
Efficient Processing of Secured XML Metadata

Ling Feng1 and Willem Jonker1,2

1 Dept. of Computer Science, University of Twente, The Netherlands
{ling,jonker}@cs.utwente.nl

2 Philips Research, The Netherlands
willem.jonker@philips.com

Abstract. Metadata management is a key issue in intelligent Web-
based environments. It plays an important role in a wide spectrum
of areas, ranging from semantic explication, information handling,
knowledge management, multimedia processing to personalized service
delivery. As a result, security issues around metadata management
needs to be addressed in order to build trust and confidence to ambient
environments. The aim of this paper is to bring together the worlds
of security and XML-formatted metadata management in such a way
that, on the one hand the requirement on secure metadata management
is satisfied, while on the other other hand the efficiency on metadata
processing can still be guaranteed. To this end, we develop an effective
approach to enable efficient search on encrypted XML metadata. The
basic idea is to augment encrypted XML metadata with encodings which
characterize the topology and content of every tree-structured XML
metadata, and then filter out candidate data for decryption and query
execution by examining query conditions against these encodings. We
describe a generic framework consisting of three phases, namely, query
preparation, query pre-processing and query execution, to implement the
proposed search strategy.

Keywords: Security, metadata, XML, encryption, search

1 Introduction

Ambient intelligence is an important theme in today’s industrial and public
research [3,9]. A key issue towards ambient intelligence is metadata manage-
ment. From semantic explication, information handling, knowledge management,
multimedia processing to personalized service delivery, metadata plays an im-
portant role. With XML [4] becoming the dominant standard for describing
and interchanging data between various systems and databases on the Internet,
Web-based applications nowadays increasingly rely on XML metadata to con-
vey machine-understandable information and provide interoperability across the
Web.

With this sheer volume of metadata flowing throughout ambient environ-
ments, the need to protect XML metadata content from being disclosed or tam-
pered with is growing. One prototypical technique for building security and trust

R. Meersman and Z. Tari (Eds.): OTM Workshops 2003, LNCS 2889, pp. 704–717, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Efficient Processing of Secured XML Metadata 705

is to distribute and store these metadata in encrypted form [12]. W3C recom-
mends an “XML Encryption Syntax” to allow the encryption of XML data using
a combination of symmetric and public keys, where element content is encrypted
by means of a symmetric key that in turn is encrypted by means of the public
key of the recipient [6,5]. Nevertheless, securing metadata in ciphertext should
not hinder its processing for various applications. The deployed metadata se-
curity techniques should on the one hand satisfy the security requirements on
XML metadata, while at the same time allow efficient manipulation of metadata
without loss of confidentiality.

Since search is one of the basic operations that are carried out on metadata, a
first step to proceed is to address the issue around effective and efficient searching
for information in encrypted XML data. A straightforward approach to search
on encrypted XML data is to decrypt the ciphertext first, and then do the
search on the clear decrypted XML data. However, this inevitably incurs a lot
of unnecessary decryption efforts, leading to a very poor query performance.
especially when the searched data is huge, while the search target comes only
from a small portion of it. To solve this problem, we ask two questions here: (1)
“Can we discard some non-candidate XML data and decrypt the remaining ones
instead of the whole data set?” (2) “If so, how can we effectively and efficiently
distinguish candidate XML data from non-candidate ones?”

There is some previous work in different research areas that are related to
our work. [13] presents techniques to support keyword-based search on encrypted
textual string. Recently, [10,11] explore techniques to execute SQL-based queries
over encrypted relational tables in a database-service provider model, where an
algebraic framework is described for query rewriting over encrypted attributed
representation. However, compared to the problem to be addressed in this study,
the functionalities provided by the above work are still very limited and in-
sufficient in performing complex XPath-based XML queries over encrypted
semistructured XML data.

