
A Rewriting Based Model
for Probabilistic Distributed Object Systems

Nirman Kumar, Koushik Sen, José Meseguer, and Gul Agha

Department of Computer Science
University of Illinois at Urbana-Champaign
{nkumar5,ksen,meseguer,agha}@cs.uiuc.edu

Abstract. Concurrent and distributed systems have traditionally been
modelled using nondeterministic transitions over configurations. The
nondeterminism provides an abstraction over scheduling, network delays,
failures and randomization. However a probabilistic model can capture
these sources of nondeterminism more precisely and enable statistical
analysis, simulations and reasoning. We have developed a general seman-
tic framework for probabilistic systems using probabilistic rewriting. Our
framework also allows nondeterminism in the system. In this paper, we
briefly describe the framework and its application to concurrent object
based systems such as actors. We also identify a sufficiently expressive
fragment of the general framework and describe its implementation. The
concepts are illustrated by a simple client-server example.

Keywords: Rewrite theory, probability, actors, Maude, nondetermin-
ism.

1 Introduction

A number of factors, such as processor scheduling and network delays, failures,
and explicit randomization, generally result in nondeterministic execution in
concurrent and distributed systems. A well known consequence of such non-
determinism is an exponential number of possible interactions which in turn
makes it difficult to reason rigorously about concurrent systems. For example,
it is infeasible to use techniques such as model checking to verify any large-scale
distributed systems. In fact, some distributed systems may not even have a finite
state model: in particular, networked embedded systems involving continuously
changing parameters such as time, temperature or available battery power are
infinite state.

We believe that a large class of concurrent systems may become amenable
to a rigorous analysis if we are able to quantify some of the probabilities of
transitions. For example, network delays can be represented by variables from
a probabilistic distribution that depends on some function of the system state.
Similarly, available battery power, failure rates, etc., may also have a proba-
bilistic behavior. A probabilistic model can capture the statistical regularities in
such systems and enable us to make probabilistic guarantees about its behavior.

E. Najm, U. Nestmann, and P. Stevens (Eds.): FMOODS 2003, LNCS 2884, pp. 32–46, 2003.
c© IFIP International Federation for Information Processing 2003

A Rewriting Based Model for Probabilistic Distributed Object Systems 33

We have developed a model based on rewriting logic [11] where the rewrite
rules are enriched with probability information. Note that rewriting logic pro-
vides a natural model for object-based systems [12]. The local computation of
each object is modelled by rewrite rules for that object and one can reason about
the global properties that result from the interaction between objects: such inter-
actions may be asynchronous as in actors, or synchronous as in the π-calculus. In
[9] we show how several well known models of probabilistic and nondeterministic
systems can be expressed as special cases of probabilistic rewrite theories. We
also propose a temporal logic to express properties of interest in probabilistic
systems. In this paper we show how probabilistic object systems can be modelled
in our framework. Our probabilistic rewriting model is illustrated using a client-
server example. The example also shows how nondeterminism, for which we do
not have the probability distributions, is represented naturally in our model.
Nondeterminism is eventually removed by the system adversary and converted
into probabilities in order to define a probability space over computation paths.

The Actor model of computation [1] is widely used to model and reason
about object-based distributed systems. Actors have previously been modelled
as rewrite theories [12]. Probabilistic rewrite theories can be used to model and
reason about actor systems where actors may fail and messages may be dropped
or delayed and the associated probability distributions are known (see Section 3).

The rest of this paper is organized as follows. Section 2 provides some back-
ground material on membership equational logic [13] and rewriting [11] as well as
probability theory. Section 3 starts by giving an intuitive understanding of how
a step of computation occurs in a probabilistic rewrite theory. We then introduce
an example to motivate the modelling power of our framework and formalize the
various concepts. In Section 4 we define an important subclass of probabilistic
rewrite theories, and in Section 5, we describe its Maude implementation. The
final section discusses some directions for future research.

2 Background and Notation

A membership equational theory [13] is a pair (Σ, E), with Σ a signature con-
sisting of a set K of kinds, for each k ∈ K a set Sk of sorts, a set of operator
declarations of the form f : k1 . . . kn → k, with k, k1, . . . , kn ∈ K and with E a
set of conditional Σ-equations and Σ-memberships of the form

(∀−→x) t = t′ ⇐ u1 = v1 ∧ . . . ∧ un = vn ∧ w1 : s1 ∧ . . . ∧ wm : sm

(∀−→x) t : s⇐ u1 = v1 ∧ . . . ∧ un = vn ∧ w1 : s1 ∧ . . . ∧ wm : sm

The −→x denote variables in the terms t, t′, ui, vi and wj above. A membership
w : s with w a Σ-term of kind k and s ∈ Sk asserts that w has sort s. Terms
that do not have a sort are considered error terms. This allows membership
equational theories to specify partial functions within a total framework. A Σ-
algebra B consists of a K-indexed family of sets X = {Bk}k∈K , together with

1. for each f : k1 . . . kn → k in Σ a function fB : Bk1 × . . .×Bkn → Bk

2. for each k ∈ K and each s ∈ Sk a subset Bs ⊆ Bk.

