. (i)

there exists a unique root automaton Aroot ∈ F such that Aroot �∈
⋃

rng ρ, (ii)
every non-root automaton has exactly one ancestor state:

⋃
rng ρ = F \{Aroot}

and ∀A ∈ F \ {Aroot}. ∃1s ∈
⋃

A′∈F\{A} σA′ . A ∈ (ρ s) and (iii) there are no
cycles: ∀S ⊆

⋃
A∈F σA. ∃s ∈ S. S ∩

⋃
A∈ρs σA = ∅.

We say that a state s for which ρ s = ∅ holds is a basic state. From the above
definition the reader can see that the only type of events we deal with are queue
names, as mentioned above. Every sequential automaton A ∈ F characterizes
a HA in its turn: intuitively, such a HA is composed by all those sequential
automata which lay below A, including A itself, and has a refinement function
ρA which is a restriction of ρ:

Definition 3. For A ∈ F the automata, states and transitions under A are
defined respectively as A A

∆= {A} ∪ (
⋃

A′∈
(⋃

s∈σA
(ρAs)

)(A A′)), S A
∆=

⋃
A′∈A A σA′ , and T A

∆=
⋃

A′∈A A δA′

The definition of sub-hierarchical automaton follows:

Definition 4 (Sub-Hierarchical Automata). For A ∈ F , (FA, E, ρA), where
FA

∆= (A A), and ρA
∆= ρ|(S A), is the HA characterized by A.

In the sequel for A ∈ F we shall refer to A both as a sequential automaton
and as the sub-hierarchical automaton of H it characterizes, the role being clear
from the context. H will be identified with Aroot. Sequential Automata will be
considered a degenerate case of HAs. µCharts are defined as follows:

Definition 5 (µChart). A µChart is a tuple (E, H1, . . . , Hk) where (i) E ⊆ N ,
(ii) Hj = (Fj , E, ρj) is a HA for j = 1 . . . k and (iii) S Hj ∩ S Hi = ∅ for i �= j.

The complete formal semantics for µCharts can be found in [4]. A µChart is
mapped into a LTS. Each state of such LTS is a tuple of configuration-queue

204 Diego Latella and Mieke Massink

pairs; each pair records the current configuration and the current input queue
of a distinct HA in the µChart. The transition relation of the LTS is defined
by means of a derivation system composed by four rules. One of them, the top
rule, defines the transition relation and uses in turn an auxiliary relation defined
by the three remaining rules, the so called core semantics. In the next sections
we shall deal with the semantics of the extension of µCharts we propose. Before
proceeding with the semantics definitions we need a few more concepts:

Definition 6 (Configurations). A configuration of HA H = (F, E, ρ) is a set
C ⊆ (S H) such that (i) ∃1s ∈ σAroot

. s ∈ C and (ii) ∀s, A. s ∈ C ∧ A ∈ ρ s ⇒
∃1s

′ ∈ σA. s′ ∈ C

A configuration denotes a global state of a HA, composed of local states of
component sequential automata. For A ∈ F the set of all configurations of A is
denoted by ConfA. In the extension we propose we will deal with queue name
variables. Thus we assume a universe V of such variables, with N ∩ V = ∅. We
also need communication packets; a packet is a pair (destination, message-body).
The set P of packets is defined as P ∆= N × N , that is message bodies can be
only queue names. Due to the presence of variables we need also packet terms
and stores. The set Pt of packet terms is defined as Pt

∆= (N ∪ V) × (N ∪ V).
Stores are defined as follows:

Definition 7 (Stores). A store β is a partial function β : V → N . As usual
β v = ⊥ means that v is not bound by β to any value, namely β is undefined
on v. We let ⊥⊥ be the function such that ⊥⊥ v = ⊥ for all v ∈ V. For store
β we let β̂ denote its extension to names and packet terms, in the usual way:
β̂ q

∆= q, if q ∈ N , β̂ v
∆= β v, if v ∈ V, and β̂ (d, b) ∆= (β̂ d, β̂ b). For

v ∈ V and q ∈ N the unit store [v �→ q] is the function such that [v �→ q]v′ ∆=
q, if v′ = v, and [v �→ q]v′ ∆= ⊥, if v′ �= v. Finally, for stores β1 and β2 we
let store β1 � β2 be the function such that (β1 � β2) v

∆= β2 v, if β2 v �= ⊥ and
(β1 � β2) v

∆= β1 v, if β2 v = ⊥.