In this paper, we propose to augment encrypted XML metadata with
encodings which characterize the topology and content of every encrypted tree-
structured XML data. Here, a hash-based approach is employed to compute
hashed XML path information into encoding schemas. The filtering of non-
candidate data set can then be performed by examining query conditions, ex-
pressed in terms of XPath expressions [7], against the encodings. We outline a
generic framework for conducting efficient queries on encrypted XML data, which
is comprised of three phases, namely, query preparation, query pre-processing,
and query execution. The query preparation phase aims to prepare for efficient
query answering by encoding XML DTDs and XML documents before they are
encrypted and stored in the database. This phase runs off-line. When a query
is issued at runtime, the query pre-processing phase filters out impossible query
candidates, so that the decryption and query execution that the query execution
phase undertakes can be more focused on potentially target XML data.

The remainder of the paper is organized as follows. Section 2 outlines the
framework for efficient querying over encrypted XML metadata. Section 3 and

706 L. Feng and W. Jonker

Fig. 1. A framework for querying over encrypted XML data

Section 4 describe in detail the query preparation phase and query pre-processing
phase, respectively. Section 5 concludes the paper.

2 A Framework for Searching Encrypted XML Metadata

We assume the availability of DTD for each XML document in this study. For
security reason, all XML DTDs and XML documents are encrypted and stored in
a database. Figure 1 shows a generic framework for conducting efficient queries
on encrypted XML data. It is comprised of three phases: query preparation, query
pre-processing and query execution.

– Phase-1 (query preparation)
The aim of this phase is to prepare for efficient querying over encrypted
XML data by encoding each XML DTD and associated documents before
they are encrypted and stored in the database. Such an encoding is carried
out in two steps, “Encode XML DTD” and “Encode XML Document”. The
coding results of XML DTDs and documents are stored in two separate
databases, called “XML DTD Encoding Database” and “XML Document
Encoding Database”. In response to a query at run-time, these encodings
can be used to pre-select potential target documents without the need
to decrypt the whole document set in the database. We call these potential
target documents candidate documents in the paper. Detailed encoding
schemas and their computation will be described in Section 3.

– Phase-2 (query pre-processing)
It is obvious that decrypting all encrypted XML documents to answer a
query inevitably incurs an excessive overhead, especially when the target

Efficient Processing of Secured XML Metadata 707

data constitutes a small portion of the database. In order to make encrypted
XML query processing truly practical and computationally tractable, and
meanwhile preserve security, for each query, we incorporate a pre-processing
stage, whose aim is to filter out impossible candidates so that decryption
and query execution can be more focused on potentially target documents.
Two steps are conducted in this phase. First, a set of candidate XML DTDs
are identified through the step “Identify Candidate XML DTDs”, which
examines query conditions, expressed in terms of XPath expressions [7,8],
against DTD encodings in the “DTD Encoding Database”. Then, correspond-
ing to each selected candidate DTD, the “Identify Candidate XML Docu-
ments” step further filters out candidate documents based on documents’
encodings in the “Document Encoding Database”. The candidate DTD set
and document set returned are subsets of the original encrypted DTD set
and document set, respectively. Detailed descriptions of these two steps will
be given in Section 4.

– Phase-3 (query execution)
The identified candidate DTDs and documents, returned from Phase-2, are
decrypted into clear DTDs and documents, on which the query can be exe-
cuted. Here, conventional XML query engines can be employed in this phase.
As querying over non-encrypted XML data has been widely investigated in
the literature, we focus our study on Phase-1 and Phase-2 in this study.

3 Query Preparation Phase

In this section, we propose a hash-based strategy to encode encrypted XML data
for the query preparation phase. Based on the encodings obtained, the query
pre-processing phase, which will be addressed in Section 4, can then effectively
filter out query candidates, i.e., potential targets, from among a large set of
blind documents in the database. Due to different characteristics and functions
of XML DTDs and documents, we encode XML DTDs and XML documents
separately using different encoding schemas.