34 Nirman Kumar et al.

We denote the algebra of terms of a membership equational theory by TΣ . The
models of a membership equational theory (Σ, E) are those Σ-algebras that
satisfy the equations E. The inference rules of membership equational logic are
sound and complete [13]. Any membership equational theory (Σ, E) has an ini-
tial algebra of terms denoted TΣ/E which, using the inference rules of member-
ship equational logic and assuming Σ unambiguous [13], is defined as a quotient
of the term algebra TΣ by

• t ≡E t′ ⇔ E 	 (∀∅) t = t′

• [t]≡E
∈ TΣ/E,s ⇔ E 	 (∀∅) t : s

In [2] the usual results about equational simplification, confluence, termination,
and sort-decreasingness are extended in a natural way to membership equational
theories . Under those assumptions a membership equational theory can be exe-
cuted by equational simplification using the equations from left to right, perhaps
modulo some structural (e.g. associativity, commutativity and identity) axioms
A. We denote the algebra of terms simplified by equations and structural axioms
as TΣ,E∪A and the isomorphic algebra of equivalence classes modulo axioms A,
of equationally simplified terms by CanΣ,E/A. The notation [t]A represents the
equivalence class of a term t fully simplified by the equations.

In a standard rewrite theory [11], transitions in a system are described by
labelled rewrite rules of the form

l : t(−→x) −→ t′(−→x) if C(−→x)

Intuitively, a rule of this form specifies a pattern t(−→x) such that if some fragment
of the system’s state matches that pattern and satisfies the condition C, then
a local transition of that state fragment, changing into the pattern t′(−→x) can
take place. In a probabilistic rewrite rule we add probability information to such
rules. Specifically, our proposed probabilistic rules are of the form,

l : t(−→x) −→ t′(−→x ,−→y) if C(−→x) with probability π(−→x).

In the above, the set of variables in the left-hand side term t(−→x) is −→x , while some
new variables −→y may be present in the term t′(−→x ,−→y) on the right-hand side.
Of course it is not necessary that all of the variables in −→x occur in t′(−→x ,−→y).
The rule will match a state fragment if there is a substitution θ for the variables−→x that makes θ(t) equal to that state fragment and the condition θ(C) is true.
Because the right-hand side t′(−→x ,−→y) may have new variables−→y , the next state is
not uniquely determined: it depends on the choice of an additional substitution ρ
for the variables −→y . The choice of ρ is made according to the probability function
π(θ), where π is not a fixed probability function, but a family of functions: one
for each match θ of the variables −→x .

The Maude system [4, 5] provides an execution environment for membership
equational and rewrite theories. The Full Maude [6] library built on top of the
Core Maude environment allows users to specify object oriented modules in a
convenient syntax. Several examples in [12, 5] show specifications of object based

A Rewriting Based Model for Probabilistic Distributed Object Systems 35

systems in Maude. The code for our example in Section 3 is written in the syntax
of Maude 2.0 [5].

To succinctly define probabilistic rewrite theories, we use a few basic notions
from axiomatic probability theory. A σ-algebra on a set X is a collection F of
subsets of X, containing X itself and closed under complementation and finite
or countably infinite unions. For example the power set P(X) of a set X is a
σ-algebra on X. The elements of a σ-algebra are called events. We denote by
BR the smallest σ-algebra on R containing the sets (−∞, x] for all x ∈ R. We
also remind the reader that a probability space is a triple (X,F , π) with F a
σ-algebra on X and π a probability measure function, defined on the σ-algebra
F which evaluates to 1 on X and distributes by addition over finite or countably
infinite union of disjoint events. For a given σ-algebra F on X, we denote by
PFun(X,F) the set

{π | (X,F , π) is a probability space}
Definition 1 (F-Cover). For a σ-algebra F on X, an F-cover is a function
α : X → F , such that ∀x ∈ X x ∈ α(x).

Let π be a probability measure function defined on a σ-algebra F on X, and
suppose α is an F-cover. Then notice that π ◦ α naturally defines a function
from X to [0, 1]. Thus, for example, for X = R and F = BR, we can define α
to be the function that maps the real number x to the set (−∞, x]. With X a
finite set and F = P(X), the power set of X, it is natural to define α to be the
function that maps x ∈ X to the singleton {x}.

3 Probabilistic Rewrite Theories
A probabilistic rewrite theory has an interleaving execution semantics. A step of
computation changes a term [u]A to [v]A by the application of a single rewrite
rule on some subterm of the given canonical term [u]A. Recall the form of a
probabilistic rewrite rule as described in the previous section. Firstly, all con-
text, rule, substitution (for the variables −→x) triples arising from possible ap-
plications of rewrite rules (see definition 6) to [u]A are computed. One of them
([C]A, r, [θ]A) (for the justification of the A subscript see definitions 2, 3 and 5) is
chosen nondeterministically. This step essentially represents the nondeterminism
in the system. After that has been done, a particular substitution [ρ]A is chosen
probabilistically for the new variables −→y and [ρ]A along with [θ]A, is applied to
the term t′(−→x ,−→y) and placed inside the context C to obtain the term [v]A. The
choice of the new substitution [ρ]A is from the set of possible substitutions for−→y . The probabilities are defined as a function of [θ]A. This gives the framework
great expressive power. Our framework can model both nondeterminism and
probability in the system. Next we describe our example, model it as an object
based rewrite theory and indicate how the rewrite rules model the probabilities
and nondeterminism.