In the following, we shall often consider stores as sets of pairs and compose them
using set-union, when the domains of the component functions are mutually
disjoint. While in classical statecharts the environment is modelled by a set,
in the official definition of UMLSCs the particular nature of the environment
is not specified. Actually it is stated to be a queue, the input queue, but the
management policy of such a queue is not defined. We choose not to fix any
particular semantics such as a set, or a multi-set or a FIFO queue etc., but
to model the input queue in a policy-independent way, freely using a notion of
abstract data types. In the following we assume that for set D, ΘD denotes the
set of all structures of a certain kind (like FIFO queues, or multi-sets, or sets) over
D and we assume to have basic operations for inserting and removing elements
from such structures. Among such operations, the predicate (Sel D d D′) which
states that D′ is the structure resulting from selecting d from D, is of particular
importance in the context of the present paper. Of course, the selection policy

On Mobility Extensions of UML Statecharts. A Pragmatic Approach 205

depends on the choice for the particular semantics. In the present paper we
assume that if D is the empty structure, nil then (Sel D d D′) is false for
all d and D′. In the sequel we shall often speak of the input queue or simply
queue meaning by that a structure in ΘD, for proper D, and abstracting from
its particular semantics.

3 µCharts with Explicit Dynamic Channels
In this section we describe our mobility extension of µCharts. As before, a system
is modeled by a fixed collection of UMLSCs (actually HAs), but now each HA
can be associated to several input-queues. The association is specified by explicit
reference, in any transition of the HA, to the input queue from which the trigger
event of that transition is to be selected. The association is dynamic since, besides
queue names, uniquely associated to distinct queues, queue name variables can
be used as well. Consequently we have to re-define the labels of the transitions
of HAs. Let H = (F, E, ρ) be a HA of a µChart S. The label l of transition t =
(s, l, s′) ∈ δA, for A ∈ F , is the tuple (SR t, IQ t, EV t, G t, DQ t, AC t, TD t).
The meaning of SR t, G t and TD t is the same as briefly discussed in Sect.
2. The specification of the queue from which the trigger event EV t should be
selected is given by the input-queue component of the label, IQ t. In the present
paper, for the sake of simplicity, the only kind of actions a HA can perform
when firing a transition is the sending of an event to a queue. Consequently,
on the output side, the specification of the destination queue DQ t is added
to that of the output event AC t. At the concrete syntax level, the label of a
transition t of a UMLSC will have the form q?e/q′!e′ where IQ t = q, EV t = e,
DQ t = q′ and AC t = e′ 4. As we said above the only values we are dealing
with are queue-names5 and we allow the use of variables in order to express
dynamic addresses. Consequently the trigger event, the input-queue, the output
event and the destination queue can be queue-names or queue-name variables,
i.e. EV t, IQ t, DQ t, AC t ∈ E ∪ V. Furthermore, the above assumptions imply
that there is a pool of “shared” queues through which the HAs communicate.
We call such a pool a multi-queue and a collection of HAs communicating via a
multi-queue is called a δµChart. Multi-queues are an extension of input-queues.
We need to redefine the selection relation and multi-queue extension. We do this
informally as follows: Sel E q e E ′ holds iff e is the element selected from queue
(named) q of multi-queue E and E ′ is the multi-queue resulting from deleting e
from queue (named) q of E . We let E [(q, e)] denote the multi-queue equal to E
except that on queue (named) q of E element e is inserted, where (q, e) ∈ P; for
U ∈ P∗, E [U] is defined in the obvious way: E [(q1, e1), (q2, e2), . . . , (qn, en)] ∆=
(E [(q1, e1)])[(q2, e2), . . . , (qn, en)] where E [ε] ∆= E .
4 Notice that in this paper we use a syntax for event sending (namely exclamation

mark) which is slightly different from the standard syntax for method calling (namely
a dot). This is only for symmetry with our notation for input (namely question mark)
and for our deliberate focusing on semantical more than syntactical issues.