In the following, we first describe the computation method for encoding XML
DTDs, followed by the method for encoding XML documents. For ease of expla-
nation, a running example shown in Fig. 2 is used throughout the discussion. A
graphical representation of the DOM tree structure of the example DTD, DTD1,
and the example document is outlined in Fig. 2(c).

3.1 Encoding XML DTDs

An XML DTD defines the legal building blocks of its conforming XML docu-
ments, like what elements, attributes, etc. are permitted in the documents [4].
These components construct a hierarchical tree structure that underlies the con-
tents of the documents, with each path of the tree addressing a certain part of
an document.

708 L. Feng and W. Jonker

Fig. 2. A running example of an XML document with its DTD

As the query pre-processing phase works on the basis of XPath expressions
embedded in a query like XQuery, to prepare for efficient candidate selection,
we thus take the strategy to encode each XML DTD in the unit of path. The
notions of path and path length are defined as follows.

Definition 1. A path p is a sequence of nodes n1, n2, . . . , nk, denoted as p =
(n1/n2/ . . . /nk), where for any two consecutive nodes, ni and ni+1 (1 ≤ i ≤
k − 1, k ≥ 1), there exists an edge between them.

The length of path p, denoted as |p|, is the total number of edges in the path.
That is, |p = (n1/n2/ . . . /nk)| = k-1. �

Table 1 lists all the paths, which are of various lengths, extracted from the
example DTD DTD1 in Fig. 2. Here, the content nodes under the dotted line
are exempt from consideration, since they do not appear in the DTD.

In essence, we use the technique of hashing on each path of an XML DTD to
compose DTD encodings. Paths of different lengths will be hashed into different
hash tables named DTDHashTable0, DTDHashTable1, DTDHashTable2, . . . ,
DTDHashTablemax pathLen, respectively. All paths of length l (where 1 ≤ l ≤
max pathLen), no matter which DTD it comes from, will share one single hash
table DTDHashTablel, with each bucket indicating a set of DTDs, whose paths
have been hashed into the bucket. Suppose we have a path p extracted from
DTD1, the hash function HashFunc (p) computes its hash value, i.e., bucket
address in the hash table DTDHashTable|p|. (Detailed computation of hash
values will be given shortly.) We mark the corresponding bucket entry with an
indicator of DTD1, signifying the DTD where p locates.

To filter out non-candidate DTDs for a query, we compute the hash values
for all XPaths in the query using the same hash function, and then check the
corresponding buckets in the DTD hash tables to obtain a subset of DTDs that

Efficient Processing of Secured XML Metadata 709

Table 1. Paths extracted from the example XML DTD

Path length Path
2 p1=(payInfo/creditCard/limit)

p2=(payInfo/creditCard/number)
p3=(payInfo/creditCard/name)
p4=(payInfo/creditCard/address)

1 p5=(payInfo/creditCard)
p6=(payInfo/amount)
p7=(creditCard/limit)
p8=(creditCard/number)
p9=(creditCard/name)
p10=(creditCard/address)

0 p11=(payInfo)
p12=(creditCard)
p13=(amount)
p14=(limit)
p15=(number)
p16=(name)
p17=(address)

Algorithm 1 Hash function HashFunc(p)
Input: path p = (n1/n2/ . . . /nk), a fixed size s for node names,

hash table size SizeDTDHashTable|p|;
Output: hash value of p

1 For each node ni (1 ≤ i ≤ k), chop its name uniformly into an s-letter string
ChopName(ni, s) = xni,1xni,2 . . . xni,s ,
where xni,1 , xni,2 , . . . , xni,s are letters in the name string of node n.

2 For each s-letter node name xni,1xni,2 . . . xni,s , convert it into a decimal integer
Base26V alueOf(xni,1xni,2 . . . xni,s) =

offset(xni,1) ∗ 26s−1 + offset(xni,2) ∗ 26s−2 + . . . + offset(xni,s) ∗ 260 = Vni ,
where offset(xni,j) (1 ≤ j ≤ s) returns the position of letter xni,j among 26 letters.