A Client-Server Example. Our example is a situation where a client is send-
ing computational jobs to servers across a network. There are two servers S1 and

36 Nirman Kumar et al.

pmod QOS-MODEL is
. . .
vars L N m1 m2: Nat.
vars Cl Sr Nw: Oid.
var i: Bit.
vars C Q: Configuration.
var M: Msg.
op ← : Oid Nat → Msg.
class Client |sent:Nat, svc1:Nat, svc2:Nat.
class Network |soup:Configuration.
class Server |queue:Configuration.
ops H Nt S1 S2: → Oid.
ops acq1 acq2: → Msg.
prl [req]:〈Cl:Client|sent:N , svc1:m1, svc2:m2〉〈Nw: Network|soup:C〉⇒
〈Cl: Client|sent:(N + 1), svc1:m1, svc2:m2〉〈Nw: Network|soup:C (Sr ← L)〉.

cprl [acq]:〈Cl:Client|svc1:m1, svc2:m2〉〈Nw:Network|soup:M C〉⇒
〈Cl:client|svc1:m1 + δ(i, M, 1), svc2:m2 + δ(i, M, 2)〉〈Nw:Network|soup:C〉
if acq(M).

prl [deliver]:〈Nw:Network|soup:(Sr ← L) C〉〈Sr:Server|queue:Q〉⇒
〈Nw:Network|soup:C〉〈Sr:Server|queue:Q M〉.

prl [process]:〈Sr:Server|queue:(Sr ← L) Q〉〈Nw:Network|soup:C〉 ⇒
〈Sr:Server|queue:Q〉〈Nw:Network|soup:C M〉.

endpm

Fig. 1. A client-server example.

S2. S1 is computationally more powerful than S2, but the network connectivity
to S2 is better (more reliable) than that to S1 and packets to S1 may be dropped
without being delivered, more frequently than packets to S2. The servers may
also drop requests if the load increases beyond a certain threshold. The compu-
tationally more powerful server S1 drops packets with a lower probability than
S2. We would like to reason about a good randomized policy for the client. The
question here is: which server is it better to send packets to, so that a larger
fraction of packets are processed rather than dropped? Four objects model the
system. One of them, the client, sends packets to the two server objects deciding
probabilistically before each send which server to send the packet to. The other
object models a network, which can either transmit the packets correctly, drop
them or deliver them out of order. The remaining two objects are server objects
which either drop a request or process it and send an acknowledgement mes-
sage. The relevant fragment of code specifying the example is given in Figure
1. The client object named H maintains the total number of requests sent in a
variable sent and those which were successfully processed by servers S1, S2 in
variables svc1 and svc2 respectively. Notice that for example in svc1 : m1 the m1
is the value of the variable named svc1. An example term representing a possible
system state is

〈 H : Client | sent : 3, svc1 : 1, svc2 : 0 〉 〈 Nt : Network | soup : (S1 ← 10) 〉
〈 S1 : Server | queue : nil 〉 〈 S2 : Server | queue : (S2 ← 5) 〉

A Rewriting Based Model for Probabilistic Distributed Object Systems 37

The term above of sort Configuration (collection of objects and messages)
represents a multiset of objects combined with an empty syntax (juxtaposition)
multiset union operator that is declared associative and commutative. The client
has sent 3 requests in total, out of which one has already been serviced by S1,
one is yet to be delivered and one request is yet pending at the server S2. The
numbers 10 and 5 represent the measure of the loads in the respective requests.

We discuss the rules labelled req and acq. Henceforward we refer to a rule by
its label. Though not shown in Figure 1, a probabilistic rewrite theory associates
some functions with the rules, defining the probabilities. The rule req models
the client sending a request to one of the servers by putting a message into the
network object’s variable soup. The rule involves two new variables Sr and L
on the right-hand side. Sr is the name of the server to which the request is sent
and L is the message load. A probability function πreq (Cl, N, m1, m2, Nw, C)
associated with the rule req (see definition 4) will decide the distribution of
the new variables Sr and L, and thus the randomized policy of the client. For
example, it can assign higher probability values to substitutions with Sr = S1,
if it finds that m1 > m2; this would model a heuristic policy which sends more
work to the server which is performing better. In this way the probabilities
can depend on the values of m1, m2 (and thus the state of the system). In the
rule labelled acq there is only one new variable i on the right-hand side. That
variable can only assume two values 0, 1 with nonzero probability. 0 means a
message drop, so that δ(0, M, 1) = δ(0, M, 2) = 0, while if i = 1 then the
appropriate svc variable is incremented. The distribution of i as decided by the
function πacq (. . . , M) could depend on M , effectively modelling the network
connectivity. The network drops messages more frequently for M = acq1 (an
acq message from server S1) than it does for M = acq2. Having the distribution
of new variables depend on the substitution gives us the ability to model general
distributions. The associativity and commutativity attribute of the juxtaposition
operator for the sort Configuration essentially allows nondeterminism in the
order of message delivery by the network (since it chooses a message to process,
from the associative commutative soup of messages) and the order of messages
processed by the servers.