5 This is a similar situation as in the π − calculus [11], although in a completely
different context.

206 Diego Latella and Mieke Massink

The Operational Semantics of δµChart S = (E, H1, . . . Hk) is a transition sys-
tem. Each global state is a tuple (E , Loc1, . . . , Lock). E is the current value of
multi-queue and Locj is the current status of HA Hj . The status Locj of a com-
ponent HA Hj is a pair (Cj , βj) where Cj is the current configuration of Hj and
βj is the current store of Hj . Each transition corresponds to a step of one compo-
nent HA Hj . We recall here that in µCharts, being each HA uniquely associated
to a distinct queue, the hypothetical scheduler associated to the semantics of
state machines in [12] is only left with the job of (i) choosing a HA to execute a
step and (ii) selecting an event in the input queue of the selected HA to feed into
its state machine in order to perform such a step. Notice that the scheduler is
somehow “blind” in this job w.r.t. the event: it chooses and de-queues an event
regardless of whether such an event will be actually used by the state machine,
i.e. there are transitions which are enabled by the event. If this is not the case,
the state machine stutters and the event is lost (or, at most, deferred6). In the
case of δµCharts there is no longer a single input queue associated to each HA,
but the multi-queue. Thus, in δµCharts the scheduler must also select the par-
ticular input queue from which the event is to be selected. We shall deal with
input queue selection in Sect.3.2, where we define the top rule(s) of the deriva-
tion system for the transition relation. Since such a derivation system exploits
some properties of the core semantics on which it is based, we prefer to first
define, in Sect. 3.1, the core semantics which is obviously parametric w.r.t. the
selected queue.

3.1 Core Semantics

The core semantics is given in Fig.2 and has the same structure as that for

µCharts. It defines the relation A ↑ P :: (C, β)
(q,e)/U−→ L(C′, β′) which models

the step-transitions of HA A, and L is the set containing the transitions of
A which are fired. In such a relation P is a set of transitions. It represents a
constraint on each of the transitions fired in the step, namely that it must not
be the case that there is a transition in P with a higher priority. So, informally,

A ↑ P :: (C, β)
(q,e)/U−→ L(C′, β′) should be read as “A, on configuration and store

(C, β), with input event e from queue q can fire the transitions in the set L
moving to configuration and store (C′, β′), producing output U , when required
to fire transitions with priorities not smaller than that of any transition in P”.
Set P will be used to record the transitions a certain automaton can do when
considering its sub-automata. More specifically, for sequential automaton A, P
will accumulate all transitions which are enabled in the ancestors of A. The Core
Semantics definition uses functions LEA and EA. For HA A, LEA C β q e is the
set {t ∈ δA | {(SRC t)}∪(SR t) ⊆ C∧ β̂(IQ t) = q∧MATCH e (EV t)∧(C, β, e) |=
(G t)} i.e. the set of those transitions in δA, i.e. local to the root of A, which are
enabled in the current configuration C, store β with input event e from input
queue q. Function MATCH is defined as follows: MATCH e x

∆= (x ∈ V ∨ x = e).
6 We do not deal with deferred events in our current work.

On Mobility Extensions of UML Statecharts. A Pragmatic Approach 207

Progress Rule

t ∈ LEA C β q e
β′ = if (EV t) ∈ V then [(EV t) �→ e] else ⊥⊥
� ∃t′ ∈ P ∪ EA C β q e. πt � πt′

A ↑ P :: (C, β)
(q,e)/(DQ t,AC t)−→ {t}(DST t, β′)

Stuttering Rule

{s} = C ∩ σA

ρA s = ∅
∀t ∈ LEA C β q e. ∃t′ ∈ P. πt � πt′

A ↑ P :: (C, β)
(q,e)/ε−→ ∅({s}, ⊥⊥)