3 Compute hash value of p = (n1/n2/ . . . /nk)
HashFunc(n1/n2/ . . . /nk) =

(Vn1 ∗ 10k−1 + Vn2 ∗ 10k−2 + . . . + Vnk ∗ 100) mod SizeDTDHashTable|p|.

possibly contain the requested paths. These DTDs are candidate DTDs to be
considered for the query.

Algorithm 3.1 elaborates the procedures in computing the hash value for
path p = (n1/n2/ . . . /nk). It proceeds in the following three steps.

First, node names in path p which could be of different lengths are uni-
formly chopped into the same size s, given by users as an input parameter,

710 L. Feng and W. Jonker

Fig. 3. Another DTD example with its DOM tree-structure

through the function ChopName (Algorithm 3.1, line 1). For example, let s=4,
ChopName(“creditCard”, 4) = “cred”, ChopName(“payInfo”, 4) = “payI”,
ChopName(“name”, 4) = “name”.

Second, the chopped node name strings which are of fixed size after Step 1
are further converted into decimal integers via function Base26V alueOf (Al-
gorithm 3.1, line 2). Example 1 explicates how it works when the size of node
name string is set to 4.

Example 1. When we let a 4-letter node name x1x2x3x4, which are case insen-
sitive, represent a base-26 integer, we let the letter “a” represent the digit-value
0, the letter “b” represent the digit-value 1, the letter “c” represent the digit-
value 2, the letter “d” represent the digit-value 3, and so on, up until the let-
ter “z”, which represents the digit-value 25. Given a letter, function “offset”
returns such a digit-value. The 4-letter node name x1x2x3x4 can thus be con-
verted into a decimal integer using the formula: Base26V alueOf(x1x2x3x4) =
offset(x1) ∗ 263 + offset(x2) ∗ 262 + offset(x3) ∗ 261 + offset(x4) ∗ 260.

Assume that x1x2x3x4 = “name”, since the digit-values of “n”, “a”, “m”
and “e” are offset(“n”) = 13, offset(“a”) = 0, offset(“m”) = 12, and
offset(“e”) = 4 respectively, we have Base26V alueOf(“name”) = 13 ∗ 263 +
0 ∗ 262 + 12 ∗ 261 + 4 ∗ 260 = 13 ∗ 17576 + 0 + 312 + 4 = 228802.

In a similar way, we have Base26V alueOf(“cred”) = 2 ∗ 263 + 17 ∗ 262 + 4 ∗
261 +3 ∗ 260 = 2 ∗ 17576+17 ∗ 676+104+3 = 35152+11492+104+3 = 46751.

�

A general calculation of Base26V alueOf is: Base26V alueOf(x1x2 . . . xs) =
offset(x1) ∗ 26s−1 + offset(x2) ∗ 26s−2 + . . . + offset(xs) ∗ 260.

Finally, hash function HashFunc derives the hash value of p = (n1/n2/ . . . /
nk) based on the value Vni returning from function Base26V alueOf on each
node ni (Algorithm 3.1, line 3). HashFunc(n1/n2/ . . . /nk) = (Vn1 ∗ 10k−1 +
Vn2 ∗ 10k−2 + . . .+ Vnk

∗ 100) mod SizeDTDHashTable|p|
In order to provide a more complete overview on the hash-based encoding

method, we introduce another DTD example DTD2 as shown in Fig. 3. Using
the same hash function, Fig. 4 illustrates the hash results for all the paths from
DTD1 and DTD2.