The more frequently the rewrite rules for the network object are applied
(which allow it to process the messages in it soup), the more frequently the
acq messages will be delivered. Likewise, the more frequently the rewrite rules
for a particular server are applied, the more quickly will it process its messages.
Thus, during a computation the values m1, m2, which determine the client’s ran-
domized policy, will actually depend not only on the probability that a server
correctly processes the packets and the network correctly delivers requests and
acknowledgments, but also on how frequently the appropriate rewrite rules are
applied. However, the exact frequency of application depends on the nonde-
terministic choices made. We can now see how the nondeterminism effectively
influences the probabilities in the system. As explained later, the nondetermin-
ism is removed (converted into probabilities) by what is called an adversary of
the system. In essence the adversary is like a scheduler which determines the

38 Nirman Kumar et al.

rate of progress of each component. The choice of adversary is important for
the behavior of the system. For example, we may assume a fair adversary that
chooses between its nondeterministic choices equally frequently. At an intuitive
level this would mean that the different parts of the system compute at the
same rate. Thus, it must be understood that the model defined by a probabilis-
tic rewrite theory is parameterized on the adversary. The system modeler must
define the adversary based on an understanding of how frequently different ob-
jects in the system advance. Model checking of probabilistic systems quantifies
over adversaries, whereas a simulation has to fix an adversary.

We now define our framework formally.

Definition 2 (E/A-Canonical Ground Substitution). An E/A-canonical
ground substitution is a substitution θ : −→x → TΣ,E∪A.

Intuitively an E/A-canonical ground substitution represents a substitution of
ground terms from the term algebra TΣ for variables of the corresponding sorts,
so that all of the terms have already been reduced as much as possible by the
equations E and the structural axioms A. For example the substitution 10×2 to
a variable of sort Nat is not a canonical ground substitution, but a substitution
of 20 for the same variable is a canonical ground substitution.

Definition 3 (A-Equivalent Substitution). Two E/A-canonical ground sub-
stitution θ, ρ : −→x → TΣ,E∪A are A-equivalent if and only if ∀x ∈ −→x [θ(x)]A =
[ρ(x)]A.

We use CanGSubstE/A(−→x) to denote the set of all E/A-canonical ground
substitutions for the set of variables −→x . It is easy to see that the rela-
tion of A-equivalence as defined above is an equivalence relation on the set
CanGSubstE/A(−→x). When the set of variables −→x is understood, we use [θ]A to
denote the equivalence class containing θ ∈ CanGSubstE/A(−→x).

Definition 4 (Probabilistic Rewrite Theory). A probabilistic rewrite the-
ory is a 4-tuple R = (Σ, E ∪ A, R, π), with (Σ, E ∪ A, R) a rewrite theory with
the rules r ∈ R of the form

l : t(−→x)→ t′(−→x ,−→y) if C(−→x)

where

• −→x is the set of variables in t.
• −→y is the set of variables in t′ that are not in t. Thus t′ might have variables

coming from the set −→x ∪ −→y but it is not necessary that all variables in −→x
occur in t′.

• C is a condition of the form (
∧

j uj = vj) ∧ (
∧

k wk : sk) , that is, C is a
conjunction of equations and memberships;

and π is a function assigning to each rewrite rule r ∈ R a function

πr : [[C]]→ PFun(CanGSubstE/A(−→y),Fr)

A Rewriting Based Model for Probabilistic Distributed Object Systems 39

where [[C]] = {[µ]A ∈ CanGSubstE/A(−→x) | E ∪ A 	 µ(C)} is the set of E/A-
canonical substitutions for −→x satisfying the condition C, and Fr is a σ-algebra
on CanGSubstE/A(−→y). We denote a rule r together with its associated function
πr, by the notation

l : t(−→x)→ t′(−→x ,−→y) if C(−→x) with probability πr(−→x)

We denote the class of probabilistic rewrite theories by PRwTh . Notice the
following points in the definition

1. Rewrite rules may have new variables −→y on the right-hand side.
2. The condition C(−→x) on the right-hand side depends only on the variables−→x occurring in the term t(−→x) on the left-hand side.
3. The condition C(−→x) is simply a conjunction of equations and memberships

(but no rewrites).
4. πr(−→x) specifies, for each substitution θ for the variables −→x , the probability

of choosing a substitution ρ for the −→y . In the next section we explain how
this is done.

3.1 Semantics of Probabilistic Rewrite Theories

Let R = (Σ, E ∪A, R, π) be a probabilistic rewrite theory such that:

1. E is confluent, terminating and sort-decreasing modulo A [2].
2. the rules R are coherent with E modulo A [4].

We also assume a choice for each rule r of an Fr-cover αr : CanGSubstE/A(−→y)→
Fr. This Fr-cover will be used to assign probabilities to rewrite steps. Its choice
will depend on the particular problem under consideration.