Composition Rule

{s} = C ∩ σA

ρA s = {A1, . . . , An} �= ∅(∧n

j=1 Aj ↑ P ∪ LEA C β q e :: (C, β)
(q,e)/Uj−→ Lj (Cj , βj)

)
∧ mrgn

j=1Uj U
(⋃n

j=1 Lj = ∅
)

⇒ (∀t ∈ LEA C β q e. ∃t′ ∈ P. πt � πt′)

A ↑ P :: (C, β)
(q,e)/U−→ ⋃n

j=1
Lj

({s} ∪ ⋃n

j=1 Cj ,
⋃n

j=1 βj)

Fig. 2. Core operational semantics rules for δµCharts.

We skip the details of guard evaluation in this paper for lack of space. Function
EA extends LEA in order to cover all the transitions of A including those of
sub-automata of A, i.e. EA C β q e

∆=
⋃

A′∈(A A) LEA′ C β q e. In the Core
Semantics, the Progress Rule establishes that if there is a transition of A enabled
and the priority of such a transition is “high enough” then the transition fires
and a new status is reached accordingly. The store generated contains only the
information related to the possible binding of EV t, when the latter is a variable.
The global store of the HA which A belongs to will be extended properly by
the top-level rules (see below). Notice that the destination (DQ t) and the
message body (AC t) are dealt with in a symbolic way at the Core Semantics
level. They will be evaluated by the Global Progress Rule. The reason why the
variable evaluation cannot be performed by the core semantics should be clear:
a variable used in the output action of a transition t of a parallel component,
say A of a HA might be bound by another parallel component of the same HA.
So the correct store to be used for (DQ t, AC t) pairs is not available when
applying the Progress Rule to A 7. For transition t, DST t is defined as the set
{s | ∃s′ ∈ (TD t). (TGT t) � s � s′}. Intuitively DST t comprises all states
which are below (TGT t) in the state-hierarchy down to those in (TD t). The
state preorder � is formally defined e.g. in [4]. The Composition Rule stipulates
how automaton A delegates the execution of transitions to its sub-automata and
these transitions are propagated upwards. Notice that for all v, i, j, βi v �= ⊥ and
βj v �= ⊥ implies βi v = βj v = e. Finally, if there is no transition of A enabled
with “high enough” priority and moreover no sub-automata exist to which the
execution of transitions can be delegated, then A has to “stutter”, as enforced
by the Stuttering Rule. The following theorem links our semantics to the general
requirements set by the official semantics of UML:

7 In [9] a “late” binding semantics is also provided where the destination and message
body are evaluated using the current store.

208 Diego Latella and Mieke Massink

Theorem 1. Given HA H = (F, E, ρ) element of a δµChart, for all A ∈ F, e ∈
E, L, C, β, q,U the following holds: A ↑ P :: (C, β)

(q,e)/U−→ L(C′, β′) for some C′, β′

iff L is a maximal set, under set inclusion, which satisfies all the following prop-
erties: (i) L is conflict-free, i.e. ∀t, t′ ∈ L. ¬t#t′; (ii) all transitions in L are
enabled in the current status, i.e. L ⊆ EA C β q e ; (iii) there is no transition
outside L which is enabled in the current status and which has higher priority
than a transition in L, i.e. ∀t ∈ L. � ∃t′ ∈ EA C β q e. πt � πt′; and (iv) all
transitions in L respect P , i.e. ∀t ∈ L. � ∃t′ ∈ P. πt � πt′.

Proof. The proof can be carried out in a similar way as for the main theorem of
[4], by structural induction for the direct implication and by derivation induction
for the reverse implication.