Efficient Processing of Secured XML Metadata 711

Fig. 4. Encodings of the example DTD1 and DTD2 (DTDHashTable0,
DTDHashTable1 and DTDHashTable2)

Table 2. Pairs of element/attribute with content/value in the example XML document,
together with their hash and mapped values

(Element/Attribute cname,, Content/Value cval) HashFunc(cname) MapFunc(cval)
c1 = (limit, 1000) 0 1
c2 = (number, 123456789) 1 10
c3 = (name, “Alice”) 0 0
c4 = (address, “Twente, Enschede, Netherlands”) 2 25
c5 = (amount, 100.0) 1 7

3.2 Encoding XML Documents

XML documents that conform to one XML DTD possess a similar structure,
but with possibly different element contents and/or attribute values to distin-
guish different documents. For instance, one conforming document of the ex-
ample DTD shown in Fig. 2 has a limit attribute of value 1000, represented
as limit=1000 for simplicity. Its elements number, name, address and amount
have contents 123456789, “Alice”, “Twente, Enschede, Netherlands” and 100.0,
respectively.

After encoding XML DTDs, i.e., all possible paths with each containing a
sequence of nodes corresponding to elements or attributes, the second task of the
query preparation phase is to encode their conforming documents, i.e., all pairs
of element and element content (element, element content), attribute and at-
tribute value (attribute, attribute value). Due to the different nature of contents,
encoding documents is conducted in a different way from encoding DTDs, with
the result stored in the “Document Encoding Database”. In the following, we de-
scribe the method of encoding a pair, c = (cname, cval) (where cname denotes the
element/attribute, and cval denotes the corresponding element content/attribute
value), into a hash table named DOCHashTable.

We adopt the separate chaining strategy to resolve hashing collision for
DOCHashTable. That is, we place all pairs that collide at a single hash ad-
dress on a linked list starting at that address. The hash address of each pair
is calculated via function HashFunc(p) (Algorithm 3.1), using a different hash

712 L. Feng and W. Jonker

Fig. 5. Encodings of the example document (DOCHashTable)

table size, which is SizeDOCHashTable rather than SizeDTdHashTable|p|.
In this case, path p always contains only one node, which is p = (cname) and
|p| = 0. For example, let s=4, and the size of hash table DOCHashTable equal
to 4 (i.e., SizeDOCHashTable = 4). We have ChopName(“limit”) = “limi”.
Base26V alueOf(“limi”) = 11 ∗ 263 + 8 ∗ 262 + 12 ∗ 26 + 8 = 199064,
HashFunc(limit) = 199064 ∗ 100 mod 4 = 0.

After the derivation of bucket address in the hash table DOCHashTable
from cname, the entry to be put into the corresponding bucket is computed
based on cval, using the technique developed in [10]. The basic idea is to first
divide the domain of node cname into a set of complete and disjoint partitions.
That is, these partitions taken together cover the whole domain; and any two
partitions do not overlap. Each partition is assigned a unique integer identifier.
The value cval of element/attribute node cname is then mapped to an integer,
corresponding to the partition where it falls [10]. For example, we can partition
the domain of attribute limit into [0, 500], (500, 1000], (1000, ∞] of identifier 0,
1, 2, respectively. The limit value 1000 is thus mapped to integer 1, and stored
in the first bucket of DOCHashTable, since HashFunc(limit) = 0. The hash
values for other pairs in the example document are calculated in the same way,
which are shown in Table 2.

Note that the partition of a domain can be done based on the semantics
of data and relevant applications. For instance, we can categorize the domain
of element name according to the alphabetical order. The domain of element
address can be partitioned according to province or country where located.
For simplicity, in the current study, we enforce order preserving constraint on
such a mapping “MapFunc : domain(cname) → Integer”, which means that for
any two values cval1 and cval2 in the domain of cname, if (cval1 ≤ cval2), then
MapFunc(cval1) ≤ MapFunc(cval2).

Assume the mapping functions for number, name, address and amount re-
turn identifiers, as indicated in Table 2. Figure 5 plots the resulting encoding,
i.e., DOCHashTable, for the example XML document given in Fig. 2.

Efficient Processing of Secured XML Metadata 713

4 Query Pre-processing Phase

The aim of the query pre-processing phase is to identify candidate DTDs and
documents by checking the query against the encodings of DTDs and documents,
obtained after the query preparation phase. In this section, we first provide a
brief description of XPath expressions used in query representation. We then
discuss a method to match such XPath expressions to paths as described in
Section 3 in order to facilitate candidate DTD and document selection. A two-
step procedure is finally illustrated to identify candidate DTDs, followed by
candidate documents for each selected candidate DTD.