Definition 5 (Context). A context C is a Σ-term with a single occurrence of
a single variable, �, called the hole. Two contexts C and C

′ are A-equivalent if
and only if A 	 (∀�) C = C

′.

Notice that the relation of A-equivalence for contexts as defined above, is an
equivalence relation on the set of contexts. We use [C]A for the equivalence class
containing context C. For example the term

� 〈 Nt : Network | soup : (S1 ← 10) 〉
〈 S1 : Server | queue : nil 〉 〈 S2 : Server | queue : (S2 ← 5) 〉

is a context.

Definition 6 (R/A-Matches). Given [u]A ∈ CanΣ,E/A, its R/A-matches are
triples ([C]A, r, [θ]A), where if r ∈ R is a rule

l : t(−→x)→ t′(−→x ,−→y) if C(−→x) with probability πr(−→x)

then [θ]A ∈ [[C]], that is [θ]A satisfies condition C and [u]A = [C(� ← θ(t))]A,
so [u]A is the same as θ applied to the term t(−→x) and placed in the context.

40 Nirman Kumar et al.

Consider the canonical-term

〈 H : Client | sent : 3, svc1 : 1, svc2 : 0 〉 〈 Nt : Network | soup : (S1 ← 10) 〉
〈 S1 : Server | queue : nil 〉 〈 S2 : Server | queue : (S2 ← 5) 〉

Looking at the code in Figure 1, one of the R/A-matches for the equivalence
class of the above term is the triple ([C]A, req, [θ]A) such that

C = � 〈 Nt : Network | soup : (S1 ← 10) 〉
〈 S1 : Server | queue : nil 〉 〈 S2 : Server | queue : (S2 ← 5) 〉

and θ is such that

θ(Cl) = H, θ(N) = 3, θ(m1) = 1, θ(m2) = 0.

Definition 7 (E/A-Canonical One-Step R-Rewrite). An E/A-canonical
one-step R-rewrite is a labelled transition of the form,

[u]A
([C]A,r,[θ]A,[ρ]A)−−−−−−−−−−−→ [v]A

where

1. [u]A, [v]A ∈ CanΣ,E/A

2. ([C]A, r, [θ]A) is an R/A-match of [u]A
3. [ρ]A ∈ CanGSubstE/A(−→y)
4. [v]A = [C(� ← t′(θ(−→x), ρ(−→y)))]A, where {θ, ρ}|−→x = θ and {θ, ρ}|−→y = ρ.

We associate the probability πr(αr(ρ)) with this transition. We can now see why
the Fr cover αr was needed. The nondeterminism associated with the choice of
the R/A-match must be removed in order to associate a probability space over
the space of computations (which are infinite sequences of canonical one step R-
rewrites). The nondeterminism is removed by what is called an adversary of the
system, which defines a probability distribution over the set of R/A-matches. In
[9] a probability space is associated over the set of computation paths. To do this,
an adversary for the system is fixed. We have also shown in [9] that probabilistic
rewrite theories have great expressive power. They can express various known
models of probabilistic systems like Continuous Time Markov Chains [8], Markov
Decision Processes [10] and even Generalized Semi Markov Processes [7]. We
also propose a temporal logic, to express properties of interest in probabilistic
systems. The details can be found in [9].

Probabilistic rewrite theories can be used to model probabilistic actor sys-
tems [1]. Actors, which are inherently asynchronous, can be modelled natu-
rally using object based rewriting. In probabilistic actor systems we may be
interested in modelling message delay distributions among other probabilis-
tic entities. However because time acts as a global synchronization parame-
ter the natural encoding using objects, computing by their own rewrite rules
is insufficient. The technique of delayed messages helps us to correctly encode
time in actors. Actor failures and message drops can also be encoded. Due to
space constraints we do not indicate our encoding in this paper. The file at
http://maude.cs.uiuc.edu/pmaude/at.maude presents our technique.

A special subclass of PRwTh , called finitary probabilistic rewrite theories,
while fairly general, are easier to implement. We describe them below.

A Rewriting Based Model for Probabilistic Distributed Object Systems 41

4 Finitary Probabilistic Rewrite Theories
Observe that there are two kinds of nondeterministic choice involved in rewriting.
First, the selection of the rule and second, the exact substitution-context pair.
Instead of having to think of nondeterminism from both these sources, it is easier
to think in terms of rewrite rules with same left-hand side term as representing
the computation of some part of the system, say an object, and thus representing
one nondeterministic choice. Of course the substitution and context also have to
be chosen to fix a nondeterministic choice. After nondeterministically selecting a
rewrite rule, instantiated with a given substitution in a given context, different
probabilistic choices arise for different right-hand sides of rules having the same
left-hand side as that of the chosen rule, and which can apply in the chosen
context with the chosen substitution. To assign probabilities, we assign rate
functions to rules with the same left-hand side and normalize them. The rates,
which depend on the chosen substitution, correspond to the frequency with which
the RHS’s are selected. Moreover, not having new variables on the right-hand
sides of rules makes the implementation much simpler. Such theories are called
finitary probabilistic rewrite theories. We define them formally below.