3.2 Input Queue Selection

The selection from the multi-queue is tightly connected to the possibility of
generating unwanted extra-stuttering. For generating a step of a HA H starting
from configuration C and multi-queue E , we consider only those queues in E which
are relevant in C; q is relevant in C if there is a transition the source of which
is contained in C and the label of which uses q as input queue. No stuttering
of a HA H in C and multi-queue E should be allowed which is caused by the
selection of a (relevant) queue q of E and an event dequeued from it for which
no transition is enabled while there is another (relevant) queue q′ of E and/or
another event such that a transition could be enabled. Thus we allow stuttering
only on relevant queues and only if there is no transition enabled. Notice that a
stuttering step modifies the multi-queue in a way which depends on the selected
queue. The set LRA C β of local relevant and the set RA C β of the relevant queues
of A ∈ H = (F, E, ρ) are defined respectively as {q ∈ E | ∃t ∈ δA. (SRC t) ∈
C ∧ β̂(IQ t) = q} and

⋃
A′∈(A A) LRA′ C β. For A ∈ F of HA H = (F, E, ρ),

C ∈ ConfA, store β, multiqueue E on E, the set PEA C β E of Potentially
Enabled Transitions of A, on configuration C, store β and multi-queue E is the
set {t ∈ T A | ∃q ∈ RA C β, e ∈ E. Sel E q e E ′ ∧ t ∈ EA C β q e}. Obviously,
the fact that a transition t ∈ PEA C β E will actually be enabled depends on
the choice of the particular relevant queue q and the selection of the particular
event e from q. The following lemmas relate stuttering with the set of potentially
enabled transitions and with the resulting configurations and stores. They will
be useful for a better understanding of the top-level rules of the definition of
the transition relation. Lemma 1 states that if there is no potentially enabled
transition - in a given configuration, store and multi-queue - then every step
from that configuration and store involving any relevant queue and any selected
event is a stuttering step. Vice-versa, if from a given configuration, store and
multi-queue only stuttering steps are possible, whatever choice is done for the
queue and the input event, then there are no potentially enabled transitions.
The lemma easily follows from from Lemma 3 in [9]. Lemma 2 guarantees that
stuttering does not change the store and the configuration. Its proof is similar
that of Lemma A.1 (ii) in [8].

On Mobility Extensions of UML Statecharts. A Pragmatic Approach 209

Lemma 1.
For all H = (F, E, ρ), C ∈ ConfH , store β, E multiqueue on E the following holds:
(i) for all q, e ∈ E, E ′ multiqueue on E: if PEH C β E = ∅ and q ∈ RH C β, and

Sel E q e E ′ and H ↑ ∅ :: (C, β)
(q,e)/U−→ L(C′, β′) for some C′, β′, L, then L = ∅;

(ii) if for all q, e ∈ E, E ′ multiqueue on E such that Sel E q e E ′, C′, β′ we have

H ↑ ∅ :: (C, β)
(q,e)/U−→ ∅(C′, β′) then we also have PEA C β E = ∅

Lemma 2.
For all H = (F, E, ρ), C ∈ ConfH , store β, q, e ∈ E if H ↑ ∅ :: (C, β)

(q,e)/U−→ ∅(C′, β′)
then C′ = C and β′ = ⊥⊥.

Global Progress rule

q ∈ RHj Cj βj (1)
Sel E q e E ′ (2)

Hj ↑ ∅ :: (Cj , βj)
(q,e)/Uj−→ Lj (C′

j , β
′
j) (3)

Lj �= ∅ (4)
U ′

j = map ̂(βj � β′
j) Uj (5)

(E , (C1, β1), .., (Cj , βj), .., (Ck, βk)) −→
(E ′[U ′

j], (C1, β1), .., (C′
j , βj � β′

j), .., (Ck, βk))

Global Stuttering rule

q ∈ RHj Cj βj (1)
Sel E q e E ′ (2)
PEH Cj βj E = ∅ (3)
(E , (C1, β1), .., (Cj , βj), .., (Ck, βk)) −→
(E ′, (C1, β1), .., (Cj , βj), .., (Ck, βk))

Fig. 3. δµCharts Transition Relation definition.

