
Towards Object-Oriented Graphs and Grammars

Ana Paula Lüdtke Ferreira1 and Leila Ribeiro2

1 Centro de Ciências Exatas e Tecnológicas, Universidade do Vale do Rio dos Sinos
anapaula@exatas.unisinos.br

2 Instituto de Informática, Universidade Federal do Rio Grande do Sul
leila@inf.ufrgs.br

Abstract. This work aims to extend the algebraical approach to graph
transformation to model object-oriented systems structures and compu-
tations. A graph grammar based formal framework for object-oriented
system modeling is presented, incorporating both the static aspects of
system modeling and the dynamic aspects of computation of object-
oriented programs.

1 Introduction

Graphs are a very natural way of describing complex situations on an intu-
itive level. Graph-based formal description techniques are, for that reason, eas-
ily used by non-specialists on formal methods. Graph transformation rules can
be brought into those descriptions in order to enrich them with a dynamical
behaviour, by modeling the evolution of the structures represented as graphs.

The algebraic approach to graph grammars has been presented for the first
time in [5] in order to generalize Chomsky grammars from strings to graphs. That
approach is currently known as double-pushout approach, because derivations are
based on two pushout constructions in the category of graphs and total graph
morphisms. The single-pushout approach, on the other hand, has derivations
characterized as a pushout construction in the category of graphs and partial
graph morphisms. As presented in [4], [9] and [12], this approach is particularly
adequate to model parallelism and distribution.

Graph grammars are appealing as a specification formalism because they are
formal, they are based on simple yet powerful concepts to describe behaviour,
they have a nice graphical layout which helps the understanding (even by non-
specialists in formal methods) of a specification. Since graph grammars also
provide a model of computation [7], they can serve as the basis for specifications
which can be executed on a computer.

Different kinds of graph grammars have been proposed in the literature [11,
10, 9, 7, 1], aiming the solution of different problems. However, those focusing
on object-oriented systems specification [3, 8] do not present a treatment on
inheritance and polymorphism, which make object-oriented systems analysis and
testing so difficult.

The use of the object-oriented paradigm has increased over the past years,
becoming perhaps the most popular paradigm of system development in use

E. Najm, U. Nestmann, and P. Stevens (Eds.): FMOODS 2003, LNCS 2884, pp. 16–31, 2003.
c© IFIP International Federation for Information Processing 2003

Towards Object-Oriented Graphs and Grammars 17

nowadays. The growing use of Java as a language to support Internet applications
has also contributed to this popularity. Object-based systems have a number
of advantages over traditional ones, such as ease of specification, code reuse,
modular development and implementation independence. However, they also
present difficulties, derived from the very same features that allow the mentioned
advantages.

The most distinguished features of object-oriented systems are inheritance
and polymorphism, which make them considerably different from other systems
in both their architecture and model of execution. It should be expected that
formalisms for the specification of object-oriented architectures or programs re-
flect these particularities, otherwise the use of such formalisms will neglect key
concepts that have a major influence in their organization. According to [6], a
specification language for object-oriented conceptual modeling must at least in-
clude constructs for specifying primitive objects, particularizations of predefined
objects, inheritance relationships between objects and aggregation of objects
in order to define more complex objects. We also believe that the concepts of
polymorphism and dynamic binding are essential if we intend to model static
and dynamic aspects of object-oriented systems. So, in order to correctly model
object-oriented systems, the key concepts related to it must be present within
the formalism used.

This work aims to extend the algebraical approach to graph transformations
to model object-oriented systems structures and computations. More accurately,
the single pushout approach in the category of typed hypergraphs and partial
typed hypergraph morphisms will be adapted to fit more adequately the object-
oriented approach to software development. We will also show how the structures
developed along the text are compatible with the notion of specification and
computation within the object-oriented paradigm.

This paper is organized as follows: Section 2 presents a number of special
kinds of (hyper)graphs, from where the main concepts of objects, attributes,
methods and inheritance are developed. Section 3 presents the fundamental no-
tions of object-oriented graph productions, grammars and derivations. Some ex-
amples of productions and its consequences on graph derivations are portrayed.
Finally, Section 4 presents some conclusions from the work presented here.

2 Object-Oriented Graphs

The general definition of graphs is specialized to deal with the object-oriented
aspects of program specification. This specialization is meant to reflect more
precisely the underlying structure of the object-oriented paradigm, and so im-
prove the compactness and understandability of specifications. Object-oriented
systems consist of instances of previously defined classes (or objects1) which have
an internal structure defined by attributes and communicate among themselves
1 Object-based and class-based models are actually equivalent in terms of what they

can represent and compute [13], so we will use the more commonly used class-based
approach.

18 Ana Paula Lüdtke Ferreira and Leila Ribeiro

solely through message passing, so that approach underlies the structure of the
graphs used to model those systems. Such structures are called object-model
graphs and their formal definition is given next.

Definition 1 (Object-model graph). An object-model graph M is a labelled
hypergraph 〈VM, EM, LM, srcM, tarM, labM〉 where VM is a finite set of ver-
tices, EM is a finite set of hyperarcs, LM = {attr, msg} is the set of hyperarcs
labels, srcM, tarM : EM → V ∗

M are the hyperarcs source and target functions,
labM : EM → LM is the hyperarcs labelling function and, for all e ∈ EM, the
following holds:

– if labM(e) = attr then srcM(e) ∈ VM and tarM(e) ∈ V ∗
M, and

– if labM(e) = msg then srcM(e) ∈ V ∗
M and tarM(e) ∈ VM.