4.1 XPath Expressions

The XPath language is a W3C proposed standard for addressing parts of an
XML document [7]. It treats XML documents as a tree of nodes corresponding
to elements/attributes, and offers an expressive way to specify and locate nodes
within this tree.

XPath expressions state structural patterns that can be matched to paths,
consisting of a sequence of nodes in the XML data tree [2,1]. Such paths can
be either absolute paths from the root of the data tree, or relative one start-
ing with some known context nodes. The hierarchical relationships between
the nodes are specified in XPath expressions using parent-child operator (“/”)
and ancestor-descendant operator (“//”). For example, the XPath expression
“/payInfo/creditCard/@limit” addresses limit attribute of creditCard which
is a child element of the payInfo root element in the document. The name el-
ement in the relative path expression “//creditCard/name” is a child relative
to its parent creditCard element. The expression “/payInfo//name” addresses
name descendant element of the payInfo root element.

XPath also allows the use of a wildcard operator (“*” or “@*”), which can
match any element or attribute node with respect to the context node in the
document data tree. In addition, predicates, enclosed in square brackets (“[]”),
can also be applied to further refine the selected set of nodes in XPath expres-
sions. For example, “/payInfo/creditCard[@limit < 1000]/name” selects the
name elements of the XML document if the attribute limit of creditCard has
a value less than 1000.

Operators like (“|”) and (“and”) can also be applied to select constituent
nodes of paths [7]. For instance, “/payInfo/(creditCard|cash)/name” expres-
sion selects every name element that has a parent that is either a creditCard or a
cash element, that in turn is a child of a root element payInfo. On the contrary,
“/payInfo/creditCard[@limit and @dueDate]” indicates all the creditCard
children of the root element payInfo that must have both a limit attribute
and a dueDate attribute.

4.2 Mapping XPath Expressions to Paths

Considering that DTD encodings are computed against paths as defined in Def-
inition 1 in Section 3, for efficient encoding-based query candidate pre-selection,

714 L. Feng and W. Jonker

we first need to match an XPath expression e, which is used to locate parts of a
data tree, to a set of paths through the following three steps.

Step 1. Decompose XPath expression e into several ones at the point of “//”
operator.

Since paths to be encoded by the offline query preparation phase have only
parent-child relationships (“/”) between two consecutive nodes (as shown in
Table 1), we break an XPath expression from the points where the “//” operator
locates, into several ones where each node, except for the first one, is prefixed only
by “/”. The resulting XPath expressions thus contain no ancestor-descendant
relationships (“//”) between every two consecutive nodes.

For ease of explanation, we signify the XPath expressions derived after Step
1 using a prime symbol like e′. They form the input of Step 2.

Step 2. Simplify predicate constraints in each XPath expression e′ to only
hierarchical relationships.

As DTD encoding relieves value constraints on path nodes, and focuses only
on their hierarchical relationships, to facilitate candidate DTD filtering based
on path encodings, we relax value constraints on nodes like “[amount > 100]”
and “[@limit = 1000]”, specified in XPath predicate expressions, and keep only
their inherent parent-child or element-attribute relationships.

Let e′′ denote an XPath expression returned after Step 2.
Step 3. Eliminate logical “|” and “and” operators in each XPath expression

e′′ by rewriting the expression into several ones logically connected with “∧”
or “∨”.

To match the notion of path in Definition 1, every XPath expression after
Step 2 which contains the logical operators “|” and “and” is substituted by a
set of shorter XPath expressions, which are logically connected via “∧” or “∨”.

After undergoing the above three steps, an original XPath expression is trans-
formed into a set of simple XPath expressions, which contain no ancestor-
descendant relationships between two consecutive nodes, no value constraints
on nodes, and no logical operators (“|”) and (“and”). Each such kind of simple
XPath expressions corresponds to a path defined in Definition 1.