The definition of the transition relation for δµCharts is given in Fig. 3. It
is composed of two top-level rules. The Global Progress rule produces all non-
stuttering steps (premise (4)). Notice that only relevant queues are considered
(premise (1)); in fact non relevant queues would generate (undesired) stuttering,
as can be derived from the definitions. As usual, higher order function map
applied on function β and sequence U returns the sequence obtained by applying
β to each and every element of U (premise (5)). The Global Stuttering rule takes
care of stuttering. When there are no potentially enabled transitions (premise
(3)), from Lemma 1 (i) we know that only stuttering can occur; moreover, from
(ii) of the same lemma we know that any stuttering situation will require that
no transition is potentially enabled. Notice that also in this rule we restrict to
relevant queues (premise (1)): we restrict to those stuttering steps which involve
relevant queues. Should we have chosen a queue which is not relevant, we would
have ended up with a step leading to a multi-queue where an element of such
a non relevant queue (premise (2)) would have been removed. We consider this
undesired behaviour (a too much blind scheduler!). Finally, the choice of different
relevant queues produces different stuttering steps, due to different multi-queues
in the next global state (premise (2) and consequent); on the other hand, all
configurations and store remain unchanged, including those of the HA which
generated the stuttering step (Lemma 2).

210 Diego Latella and Mieke Massink

4 Example: The Hand-Over Protocol

In this section we model the Hand-over protocol for mobile phones as described
in [3]. The example scenario consists of a mobile station, a switching center
and two base stations. The mobile station is mounted in a car moving through
two different geographical areas (cells) and provides services to an end user;
the switching center is the controller of the radio communications within the
whole area composed by the two cells; the two base stations, one for each cell,
are the interfaces between the switching center and the mobile station. The
switching center receives messages addressed to the car (user) from the external
environment and forwards them to the base station of the cell where the car
currently resides. The base station of such cell forwards these messages to the car
which presents them to the user. The communication between the base station
and the car takes place via a private data channel shared with the car while
the latter is in the related cell. As soon as the switching center is signalled of
the fact that the car is leaving the current cell and entering the other one, it
sends the base station of the current cell the control information necessary to
the car in order to get connected to the base station of the other cell. The base
station of the current cell forwards this information to the car using a private
control channel shared with the car while the latter is in the related cell. The
above mentioned information consists of the references to the data channel and
the control channel of the other base station. Finally the current base station
acknowledges the switching center and waits idle to be resumed by the latter.
Once the car received the control information mentioned above, it uses it for
getting messages from the other cell. Once the switching center received the
acknowledgement from the base station of the current cell it wakes up the other
one. At this point the flow of messages from the external environment to the
car (user) continues, but using the base station of the other cell. The complete
δµChart of the protocol is given in Fig. 4. We use the convention of writing
queue names in upper-case characters, while variables are written in lower-case
characters8. We abstract from the user, which we actually consider part of the
environment; so, the messages received by the car are actually sent out/back to
the environment. Moreover, we abstract from the real content of the messages; we
use a single value MSG for representing any message. We also abstract from the
details by which the switching center is notified that the car moved from one cell
to the other; we model this situation in the environment using non-determinism.
Finally we assume that initially the car resides in the cell associated to the
first base station. The elements of the multi-queue are assumed to be FIFO
queues. The alphabet of the δµChart is the set of all queue names appearing
in the Statecharts in the figure. The only name which does not correspond to
a queue in the multi-queue is obviously MSG. Initially, all queues are empty

8 Notice that in the example we use a slight extension of the notation presented in Sect.
3 consisting in letting transitions be labeled by a sequence of output actions instead
of a single destination!event pair. Such extension does not affect the semantics at a
conceptual level, but helps very much in writing concise and effective specifications.