Sets {e ∈ EM | labM(e) = attr} and {e ∈ EM | labM(e) = msg} are denoted by
EM|attr and EM|msg, respectively.

Object-model graphs can also be viewed as a definition of the classes belong-
ing to a system, where each node is a class identifier, hyperarcs departing from it
correspond to its internal attributes, and messages addressed to it consist on the
services it provides to the exterior (i.e., its methods). Notice that the restrictions
put to the structure of the hyperarcs assure, as expected, that messages target
and attributes belong to a single object.

A key feature of the object-oriented paradigm is the notion of inheritance.
Inheritance is the construction which permits an object to be specialized from
a pre-existing one. The newly created object carries all the functionality from
its primitive object. This relation induces a hierarchical relationship among the
objects from a system, which can be viewed as a set of trees (single inheritance)
or as an acyclic graph (multiple inheritance). Both structures can be formally
characterized as strict order relations, as follows.

Definition 2 (Strict order relation). A binary relation R ⊆ A×A is said a
strict order relation if and only if it has the following properties:

1. if (a, a′) ∈ R then a �= a′ (R has no reflexive pairs);
2. if (a, a1), (a1, a2), . . . , (an−1, an), (an, a′) ∈ R, n � 0, then (a′, a) /∈ R (R has

no cycles);
3. for any a, a′, a′′ ∈ A, if (a, a′), (a, a′′) ∈ R then a′ = a′′ (R is a function).

Definition 3 (Type hierarchy). Let M = 〈VM, EM, LM, srcM, tarM, labM〉
be an object-model graph. A type hierarchy over M is a tuple HM = 〈M, isa,
redef〉, where isa ⊆ VM×VM and redef ⊆ EM×EM are strict order relations2

holding the following properties:

1. for each (e, e′) ∈ redef , labM(e) = labM(e′) = msg,
2. for each (e, e′) ∈ redef , srcM(e) = srcM(e′),
2 For any binary relation r ⊆ A × A, r+ will denote its transitive closure and r∗ will

denote its reflexive and transitive closure.

Towards Object-Oriented Graphs and Grammars 19

3. for each (e, e′) ∈ redef , (tarM(e), tarM(e′)) ∈ isa+, and
4. for each (e′, e), (e′′, e) ∈ redef , if e′ �= e′′ then (tar(e′), tar(e′′)) /∈ isa∗ and

(tar(e′′), tar(e′)) /∈ isa∗.

The purpose of the relation isa is to establish an inheritance relation between
objects. Notice that only single inheritance is allowed, since both isa and redef
are required to be functions. Function redef establishes which methods will be
redefined within the derived object, by mapping them. The restrictions applied
to function redef ensure that methods are redefined consistently, i.e., only two
message arcs can be mapped (1), their parameters are the same (2), the method
being redefined is located somewhere (strictly) above in the type hierarchy (un-
der isa+) (3), and only the closest message with respect to relations isa and
redef can be redefined (4).

Notice that the requirement concerning the acyclicity and the non reflexivity
on isa and redef is consistent with the definition of classes in the object-oriented
paradigm. A class is created as a specialization of at most one other class (single
inheritance), which must exist prior to the creation of the new class.

Remark 1. Since type hierarchies are algebraic structures, operations over them
can be defined. Composition (done with or without identification of elements on
the structures being composed) plays an important role, since it corresponds to
system composition. Although composition is an extremely relevant feature for
system development, it is beyond the scope of this article.

Definition 4 (Hierarchy compatible strings). Given a type hierarchy
HM = 〈M, isa, redef〉, two node strings u, v ∈ V ∗

M are hierarchy compatible if
and only if |u| = |v| and (ui, vi) ∈ isa∗, i = 1, . . . , |u|. If u and v are hierarchy
compatible we write u∝H v.

The definition of hierarchy compatible strings extends the relation isa∗ to
strings, which must have the same length, and the corresponding elements must
be connected within that relation. It is easy to see that both isa∗ and ∝H are
partial order relations.

Example 1. Fig. 1 presents a (näıve) type hierarchy for geometric shapes and
figures. The nodes in the graph denote objects (shape, round, circle, ellipse,
Figure, Drawing, Color and Integer), while object attributes and messages are
represented by hyperarcs. The inheritance relation isa is represented by dotted
arrows and the redefinition function redef is represented by solid thin ones.

Definition 5 (Hierarchical graph). A hierarchical graph GH is a tuple 〈G, t,
HM〉, where HM = 〈M, isa, redef〉 is a type hierarchy, G is a hypergraph,
and t is a pair of total functions 〈tV : VG → VM, tE : EG → EM〉 such that
(tV ◦ srcG)∝H (srcM ◦ tE), and (tV ◦ tarG)∝H (tarM ◦ tE).