Example 2. From an original XPath expression “/payInfo[amount > 100]//
name”, we can derive two simple XPath expressions “/payInfo/amount” ∧
“//name”.

An XPath expression with a predicate constraint and operator (“|”) like
“/payInfo[amount > 100]/(creditCard|cash)/name” leads to three simple
XPath expressions which are: “/payInfo/amount” ∧ (“/payInfo/creditCard/
name” ∨ “/payInfo/cash/name”). �

4.3 Identification of Candidate DTDs and Documents

On the basis of simple XPath expressions generated from XPath expressions
embedded in a query, we can now define the concepts of candidate DTDs and
documents for the given query.

Efficient Processing of Secured XML Metadata 715

An XML DTD is called a candidate DTD for a query, if for every simple
XPath expression derived from the query, there possibly exists a path p in the
DTD, that matches this simple XPath expression.

In a similar fashion, we define that an XML document is a candidate doc-
ument for a query, if and only if: 1) its DTD is a candidate DTD1; and 2)
it possibly satisfies all predicate constraints on the nodes inside all the XPath
expressions embedded in the query.

The pre-selection of potential query targets starts with the identification of
candidate DTDs, followed by the identification of candidate documents under
each candidate DTD that has been identified.

I. Identify Candidate DTDs by Hashing Paths
Given a query, to check out which encrypted DTDs are candidate DTDs for
each simple XPath expression generated from the query, we match it to a path
p, and compute the hash value for p using the same hash function HashFunc(p)
(Algorithm 3.1) while encoding the DTDs. According to the hash value (i.e.,
bucket address) returned, we consult with the corresponding bucket in the hash
table DTDHashTable|p|, which gives all the DTDs that may possibly contain
path p. The rationale for this is straightforward: if path p is present in the DTD,
it will be hashed to the bucket in DTDHashTable|p|, leaving a mark for this
DTD in the bucket entry.

Example 3. Suppose a query consists of only one simple XPath expression, cor-
responding to the path p = (payInfo/creditCard/dueDate). Referring to the
DTD encoding schema illustrated in Fig. 4, where s = 4 and
SizeDTDHashTable2 = 8, its hash value is computed as follows:
Step 1: ChopName(“payInfo”, 4) = “payI”, ChopName(“creditCard”, 4) =
“cred”, ChopName(“dueDate”, 4) = “dueD”.
Step 2: Base26V alueOf(“payI”) = 264272, Base26V alueOf(“cred”) = 46751,
Base26V alueOf(“dueD”) = 66355.
Step 3: HashFunc(payInfo/creditCard/dueDate) = (Base26V alueOf
(“PayI”) ∗102 + (Base26V alueOf(“cred”) ∗ 101 + Base26V alueOf(“dueD”) ∗
100) mod SizeDTDHashTable2 = (264272∗100+46751∗10+66355) mod 8 = 1

Due to its hash value 1, we can be sure that the example DTD2 does not
contain that path, since the entry at address 1 in DTDHashTable2 only signifies
DTD1. As a result, only DTD1 will be returned as the candidate DTD, DTD2
and its associated documents can thus be discarded from the further search. �

II. Identify Candidate Documents by Hashing Element/Attribute and
Content/Value Pairs
After pre-selecting the candidate DTD set for the given query, we are now in
the position to filter out candidate documents underneath each candidate DTD.
At this stage, various value constraints in the form of [cname θ cval] (where
cname denotes the name of an element/attribute node, θ is one of the operators
in {=, �=, <,≤, >,≥}, and cval denotes the element content/attribute value) on
1 Recall that we assume the availability of DTD for each document in this study.

716 L. Feng and W. Jonker

path nodes are taken into consideration. Clearly, a candidate document must not
violate any of the value constraints specified within the XPath expressions in the
query. We perform such kind of examination based on the document encodings
(i.e., DOCHashTable).