On Mobility Extensions of UML Statecharts. A Pragmatic Approach 211

G1?t/SB1!t

G1?t/(SB1!t;AK1!AK1)
A1?A1/nil

1

2

3

BASE1

TC1?msg/TB1!msg

XE?XE/IN!MSG
1 2

OUT?MSG/CNG!CNG

OUT?MSG/IN!MSG

ENVIRONMENT

TC2?msg/TB2!msg

G2?t/SB2!t

G2?t/(SB2!t;AK2!AK2)
A2?A2/nil

1

2

3

BASE2

1 2

34

AK1?AK1/A2!A2

CNG?CNG/(G2!TB1;G2!SB1)

AK2?AK2/A1!A1

IN?msg/TC1!msg

CNG?CNG/(G1!TB2;G1!SB2)

IN?msg/TC2!msg

SWITCH

3 5

2

1

INIT_C?tlk/nil

INIT_C?swc/nil

INIT_CAR
CAR

swc?tlk/nil

tlk?msg/OUT!msg
REGIME_CAR

swc?swc/nil

Fig. 4. The Hand-over Protocol δµChart.

except INIT C and XE, containing the values, <TB1:SB1> (TB1 at the top)
and <XE> respectively. The ENVIRONMENT initially sends a message to the
SWITCH via queue IN. Subsequently, on receiving a message from queue OUT,
it may non-deterministically send the next message via queue IN or send the
indication (CNG) that the car moved to the other cell, via queue CNG. Notice
that activation of ENVIRONMENT is done via auxiliary queue/event XE. The
switching center, modeled by SWITCH, in its initial state (1) is ready to receive
either messages from queue IN or the information that the base station to which
the car is connected must be changed (message CNG from queue CNG). Upon
receiving a CNG indication in state (1) the SWITCH sends to BASE1 via queue
G1 the data (TB2) and control (SB2) channels of BASE2, moving to state (2).
Upon receiving a message from queue IN in state (1) the SWITCH forwards the
message, bound to variable msg, to BASE1, via queue TC1, moving back to state
(1). This message-forwarding loop goes on until/unless a CNG event arrives. In
state (2) SWITCH waits for the ack AK1 from BASE1 via queue AK1, and after
that it sends the wakeup event A2 via queue A2 to BASE2 and moves to state
(3), which is symmetric to state (1). State (4) is symmetric to (2) with BASE1
and BASE2 swapped. The specification of the base stations, BASE1 and BASE2
should be self-explanatory. Also the specification of the CAR should be easy to
understand. Notice that the current data channel is stored in variable tlk while
the current control channel is kept in swc.

5 Conclusions

In this paper we presented an extension of µCharts as a first step towards model-
ing mobility issues. In particular we addressed issues concerning device mobility,
which imply the ability to dynamically change the system interconnection struc-
ture, by “opening” and “closing” connections (mobile computing [1]).

There are important features of mobile systems that cannot be expressed
easily using only an asymmetric style of communication. Thus, our extension

212 Diego Latella and Mieke Massink

consists in letting the trigger event specification of transition labels be equipped
with the explicit reference to the queue from which the event should be taken.
Such a reference can also be a queue name variable, thus allowing dynamicity in
the choice. A formal semantics definition has been given for the extension using
deductive techniques, and some correctness results concerning requirements put
by the official UML semantics have been shown. As an example of use of the
new notation a specification of the Hand-over protocol has been provided.

It is worth pointing out that our (core) semantics definition is a slight ex-
tension of the definition we proposed in [7]. In particular it preserves its hierar-
chical/recursive nature. We have used the latter definition (or minor extension
thereof) for covering several aspects of UMLSCs, like stochastic ones, model-
checking, and formal testing. This proves the hight modularity and flexibility of
our approach. Moreover, the use of recursive definitions on hierarchical struc-
tures greatly simplified the proofs of the properties of interest.

We plan to define a mapping from δµCharts to PROMELA for efficient
model-checking with SPIN [5]. Such work will be based on similar work we
have already successfully done for µCharts [6]. The PROMELA translator for
µCharts is currently being implemented by Intecs Sistemi s.r.l. in the context of
the project PRIDE funded by the Italian Space Agency. Another line of research
which we are currently investigating is to further extend our model with local-
ities in order to explicitly model dynamic code creation/removal and mobility
as migration in the sense of mobile computations [1]. Finally, there are several
features of UMLSCs which we did not address in the present paper but which
can be added to our model. Object features are already dealt with in the above
mentioned work on UML with localities and data/variables are already incorpo-
rated in the context of PRIDE. Exit/entry events can be dealt with as in [15].
Deferred events can be incorporated by extending the selection predicate Sel.
History states can be modeled by a proper re-definition of function DST and
the use of stores.