Hierarchical graphs are hypergraphs typed over an object-model graph which
carries a hierarchical relation among its nodes. Notice that the typing morphism
is slightly different from the traditional one [12]: a hierarchical graph arc can

20 Ana Paula Lüdtke Ferreira and Leila Ribeiro

shape

round

circle

ellipse

Figure Drawing

consists
Color

color

Integer

pos

radius

draw

draw

draw

draw

isa

isa

isa
isa redef

redef

Fig. 1. Type hierarchy for geometric figures

Integer
ColorEgg [ellipse]

is [consists]

shade [color]

coord [pos]

F [Figure]

Fig. 2. Example of a hierarchical graph

be incident to any string of nodes which is hierarchy compatible to the one
connected to its typing edge. This definition reflects the idea that an object can
use any attribute one of its primitive classes have, since it was inherited when
the class was specialized.

Example 2. Fig. 2 shows a hierarchical graph typed over the type hierarchy
portrayed in Fig. 1. The typing morphism is revealed by the names between
brackets. Notice that an ellipse has no attribute directly connected to it in the
object-model graph. However, since an ellipse is a specialized shape, it inherits
all its attributes.

Notice that all attributes belonging to the hierarchical graph on Fig. 2 are
allowed by Definition 5. The referred graph has three edges, namely is (typed as
consists), coord (typed as pos), and shade (typed as color). For coord we have
(the same can be done to the other two):

(tV ◦ src)(coord) = ellipse ∝H shape = (srcM ◦ tE)
(tV ◦ tar)(coord) = Integer Integer ∝H Integer Integer = (tarM ◦ tE)

Remark 2. For all diagrams presented in the rest of this text, 	→-arrows denote
total morphisms whereas →-arrows denote arbitrary morphisms (possibly par-
tial). For a partial function f , dom(f) represents its domain of definition, f?
and f ! denote the corresponding domain inclusion and domain restriction. Each
morphism f within category SetP can be factorized into components f? and g!.

Towards Object-Oriented Graphs and Grammars 21

Definition 6 (Hierarchical graph morphism). Let GH
1 = 〈G1, t1,HM〉 and

GH
2 = 〈G2, t2,HM〉 be two hierarchical graphs typed over the same type hierarchy

HM. A hierarchical graph morphism h : GH
1 → GH

2 between GH
1 and GH

2 , is a
pair of partial functions h = 〈hV : VG1 → VG2 , hE : EG1 → EG2〉 such that the
diagram (in SetP)

{attr, msg} ��
id{attr,msg} �� {attr, msg}

EG1�

srcG1 ,tarG1

��

�
labM◦t1E

��

dom(hE)�hE?�� � hE ! �� EG2�

srcG2 ,tarG2

��

�
labM◦t2E

��

V ∗
G1

h∗
V �� V ∗

G2

commutes, for all elements v ∈ dom(hV), (t2V ◦ hV)(v)∝H t1V (v), and for all
elements e ∈ dom(hE), ((t2E◦hE)(e), t1E(e)) ∈ redef∗. If (t2E◦hE)(e) = t1E(e)
for all elements e ∈ dom(hE), the morphism is said to be strict.

A graph morphism is a mapping which preserves hyperarcs origins and tar-
gets. Ordinary typed graph morphisms, however, cannot describe correctly mor-
phisms on object-oriented systems because the existing inheritance relation
among objects causes that manipulations defined for objects of a certain kind
are valid to all objects derived from it. So, an object can be viewed as not being
uniquely typed, but having a type set (the set of all types it is connected via
isa∗).

The meaning of the connection of two elements x ��� y by the relation
isa is the usual: in any place that an object of type y is expected, an object
of type3 x can appear, since an object of type x is also an object of type y.
A hierarchical graph morphism reflects this situation, since two nodes can be
identified by the morphism as long as they are connected in the reflexive and
transitive closure of isa within the type hierarchy. Similarly, two arcs can be
identified by a hierarchical graph morphism if their types are related by the
method redefinition relation. Since attribute arcs are only related (under redef∗)
to themselves, two of them can only be identified if they have the same type
in the underlying object-model graph. A message, however, can be identified
with any other message which redefines it. The reason for this will be clear in
Section 3.

It should be noticed that the arity of methods is preserved by the morphism,
since two hyperarcs can only be mapped if they have the same number of pa-
rameters with compatible types.
3 The word type is used here in a less strict sense than it is used in programming

language design texts. Although the literature makes a difference on subtyping and
inheritance relationships between objects [2], such differentiation will not be made
here, since this work is being done in an upper level of abstraction. It is hoped that
this will not cause any confusion to the reader.

22 Ana Paula Lüdtke Ferreira and Leila Ribeiro

Lemma 1. Hierarchical graph morphisms are closed under composition.

Proof. Hierarchical graph morphisms are componentwise composable. Given two
hierarchical graph morphisms f = 〈fV , fE〉 : GH

1 → GH
2 and h = 〈hV , hE〉 :

GH
2 → GH

3 , the compound morphism h ◦ f = 〈hV ◦ fV , hE ◦ fE〉 : GH
1 → GH

3

exists, since morphisms on SetP are composable.
Additionally, for all elements v ∈ dom(fV), (t2V ◦ fV)(v)∝H t1V (v), and for all
elements v ∈ dom(hV), (t3V ◦ hV)(v)∝H t2V (v) (f and g are both hierarchical
graph morphisms). Then, for all v1 ∈ VG1 , (t2V ◦ fV)(v1)∝H t1V (v1), and for
all fV (v1) ∈ VG2 , (t3V ◦ hV ◦ fV)(v1)∝H (t2V ◦ fV)(v1). Since ∝H is transitive,
(t3V ◦hV ◦fV)(v1)∝H t1V (v1). Thus, h◦f is a hierarchical graph morphism.
�

Lemma 2. Composition of hierarchical graph morphisms is associative.