Definition 8 (Finitary Probabilistic Rewrite Theory). A finitary prob-
abilistic rewrite theory is a 4-tuple Rf = (Σ, E ∪A, R, γ), with (Σ, E ∪A, R) a
rewrite theory and γ : R → TΣ,E/A,PosRat (X) a function associating to each
rewrite rule in R a term γ(r) ∈ TΣ,E/A,PosRat (X), with some variables from the
set X, and of sort PosRat, where PosRat is a sort in (Σ, E ∪ A) corresponding
to the positive rationals. The term γ(r) represents the rate function associated
with rule r ∈ R. If l : t(−→x) → t′(−→x) if C(−→x) is a rule in R involving variables−→x , then γ maps the rule to a term of the form γr(−→x) possibly involving some
of the variables in −→x . We then use the notation

l : t(−→x)→ t′(−→x) if C(−→x) [rate γr(−→x)]

for the γ-annotated rule. Notice that t′ does not have any new variables. Thus,
all variables in t′ are also variables in t. Furthermore, we require that all rules
labelled by l have the same left-hand side and are of the form

l : t → t′1 if C1 [rate γr1(
−→x)]

· · · (1)
l : t → t′n if Cn [rate γrn(−→x)]

where

1. −→x = fvars(t) ⊇ ⋃
1≤i≤n fvars(t′i) ∪ fvars(Ci), that is the terms t′i and the

conditions Ci do not have any variables other than −→x , the set of variables
in t.

2. Ci is of the form (
∧

j uij = vij) ∧ (
∧

k wik : sik) , that is, condition Ci is a
conjunction of equations and memberships1.

1 The requirement fvars(Ci) ⊆ fvars(t) can be relaxed by allowing new variables in
Ci to be introduced in “matching equations” in the sense of [4]. Then these new
variables can also appear in t′

i.

42 Nirman Kumar et al.

We denote the class of finitary probabilistic rewrite theories by FPRTh.

4.1 Semantics of Finitary Probabilistic Rewrite Theories

Given a finitary probabilistic rewrite theory Rf = (Σ, E ∪ A, R, γ), we can
express it as a probabilistic rewrite theoryR•

f , by defining a map FR : Rf �→ R•
f ,

with R•
f = (Σ•, E• ∪A, R•, π•) and (Σ, E ∪A) ⊆ (Σ•, E• ∪A), in the following

way. We encode each group of rules in R with label l of the form 1 above by a
single probabilistic rewrite rule2

t(−→x)→ proj (i, (t′1(
−→x), . . . , t′n(−→x))) if C̃1(−→x) or . . . or C̃n(−→x) = true

with probability πr(−→x)

in R•. Corresponding to each such rule, we add to Σ• the sort [1 : n], with con-
stants 1, . . . , n :→ [1 : n], and the projection operator proj : [1 : n] k . . . k → k.
We also add to E• the equations proj (i, t1, . . . , tn) = ti for each i ∈ {1, . . . , n}.
Note that the only new variable on the righthand side is i, and therefore
CanGSubstE/A(i) ∼= {1, . . . , n}. We consider the σ-algebra P({1, . . . , n}) on
{1, . . . , n}. Then πr is a function

πr : [[C]]→ PFun({1, . . . , n},P({1, . . . , n}))

defined as follows. If θ is such that C̃1(θ(−→x)) or . . . or C̃n(θ(−→x)) = true, then
πθ = πr(θ) defined as

πθ({i}) =
?γri

(θ(−→x))
?γr1(θ(

−→x))+?γr2(θ(
−→x)) + · · ·+?γrn

(θ(−→x))

where, if C̃i(θ(−→x)) = true, then ?γri
(θ(−→x)) = γri

(θ(−→x)) and ?γri
(θ(−→x)) = 0

otherwise. The semantics of Rf computations is now defined in terms of its
associated theory R•

f in the standard way, by choosing the singleton F-cover
αr : {1, . . . , n} → P({1, . . . , n}) mapping each i to {i}.

5 The PMaude Tool

We have developed an interpreter called PMaude , which provides a frame-
work for specification and execution of finitary probabilistic rewrite theories.
The PMaude interpreter has been built on top of Maude 2.0 [4, 3] using the
Full-Maude library [6]. We describe below how a finitary probabilistic rewrite
theory is specified in our implemented framework and discuss some of the im-
plementation details.
2 By the assumption that (Σ, E ∪ A) is confluent, sort-decreasing, and terminating

modulo A, and by a metatheorem of Bergstra and Tucker, any condition C of the
form (

∧
i ui = vi ∧ ∧

j wj : sj) can be replaced in an appropriate protecting en-
richment (Σ̃, Ẽ ∪ A) of (Σ, E ∪ A) by a semantically equivalent Boolean condition
C̃ = true.