References

1. L. Cardelli and A. Gordon. Mobile ambients. In M. Nivat, editor, FoSSaCS’98, vol-
ume 1378 of Lecture Notes in Computer Science, pages 140–145. Springer-Verlag,
1998.

2. P. Denning. Fault tolerant operating systems. ACM Computing Surveys, 8(4):359–
389, 1976.

3. G. Ferrari, S. Gnesi, U. Montanari, M. Pistore, and G. Ristori. Verifying mobile
processes in the HAL environment. In A. Hu and M. Vardi, editors, Computer
Aided Verification, volume 1427 of Lecture Notes in Computer Science. Springer-
Verlag, 1998.

4. S. Gnesi, D. Latella, and M. Massink. Modular semantics for a UML Statechart
Diagrams kernel and its extension to Multicharts and Branching Time Model
Checking. The Journal of Logic and Algebraic Programming. Elsevier Science,
51(1):43–75, 2002.

5. G. Holzmann. The model checker SPIN. IEEE Transactions on Software Engi-
neering, 23(5):279–295, 1997.

On Mobility Extensions of UML Statecharts. A Pragmatic Approach 213

6. D. Latella, I. Majzik, and M. Massink. Automatic verification of a behavioural sub-
set of UML statechart diagrams using the SPIN model-checker. Formal Aspects
of Computing. The International Journal of Formal Methods. Springer-Verlag,
11(6):637–664, 1999.

7. D. Latella, I. Majzik, and M. Massink. Towards a formal operational semantics of
UML statechart diagrams. In P. Ciancarini, A. Fantechi, and R. Gorrieri, editors,
IFIP TC6/WG6.1 Third International Conference on Formal Methods for Open
Object-Oriented Distributed Systems, pages 331–347. Kluwer Academic Publishers,
1999. ISBN 0-7923-8429-6.

8. D. Latella and M. Massink. Relating testing and conformance relations for UML
Statechart Diagrams Behaviours. Technical Report CNUCE-B4-2002-001, Con-
siglio Nazionale delle Ricerche, Istituto CNUCE, 2002. (Full version).

9. D. Latella and M. Massink. On mobility extensions of UML Statecharts; a prag-
matic approach. Technical Report 2003-TR-12, Consiglio Nazionale delle Ricerche,
Istituto di Scienza e Tecnologie dell’Informazione ’A. Faedo’, 2003.

10. E. Mikk, Y. Lakhnech, and M. Siegel. Hierarchical automata as model for state-
charts. In R. Shyamasundar and K. Euda, editors, Third Asian Computing Science
Conference. Advances in Computing Sience - ASIAN’97, volume 1345 of Lecture
Notes in Computer Science, pages 181–196. Springer-Verlag, 1997.

11. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Information
and Computation, 100(1):1–77, 1992. Parts 1-2.

12. Object Management Group, Inc. OMG Unified Modeling Language Specification -
version 1.3, 1999.

13. J. Philipps and P. Scholz. Compositional specification of embedded systems with
statecharts. In M. Bidoit and M. Dauchet, editors, TAPSOFT ’97: Theory and
Practice in Software Development, volume 1214 of Lecture Notes in Computer
Science, pages 637–651. Springer-Verlag, 1997.

14. P. Scholz and D. Nazareth. Communication concepts for statecharts: A semantic
foundation. In M. Bertran and T. Rus, editors, Transformation-based Reactive
Systems Development, volume 1231 of Lecture Notes in Computer Science, pages
126–140. Springer-Verlag, 1997.

15. M. von der Beeck. A structured operational semantics for UML-statecharts. Soft-
ware Systems Modeling. Springer, (1):130–141, 2002.

	1 Introduction
	2 μCharts
	2.1 Basic Definitions

	3 μCharts with Explicit Dynamic Channels
	3.1 Core Semantics
	3.2 Input Queue Selection

	4 Example: The Hand-Over Protocol
	5 Conclusions
	References