Proof. Composition of hierarchical graph morphisms is done componentwise,
and each of the components are functions. Since composition of partial functions
and the transitivity of binary relations are associative, so is the composition of
hierarchical graph morphisms.
�

Proposition 1 (Category GraphP(HM)). There is a category GraphP
(HM) which has hierarchical graphs over a type hierarchy HM as objects and
hierarchical graph morphisms as arrows.

Proof. Lemma 1 proves that the composition of two hierarchical graph mor-
phisms is a hierarchical graph morphism. Lemma 2 states that composition of
hierarchical graph morphisms is associative.

The identity morphism for a given hierarchical graph G is the trivial mor-
phism idG = 〈idV , idE〉 : G → G, where for any vertex v ∈ VG, idGV (v) = v,
and for any edge e ∈ EG, idGE(e) = e. So, given any hierarchical graph mor-
phism h = 〈hV , hE〉 : GH

1 → GH
2 , for any vertex v ∈ VG1 , (hV ◦ idG1V)(v) =

hV (idG1V (v)) = hV (v) = idG2V (hV (v)) = (idG2V ◦ hV)(v). Similarly, for any
edge e ∈ EG1 , (hE ◦ idG1E)(e) = hE(idG1E(e)) = hE(e) = idG2E(hE(e)) =
(idG2E ◦ hE)(e).

The existence of identity, composition, and associativity of composition
proves that GraphP(HM) is a category.
�

Since GraphP(HM) is a category, the existence of categorical constructs
within it can be investigated. However, the general definition of hierarchical
graphs must be narrowed to correctly represent object-oriented systems. To
achieve this goal, some additional functions and structures will be defined next.

Definition 7 (Attribute set function). Given a hierarchical graph 〈G, t,
HM〉, where 〈M, isa, redef〉 is a type hierarchy, let the attribute set function
attrG : VG → 2EG return for each vertex v ∈ VG the set {e ∈ EG | srcG(e) =
v ∧ labM(t(e)) = attr}.

The extended attribute set function, attr∗M : VM → 2EM , returns for each
vertex v ∈ VM the set {e ∈ EM | labM(e) = attr∧srcM(e) = v′∧(v, v′) ∈ isa∗}.

Towards Object-Oriented Graphs and Grammars 23

The attribute set function and the extended attribute set function will help
define some other functions, relations and structures along this text. Basically,
for any vertex v of a hierarchical graph, the attribute set function returns the set
of all attribute arcs having v as their source. Similarly, given a type hierarchy,
and a vertex v of its object-model graph, the extended attribute set function
returns the set of all attribute arcs whose source is v or any other vertex to
which v connected via isa∗.

Definition 8 (Message set function). Given a hierarchical graph 〈G, t,HM〉,
where 〈M, isa, redef〉 is a type hierarchy, let the message set function msgG :
VG → 2EG returns for each vertex v ∈ VG the set {e ∈ EG | tarG(e) = v ∧
labM(tE(e)) = msg}.

The extended message set function, msg∗M : VM → 2EM , returns for each
vertex v ∈ VM the set {e ∈ EM|msg | tarM(e) = v′ ∧ (v, v′) ∈ isa∗ ∧ ∀(e′ �= e) ∈
EM|msg((v, tar(e′)) ∈ isa∗, (tar(e′), v′) ∈ isa∗ → (e′, e) /∈ redef∗)}.

The message set function returns all messages an object within an hierarchi-
cal hypergraph is currently receiving, while the extended message set function
returns all messages an object of a specific type may receive. Notice that message
redefinition within objects, expressed by the relation redef∗ on the type hierar-
chy, must be taken into account, since the redefinition of a class method implies
that only the redefined method can be seen within the scope of a specialized
class.

For any hierarchical graph 〈G, t,HM〉 there is a total function t∗E : 2EG →
2EM , which can be viewed as the extension of the typing function to edge (or
node) sets. The function t∗E , when applied to a set E ∈ 2EG, returns the set
{tE(e) ∈ EM|e ∈ E} ∈ 2EM. Notation t∗E |msg and t∗E |attr will be used to denote
the application of t∗E to sets containing exclusively message and attribute (re-
spectively) hyperarcs. Now, given the functions already defined, we can present
a definition of the kind of graph which represents an object-oriented system.

Definition 9 (Object-oriented graph). Let HM be a type hierarchy. A hi-
erarchical hypergraph 〈G, t,HM〉 is an object-oriented graph if and only if all
squares in the diagram (in Set)

2EG
�

t∗E |msg

��

VG�

tV

��

�msgG�� � attrG �� 2EG
�

t∗E |attr
��

2EM VM
�msg∗

M�� � attr∗
M �� 2EM

commute. If, for each v ∈ VG, the function t∗E |attr(attrG(v)) is injective, GH is
said a strict object-oriented graph. If t∗E |attr(attrG(v)) is also surjective, GH is
called a complete object-oriented graph.