A Rewriting Based Model for Probabilistic Distributed Object Systems 43

Consider a finitary probabilistic rewrite theory with k distinct rewrite labels
and with ni rewrite rules for the ith distinct label, for i = 1, 2, . . . , k.

l1 : t1 → t′
11 if C11 [rate γ11(−→x)]

· · ·
l1 : t1 → t′

1n1 if C1n1 [rate γ1n1(
−→x)]

· · ·
lk : tk → t′

k1 if Ck1 [rate γk1(−→x)]

· · ·
lk : tk → t′

knk
if Cknk [rate γknk (−→x)]

At one level we want all rewrite rules in the specification to have distinct la-
bels, so that we have low level control over these rules, while at the conceptual
level, groups of rules must have the same label. We achieve this by giving two
labels: one, common to a group and corresponding to the group’s label l at the
beginning, and another, unique for each rule, at the end. The above finitary
probabilistic rewrite theory can be specified as follows in PMaude.

pmod FINITARY-EXAMPLE is
cprl [l1] : t1 ⇒ t′

11 if C11 [rate γ11(x1, . . .)] [metadata “l11 . . . ”] .
. . .
cprl [l1] : t1 ⇒ t′

1n1 if C1n1 [rate γ1n1(x1, . . .)] [metadata “l1n1 . . . ”] .
. . .
cprl [lk] : tk ⇒ t′

k1 if Ck1 [rate γk1(x1, . . .)] [metadata “lk1 . . . ”] .
. . .
cprl [lk] : tk ⇒ t′

knk
if Cknk [rate γknk (x1, . . .)] [metadata “lknk . . . ”] .

endpm

User input and output are supported as in Full Maude using the LOOP-MODE
module. PMaude extends the Full Maude functions for parsing modules and
any terms entered later by the user for rewriting purposes. Currently PMaude
supports four user commands. Two of these are low level commands used to
change seeds of pseudo-random generators. We shall not describe the imple-
mentation of those two commands here. The other two commands are rewrite
commands. Their syntax is as follows:

(prew t .)
(prew -[n] t .)

The default module M in which these commands are interpreted is the last read
probabilistic module. The prew command is an instruction to the interpreter
to probabilistically rewrite the term t in the default module M , till no further
rewrites are possible. Notice that this command may fail to terminate. The
prew -[n] command takes a natural number n specifying the maximum number of
probabilistic rewrites to perform on the term t. This command always terminates
in at most n steps of rewriting. Both commands report the final term (if prew
terminates).

The implementation of these commands is as follows. When the interpreter
is given one of these commands, all possible one-step rewrites for t in the default

44 Nirman Kumar et al.

module M are computed. Out of all possible groups l1, l2, .., lk in which some
rewrite rule applies, one is chosen, uniformly at random. For the chosen group
li, all the rewrite rules li1, li2, .., lini

associated with li, are guaranteed to have
the same left-hand side ti(x1, x2, ..). From all possible canonical substitution,
context pairs ([θ]A, [C]A) for the variables xj , representing successful matches of
ti(x1, x2, ..) with the given term t, that is, matches that also satisfy one of the
conditions Cij , one of the matches is chosen uniformly at random. The two steps
above also define the exact adversary we associate to a given finitary probabilistic
rewrite theory in our implementation. If there are m groups, li1 , . . . , lim

, in which
some rule applies and vj matches in total for group lij then the adversary chooses
a match in group lij

with probability 1
mvj

. To choose the exact rewrite rule lij
to apply, use of the rate functions is made. The values of the various rates
γip are calculated for those rules lip such that [θ]A satisfies the condition of
the rule lip. Then these rates are normalized and the choice of the rule lij is
made probabilistically, based on the calculated rates. This rewrite rule is then
applied to the term t, in the chosen context with the chosen substitution. If the
interpreter finds no successful matches for a given term, or if it has completed
the maximum number of rewrites specified, it immediately reports that term
as the answer. Since rates can depend on the substitution, this allows users to
specify systems where probabilities are determined by the state.

PMaude can be used as a simulator for finitary probabilistic rewrite theories.
The programmer must supply the system specification as a PMaude module
and a start term to rewrite. To obtain different results the seeds for the random
number generators must be changed at each invocation. This can be done by
using a scripting language to call the interpreter repeatedly but with different
seeds before each execution.

We have specified the client-server example discussed in Section 3 in
PMaude with the following parameters: The client only sends two kinds of
packets, loads 5 and 10, with equal probability. The request messages for S1, S2
are dropped with probabilities 2/7 and 1/6 respectively, while acknowledgement
messages for S1, S2 are dropped with probabilities 1/6, 1/11 respectively. We
also chose S1 to drop processing of a request with probability 1/7 as opposed to
3/23 when its load was at least 100, while for S2 the load limit was 40 but the
probabilities of dropping requests were 1/7 and 3/19. We performed some simu-
lations and, after a number of runs, we computed the ratio (svc1 + svc2)/sent as
a measure of the quality of service for the client. Simulations showed that among
static policies, namely those where the client did not adapt sending probabilities
on the fly, that of sending twice as often to server S2 than to S1 was better than
most others.

The complete code for the PMaude interpreter, as well as several other
example files, can be found at http:/maude.cs.uiuc.edu/pmaude/pmaude.html.