Taking the constraint [cname θ cval] for example, we first hash the node
name cname (i.e., a path containing only one node) into DOCHashTable via
hash function HashFunc(cname). Meanwhile, we also calculate the range iden-
tifier of cval using the order preserving function MapFunc(cval). Finally, we
compare each entry value v linked to the bucket address HashFunc(cname) in
DOCHashTable: if ∃v (v θ MapFunc(cval)), then the constraint
[cname θ cval] possibly holds.

Example 4. Assume a query embeds an XPath expression
“/payInfo/creditCard [@limit > 2000]/name”, which enforces a con-
straint [@limit > 2000] on creditCard element. Referring to the document
encoding schema in Fig. 5, where s = 4 and SizeDOCHashTable = 4. We
have HashFunc(limit) = 0 and
MapFunc(2000) = 2. Since all the entries at address 0 in DOCHashTable are
either 1 or 0, which is not greater than 2 (= MapFunc(2000)), therefore, the
example document is not a candidate document for this query, and can thus be
discarded. �

5 Conclusion

In this paper, we employ the hash technique to compute encodings associ-
ated with each encrypted XML metadata to allow effective pre-filtering of non-
candidate data for a given query, expressed in terms of XPath expressions. We
are currently conducting experiments to investigate the performance of the pro-
posed strategy.

References

1. M. Altinel and M. Franklin. Efficient filtering of XML documents for selective
dissemination of information. In Proc. the 26th Intl. Conf. on Very Large Data
Bases, pages 53–64, Cairo, Egypt, September 2000.

2. C. Chan, P. Felber, M. Carofalakis, and R. Rastogi. Efficient filtering of XML
documents with XPath expressions. In Proc. the Intl. Conf. on Data Engineering,
California, USA, February 2002.

3. European Commission. Scenarios for ambient intelligence in 2010.
http://www.cordis.lu/ ist/istag.htm, 2001.

4. World Wide Web Consortium. Extensible markup language (XML) 1.0.
http://www.w3.org/ TR/REC-xml, October 2000.

5. World Wide Web Consortium. XML encryption requirements.
http://www.w3.org/ TR/xml-encryption-req, March 2002.

6. World Wide Web Consortium. XML encryption syntax and processing.
http://www.w3.org/ TR/xmlenc-core/, August 2002.

Efficient Processing of Secured XML Metadata 717

7. World Wide Web Consortium. XML path language (XPath) 2.0.
http://www.w3.org/ TR/xpath20/, november 2002.

8. World Wide Web Consortium. XQuery 1.0: an XML query language.
http://www.w3.org/ TR/xquery/, november 2002.

9. E. Dijkstra, W. Jonker, and H. van Gageldonk. Data and content management
(chapter). In The New Everyday – Views on Ambient Intelligence, E. Aarts and S.
Marzano (eds.), Koninklijke Philips Electronics N.V., ISBN 90-6450-502-0, 2003.

10. H. Hacigümüş, B. Lyer, C. Li, and S. Mehrotra. Executing SQL over encrypted
data in the database-service-provider model. In Proc. the ACM SIGMOD Intl.
Conf. on Management of Data, pages 216–227, Wisconsin, USA, June 2002.

11. H. Hacigümüş, B. Lyer, and S. Mehrotra. Providing database as a service. In Proc.
Intl. Conf. on Data Engineering, 2002.

12. W. Jonker. XML and secure data managament in an ambient world. Computer
Systems Science & Engineering (to appear), 2003.

13. D. Song, D. Wagner, and A. Perrig. Practical techniques for searches on encrypted
data. In Proc. the IEEE Symposium on Security and Privacy, 2000.

	Introduction
	A Framework for Searching Encrypted XML Metadata
	Query Preparation Phase
	Encoding XML DTDs
	Encoding XML Documents

	Query Pre-processing Phase
	XPath Expressions
	Mapping XPath Expressions to Paths
	Identification of Candidate DTDs and Documents

	Conclusion