It is important to realize what sort of message is allowed to target a ver-
tex on an object-oriented graph. The left square on the diagram presented in
Definition 9 ensures that an object can only have a message edge targeting it

24 Ana Paula Lüdtke Ferreira and Leila Ribeiro

if that message is typed over one of those returned by the extended message
set function. It means that the only messages allowed are the least ones in the
redefinition chain to which the typing message belongs. This is compatible with
the notion of dynamic binding, since the method actually called by any object is
determined by the actual object present at a certain point of the computation.

Object-oriented graphs can also be strict or complete. Strict graphs require
that nodes do not possess two arcs typed as the same element on the underlying
object-model graph. The requirement concerned the injectivity of t∗E guarantees
that there will be no such exceeding attribute connected to any vertex. For
an object-oriented graph to be complete, however, it is also necessary that all
attributes defined on all levels along the type hierarchy (via relation isa∗) are
present. The definition of a complete object-oriented graph is coherent with the
notion of inheritance within object-oriented framework, since an object inherits
all attributes, and exactly those, from its primitive classes.

Object-oriented systems are often composed by a large number of objects,
which can receive messages from other objects (including themselves) and react
to the messages received. Object-oriented graphs also may have as many objects
as desired, since the number and type of attributes (arcs) in each object (vertex)
is limited, but the number and type of vertices in the graph representing the
system is restricted only by the typing morphism.

Object-oriented graphs are just a special kind of hierarchical hypergraphs. It
can be proved the existence of a subcategory of GraphP(HM), OOGraphP
(HM), which has object-oriented graphs as objects and hierarchical graph mor-
phisms as arrows.

3 Object-Oriented Graph Grammars

Complete object-oriented graphs (Definition 9) can model an object-oriented
system. However, in order to capture the system evolution through time, we
need a graph grammar formalism to be introduced.

A graph production, or simply a rule, specifies how a system configuration
may change. A rule has a left-hand side and a right-hand side, which are both
strict object-oriented graphs, and a hierarchical graph morphism to determine
what should be altered. Intuitively, a system configuration change occurs in the
following way: all items belonging to the left-hand side must be present at the
current state to allow the rule to be applied; all items mapped from the left
to the right-hand side (via the graph morphism) will be preserved; all items
not mapped will be deleted from the current state; and all items present in the
right-hand side but not in the left-hand side will be added to the current state
to obtain the next one.

Rule restrictions may vary, depending on what is intended for them to repre-
sent/implement. Unrestricted rules give rise to a very powerful system in terms
of representation capabilities, but they also lead to many undecidable problems.
Restrictions are needed not just to make interesting problems decidable (which
is important per se) but also to reflect restrictions presented in the real system

Towards Object-Oriented Graphs and Grammars 25

we are modeling. All rule restrictions presented in this text are object-oriented
programming principles, as described next.

First of all, no object may have its type altered nor can any two different
elements be identified by the rule morphism. This is accomplished by requiring
the rule morphism to be injective on nodes and arcs (different elements cannot
be merged by the rule application), and the mapping on nodes to be invertible
(object types are not modified).

The left-hand side of a rule is required to contain exactly one element of type
message, and this particular message must be deleted by the rule application,
i.e., each rule represents an object reaction to a message which is consumed in the
process. This demand poses no restriction, since systems may have many rules
specifying reactions to the same type of message (non-determinism) and many
rules can be applied in parallel if their triggers are present at an actual state
and the referred rules are not in conflict [4]. Systems’ concurrent capabilities are
so expressed by the grammar rules, which can be applied concurrently (accord-
ingly to the graph grammar semantics), so one object can treat any number of
messages at the same time.

Additionally, only one object having attributes will be allowed on the left-
hand side of a rule, along with the requirement that this same object must be
the target of the above cited message. This restriction implements the principle
of information hiding, which states that the internal configuration (implemen-
tation) of an object can only be visible, and therefore accessed, by itself.

Finally, although message attributes can be deleted (so they can have their
value altered4), a corresponding attribute must be added to the rule’s right-hand
side, in order to prevent an object from gaining or losing attributes along the
computation. Notice that this is a rule restriction, for if a vertex is deleted,
its incident edges will also be deleted. This situation will be explored next, as
different kinds of rules are defined.

Definition 10 (Basic object-oriented rule). A basic object-oriented rule
is a tuple 〈LH, r, RH〉 where LH = 〈L, tL,HM〉 and RH = 〈R, tR,HM〉 are
strict object-oriented graphs and r = 〈rV , rE〉 : LH → RH is a hierarchical graph
morphism holding the following properties:

– rV is injective and invertible, rE is injective,
– {v ∈ VL|e ∈ EL, srcL(e) = v, labM(tL(e)) = attr} is a singleton, whose

unique element is called attribute vertex,
– {e ∈ EL|labM(tL(e)) = msg} is a singleton, whose unique element is called

left-side message, having as target object the attribute vertex,
– the left-side message does not belong to the domain of r, and
– for all v ∈ VL there is a bijection b : {e ∈ EL|srcL(e) = v, labM(tL(e)) =

attr} ↔ {e ∈ ER|srcR(e) = rV (v), labM(tR(e)) = attr}, such that tR◦b = tL
and tL ◦ b−1 = tR.