6 Conclusions and Future Work

Probabilistic rewrite theories provide a general semantic framework supporting
high level probabilistic specification of systems; in fact, we have shown how var-

A Rewriting Based Model for Probabilistic Distributed Object Systems 45

ious well known probabilistic models can be expressed in our framework [9].
The present work shows how our framework applies to concurrent object based
systems. For a fairly general subclass, namely finitary probabilistic rewrite the-
ories, we have implemented a simulator PMaude and have exercised it on some
simple examples. We are currently carrying out more case studies. We have also
identified several aspects of the theory and the PMaude tool that need further
development.

On the more theoretical side, we feel research is needed in three areas. First, it
is important to develop a general model of probabilistic systems with concurrent
probabilistic actions, as opposed to the current interleaving semantics. Second,
deductive and analytic methods for property verification of probabilistic systems,
based on our current framework is an important open problem. Algorithms to
translate appropriate subclasses to appropriate representations enabling use of
existing model checkers, should be developed and implemented.

Third, we think that allowing the probability function πr to depend not only
on the substitution, but also on the context would give us more modelling power.
Specifically, it would enable us to represent applications where the probability
distributions of certain variables, such as message delays, depend on functions
of the entire state of the system, for example, on the congestion in the network.
Such situations can also be modelled in our current framework but at the expense
of using rewrite rules at the top-level, whose substitutions capture global system
parameters. Such rules can modify the entire system at once as opposed to just
modifying local fragments, but at the cost of violating the modularity principle
of concurrent objects or actors.

On the implementation side, an extension of the PMaude framework to
enable specification of more general classes of probabilistic rewrite theories and
adversaries is highly desirable. This will allow the generation of simulation traces
for the system under consideration and can be used as a tool to implement the
model independent Monte-Carlo simulation and acceptance sampling methods
for probabilistic validation of properties [14]. As an application of our theory,
we believe that it will be fruitful to model networked embedded systems, where
apart from time, there are other continuous state variables, such as battery power
or temperature, whose behavior may be stochastic. Moreover, the properties of
interest are often a statistical aggregation of many observations.

Acknowledgement

The work is supported in part by the Defense Advanced Research Projects
Agency (the DARPA IPTO TASK Program, contract number F30602-00-2-0586
and the DARPA IXO NEST Program, contract number F33615-01-C-1907) and
the ONR Grant N00014-02-1-0715. We would like to thank Wooyoung Kim for
reading a previous version of this paper and giving us valuable feedback and
Joost-Pieter Katoen for very helpful discussions and pointers to references.

46 Nirman Kumar et al.

References

1. G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A foundation for actor
computation. Journal of Functional Programming, 7(1):1–72, 1997.

2. A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof in mem-
bership equational logic. Theoretical Computer Science, 236(1–2):35–132, 2000.

3. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. Que-
sada. Towards maude 2.0. In K. Futatsugi, editor, Electronic Notes in Theoretical
Computer Science, volume 36. Elsevier, 2001.

4. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. Que-
sada. Maude: specification and programming in rewriting logic. Theoretical Com-
puter Science, 285:187–243, 2002.

5. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. Maude 2.0 Manual, Version 1.0, june 2003.
http://maude.cs.uiuc.edu/manual/maude-manual.pdf.

6. F. Durán and J. Meseguer. Parameterized theories and views in full maude 2.0. In
K. Futatsugi, editor, Electronic Notes in Theoretical Computer Science, volume 36.
Elsevier, 2001.

7. P. Glynn. The role of generalized semi-Markov processes in simulation output
analysis, 1983.

8. J.-P. Katoen, M. Kwiatkowska, G. Norman, and D. Parker. Faster and symbolic
CTMC model checking. Lecture Notes in Computer Science, 2165, 2001.

9. N. Kumar, K. Sen, J. Meseguer, and G. Agha. Probabilistic rewrite theories: Unify-
ing models, logics and tools. Technical Report UIUCDCS-R-2003-2347, University
of Illinois at Urbana-Champaign, May 2003.

10. M. Z. Kwiatkowska, G. Norman, and D. Parker. Prism: Probabilistic symbolic
model checker, 2002.

11. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science, 96:73–155, 1992.

12. J. Meseguer. A logical theory of concurrent objects and its realization in the Maude
language. In G. Agha, P. Wegner, and A. Yonezawa, editors, Research Directions
in Concurrent Object-Oriented Programming, pages 314–390. MIT Press, 1993.

13. J. Meseguer. Membership algebra as a logical framework for equational specifica-
tion. In F. Parisi-Presicce, editor, Proc. WADT’97, pages 18–61. Springer LNCS
1376, 1998.

14. H. L. S. Younes and R. G. Simmons. Probabilistic verification of discrete event
systems using acceptance sampling. In E. Brinksma and K. G. Larsen, editors,
Proceedings of the 14th International Conference on Computer Aided Verification,
volume 2404 of Lecture Notes in Computer Science, pages 223–235, Copenhagen,
Denmark, July 2002. Springer.

	1 Introduction
	2 Background and Notation
	3 Probabilistic Rewrite Theories
	3.1 Semantics of Probabilistic Rewrite Theories

	4 Finitary Probabilistic Rewrite Theories
	4.1 Semantics of Finitary Probabilistic Rewrite Theories

	5 The PMaude Tool
	6 Conclusions and Future Work
	References