4 Graphs can be enriched with algebras in order to deal with sorts, values and opera-
tions. Although we do not develop these concepts here, they can easily be added to
this framework.

26 Ana Paula Lüdtke Ferreira and Leila Ribeiro

Different kinds of rules can be defined based on basic object-oriented rules.
We define three of them: strict object-oriented rules (Definition 11) do not al-
low for object creation of deletion; object-oriented rules with creation (Defini-
tion 12) allow the creation of new objects; and general object-oriented rules
(Definition 13) permit both creation and deletion operations.

Definition 11 (Strict object-oriented rule). A strict object-oriented rule is
a basic object-oriented rule 〈LH, r, RH〉 where the hierarchical graph morphism
r = 〈rV , rE〉 is such that rV is total and surjective.

A strict object-oriented rule presents only the restrictions connected to the
object-oriented programming paradigm, along with restrictions to assure that
no object is ever created or deleted along the computation. This goal is achieved
by requiring a bijection between the vertex sets.

Definition 12 (Object-oriented rule with object creation). An object-
oriented rule with object creation is a basic object-oriented rule 〈LH, r, RH〉
where rV is total, and for all v ∈ VR, if v /∈ im(rV) the diagram

2ER
�

t∗E |msg

��

VR�

tV

��

�msgR�� � attrR �� 2ER

t∗E |attr
��

2EM VM
�msg∗

M�� � attr∗
M �� 2EM

��

commutes and t∗E is a bijection.

Object-oriented rules with object creation differ from strict object-oriented
rules in two aspects: rV is not necessarily surjective, so new vertices can be
added by the rule, and all created vertices must have exactly the attributes
defined along its type hierarchy.

Definition 13 (General object-oriented rule). A general object-oriented
rule is a object-oriented rule with object creation 〈LH, r, RH〉 where dom(rV) =
VL or dom(rV) = VL\{attribute vertex}.

General object-oriented rules allow object deletion. Notice, however, that an
object can only delete itself.

Different types of rules give rise to different possible computations. The more
restrictive the rules, the more easier becomes to derive properties from system
computations. Verification of computational power of rules is, however, beyond
the scope of this paper.

Definition 14 (Object-oriented match). Given a strict object-oriented
graph GH and an object-oriented rule 〈LH, r, RH〉, an object-oriented match be-
tween LH and GH is a hierarchical graph morphism m = 〈mV , mE〉 : LH → GH

such that mV is total, mE is total and injective, and for any two elements
a, b ∈ L, if m(a) = m(b) then either a, b ∈ dom(r) or a, b /∈ dom(r).

Towards Object-Oriented Graphs and Grammars 27

The role of a match is to detect a situation when a rule can be applied. It
occurs whenever a rule’s left-hand side is present somewhere within the system
graph. Notice that distinct vertices can be identified by the matching morphism.
This is sensible, since an object can point to itself through one of its attributes, or
pass itself as a message parameter to another object. However, it would make no
sense to identify different attributes or messages, so the edge component of the
matching morphism is required to be injective. Additionally, preserved elements
cannot be identified with deleted elements.

The purpose of method redefinition is to take advantage of the polymorphism
concept through the mechanism known as dynamic binding. Dynamic binding is
usually implemented in object-oriented languages by a function pointer virtual
table, from which it is decided which method should be called at that execution
point. This decision is modelled in our work by a retyping message function.

Definition 15 (Retyping function ret). Let HM = 〈M, isa, redef〉 be a
type hierarchy and let GH = 〈G, t,HM〉 be a hierarchical graph. The retyping
function, when applied over a message hyperedge m ∈ EG, i.e., (labM◦tE)(m) =
msg, and over a node v ∈ VG such that (tV (v), (tV ◦ tarG)(m)) ∈ isa∗, returns
a hyperedge m′ where srcG(m′) = srcG(m), tarG(m′) = v e tE(m′) = e ∈
(msg∗M ◦ tV)(v), such that (e, tE(m)) ∈ redef∗.

It can be shown that the retyping function is well defined (i.e., the set
(msg∗M ◦ tV)(v) is always a singleton). It can also be shown that the message
passed to the function is retyped as the least type within the redefinition chain
(with respect relation redef∗) to which that message belongs.

A derivation step, or simply a derivation, will represent a discrete system
change in time, i.e., a rule application over an actual system specified as a graph.

Definition 16 (Object-oriented derivation). Given a strict object-oriented
graph GH = 〈G, tG,HM〉, an object-oriented rule 〈〈L, tL,HM〉, r, 〈R, tR,HM〉〉,
and an object-oriented match m : LH → GH, their object-oriented derivation
can be computed in two steps:

1. Construct the pushout of r : L → R and m : L → G in GraphP, 〈H, r′ :
G → H, m′ : R → H〉 [4];

2. construct the strict object-oriented graph HH = 〈H, tH ,HM〉 where, for each
v ∈ VH , tH(v) = glbisa∗(r′−1(v) ∪ m′−1(v)), for each e ∈ EH |attr, tH(e) =
glbredef∗(r′−1(e)∪m′−1(e)), for each e ∈ EH |msg, tH(e) = tG(e) if r′(x) = e

for some x ∈ EG, or tH(e) = ret(m′−1(e), tarH(e)) if m′(x) = e for some
x ∈ ER.

The tuple 〈HH, r′, m′〉 is then the resulting derivation of rule r at match m.

An object-oriented derivation collapses the elements identified simultaneously
by the rule and by the match. Element typing, needed to transform the resulting
hypergraph into an object-oriented graph is done by getting the greatest lower
bound (with respect the partial order relations isa∗ and redef∗) of the elements

28 Ana Paula Lüdtke Ferreira and Leila Ribeiro

mapped by morphisms m′ and r′ to the same element. The basic object-oriented
rule restriction concerning object types (which cannot be altered by the rule)
assures that it always exist. Messages, however, need some extra care. Since
graph L presents a single message, which is deleted by the rule application, a
message on H comes from either G or R. If it comes from G, which is an object-
oriented graph itself, no retyping is needed. However, if it comes from R, in order
to assure that H is also an object-oriented graph, it must be retyped according
to the type of the element it is targeting on the graph H .

SomeFigure [Figure]draw
has [consists]

SomeShape [shape]

SomeFigure [Figure]

SomeShape [shape] draw

MyDrawing [Drawing]draw

 MyEllipse [ellipse]

MyDrawing [Drawing]

MyEllipse [ellipse] draw

m

r

m’

r’
has [consists]

has [consists]

has [consists]

Fig. 3. Dynamic binding as message retyping

Figure 3 shows a situation where the need for a message retyping is made
clear. As usual, the typing morphism is shown between brackets. Rule r portrays
a common situation: the action resulting from a method calling is the calling of
another method from one of the object’s attributes. Here, a figure is drawn by
making its constituent shape be drawn. However, since the rule’s left-hand side is
matched to a drawing which has an ellipse as constituent, and since the method
Draw is redefined within that level, the resulting message cannot be typed as a
shape Draw, but as an ellipse Draw (indicated by the only explicit arrow from R
to H). Notice that m′ is still a hierarchical graph morphism (although it is not
strict). Hence, message retyping is the construction that implements dynamic
binding on the computational process.

It can be shown that the an object-oriented derivation is a pushout structure
in the category OOGraphP(HM).

Given the graph structures presented earlier and the rules to be applied to
them, some interesting properties can be demonstrated. Closure properties are
especially interesting, such as the ones expressed by the theorems below.

Theorem 1. The class of complete object-oriented graphs is closed under object-
oriented derivation using strict object-oriented rules.

Proof. (sketch) Let GH be a complete object-oriented graph, 〈LH, r, RH〉 be a
strict object-oriented rule and 〈LH, m, GH〉 be an object-oriented match, and

Towards Object-Oriented Graphs and Grammars 29

〈LH, r′, m′〉 the resulting derivation of rule r at match m. Being rV is a total
bijection, for any v ∈ VL tL(v) = tR(rV (v)) holds. Since m is a hierarchical graph
morphism, for any vertex v ∈ dom(rV)∩dom(mV), (tG ◦mV (v), tR ◦ rV (v))isa∗,
and so tH ◦ r′V ◦ mV (v) = tH ◦ m′

V ◦ rV (v) = tG ◦ mV (v). So, VH is isomorphic
to VG.

Now, let b be the bijection existing between the attribute edges from AL ⊆
EL and AR ⊆ ER defined as the last basic object-oriented rule restriction in
Definition 10. Notice b is defined over all attribute edges of both graphs L and
R. The match m between the rule’s left-side and graph G is total on vertices and
arcs, and injective on arcs, and by the characteristics of the pushout construction,
function m′ is also total and injective on arcs. Notice that all edges from G are
either belonging to the image of mE (the mapped edges) or not (the context
edges). Since the context edges are mapped unchanged to the graph H (and so
there is a natural bijection between them), it must exist a bijection B : EG ↔ EH

which implies the existence of the trivial bijection 2B : 2EG → 2EH , and since
the sets VG and VH are equal (up to isomorphism), it can be concluded that HH

is a complete object-oriented graph.
�
Theorem 2. The class of complete object-oriented graphs is closed under object-
oriented derivation using object-oriented rules with object creation.

Proof. (sketch) The same reasoning applied to the proof of Theorem 1 can be
used to show that, in this case, VG is isomorphic to a subset of VH . The additional
vertices of VH are those created by the rule application (i.e., those isomorphic to
the set {v ∈ VR | v /∈ im(rV)}). But since all v /∈ im(rV) is required to behave
like a complete object-oriented graph when considered alone, so its inclusion on
H will assure, along with Theorem 1, that it is also a complete object-oriented
graph.
�
Theorem 3. The class of complete object-oriented graphs is not closed under
object-oriented derivation using general object-oriented rules.

Proof. (sketch) This theorem can be easily proven by a counterexample, since the
deletion of a node causes the deletion on any of its incident arcs. The resulting
graph will not be a complete object-oriented graph anymore.
�

Theorem 3 describes a situation known as deletion in unknown contexts. This
situation is very common in distributed systems, where the deletion of an object
causes a number of dangling pointers to occur in the system as a whole. So, rules
that allow object deletion can be used to find this kind of undesirable situations
within a specification.

An interesting side effect derived from the use of rules that allow object
deletion is that any dangling pointer would cause a edge cease to exist. In this
case, any rule which takes that particular edge into consideration can no longer
be applied (for no match can be found for that rule). When modeling system
execution, this situation leads to the prevention of an execution runtime error,
which would occur if an attempt to access an object which is no longer there is
made.

30 Ana Paula Lüdtke Ferreira and Leila Ribeiro

Definition 17 (Object-oriented graph grammar). An object-oriented
graph grammar is a tuple 〈IH, PH,HM〉 where IH is a complete object-oriented
graph, PH is a finite set of object-oriented rules, and HM is a type hierarchy.

Graph IH portrays the initial system configuration. The system can evolve
through the application of the productions in the grammar. All possible system
future configurations are given by the set {GH | IH ⇒∗ GH}.

4 Conclusions

This work presented a first step towards a very high level and intuitive for-
mal framework compatible with the main principles of object-oriented specifica-
tion and programming. More specifically it presents, in terms of object-oriented
graphs and morphisms, a way of defining classes, which can be primitive or
specialized from others (though the isa relationship) together with a graph
transformation-based model of computation compatible with polymorphism and
dynamic binding, which are fundamental in the object-oriented programming
model of execution.

A significant advantage to the use of a formal framework for object-oriented
system specification is in the ability to apply rigorous inference rules so as to
allow reasoning with the specifications and deriving conclusions on their prop-
erties. Fixing the sort of rules to be used within a graph grammar, properties
regarding the computational model can be derived. Being this a formal frame-
work, the semantics of operations (such as system and grammar composition)
can also be derived.

Graph grammars are well suited for system specification, and object-oriented
graph grammars, as presented in this text, fill the need for the key features of
object-oriented systems be incorporated into a formal framework.

References

1. Marc Andries, Gregor Engels, Annegret Habel, Berthold Hoffmann, Hans-Jorg Kre-
owski, Sabine Kuske, Detlef Plump, Andy Schurr, and Gabriele Taentzer. Graph
transformation for specification and programming. Science of Computer Program-
ming, 34:1–54, 1999.

2. W. R. Cook, W. L. Hill, and P. S. Canning. Inheritance is not subtyping. In
POPL’90 - 17th Annual ACM Symposium on Principles of Programming Lan-
guages. Kluwer Academic Publishers, 1990.

3. Fernando Lúıs Dotti and Leila Ribeiro. Specification of mobile code using graph
grammars. In Formal Methods for Open Object-Based Distributed Systems IV.
Kluwer Academic Publishers, 2000.

4. H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner, and A. Corradini.
Algebraic approaches to graph transformation. part ii: single pushout approach
and comparison with double pushout approach. In G. Rozemberg, editor, Hand-
book of Graph Grammars and Computing by Graph Transformation, volume 1 –
Foundations, chapter 4, pages 247–312. World Scientific, Singapore, 1996.

Towards Object-Oriented Graphs and Grammars 31

5. H. Ehrig, M. Pfender, and H. J. Schneider. Graph grammars: an algebraic ap-
proach. In 14th Annual IEEE Symposium on Switching and Automata Theory,
pages 167–180, 1973.

6. J. L. Fiadeiro, C. Sernadas, T. Maibaum, and G. Saake. Proof-theoretic seman-
tics of object-oriented specification constructs. In W. Kent, R. Meersman, and
S. Khosla, editors, Object-Oriented Databases: Analysis, Design and Construction,
pages 243–284. North-Holland, 1991.

7. Annegret Habel. Hyperedge Replacement: Grammars and Languages, volume 643
of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1992.

8. Aline Brum Loreto, Leila Ribeiro, and Laira Vieira Toscani. Decodability and
tractability of a problem in object-based graph grammars. In 17th IFIP World
Computer Congress - Theoretical Computer Science, Montreal, 2002. Kluwer.

9. Michael Löwe. Extended Algebraic Graph Transformation. PhD thesis, Technischen
Universität Berlin, Berlin, Feb 1991.

10. Ugo Montanari, Marco Pistore, and Francesca Rossi. Modeling concurrent, mobile
and coordinated systems via graph transformations. In H. Ehrig, H-J. Kreowski,
U. Montanari, and G. Rozemberg, editors, Handbook of Graph Grammars and
Computing by Graph Transformation, volume 3 – Concurrency, Parallelism and
Distribution, chapter 4. World Scientific, 2000.

11. George A. Papadopoulos. Concurrent object-oriented programming using term
graph rewriting techniques. Information and Software Technology, (38):539–547,
1996.

12. Leila Ribeiro. Parallel Composition and Unfolding Semantics of Graph Grammars.
Phd thesis, Technische Universität Berlin, Berlin, June 1996. 202p.

13. David Ungar, Craig Chambers, Bay-Wei Chang, and Urs Hölzle. Organizing pro-
grams without classes. Lisp and Symbolic Computation, 3(4), 1991.

	1 Introduction
	2 Object-Oriented Graphs
	3 Object-Oriented Graph Grammars
	4 Conclusions
	References

