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Abstract. The organization of documents is a task that we face as computer
users daily. This is particularly true for management of email. Typically email
documents are organized in directory structures, which reflect the users’
ontology with respect to his daily communication needs. Since users’ activities
are continuously changing this may render email classifications increasingly
inaccurate and manual maintenance is a painstaking task. In this paper we
present an approach for integrating user-defined folder structures with
classification schemes that have been automatically derived from the email
content. This allows to automating the process of evolving and optimizing
directory structures without sacrificing knowledge captured in manually created
folder structures. A prototype demonstrating the feasibility and utility of our
approach has been developed and evaluated. With our approach we address
both an important practical problem and provide a relevant study on the
application of various techniques for maintaining application specific
ontologies.

1   Introduction

The organization of documents is a task that we face as computer users daily. This is
particularly true for the management of emails, still the main application of the
Internet. Whittaker [19] has written one of the first papers on the issue of email
organization. He introduced the concept of “email overload” and discussed – among
other issues - why users file their e-mails in folder structures. He identifies a number
of reasons: users believe that they will need the emails in the future, users want to
clean their inbox but still keep the emails, and users want to postpone the decision
about an action to be taken in order to determine the value of the information
contained in the emails. He also pointed out that it seems plausible that grouping
related emails is considered useful in preserving meaningful context for historical
communications and activities and is not simply a strategy to support information
search.

Typically email documents are organized in directory structures, where folders and
subfolders are used to categorize emails according to various criteria, such as projects,
personal relationships, and organizational structures. Therefore these directories
reflect the users' ontology with respect to his daily communication needs. Since the
communciation is related to continuously changing activities and users cannot foresee
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all kinds of messages arriving in the future this user ontology is anything but stable
and can become disorganized quickly. We all know from our daily experience how
painful the manual maintenance of email folder structures can be. The user must
carefully examine all emails to determine the best possible reorganization according
to his current needs. He may want to split folders that have become overpopulated. Or
he may want to group all the emails concerning one topic that are scattered over
several folders, since at the time of creating the folder structure the emergence of such
a topic could not be foreseen. In addition the resulting folder structures are typically
far from being optimal, leaving many useless, under-populated folders.

Current email software supports users in automatically classifying emails based on
simple criteria, such as sender, time etc., into pre-existing folder structures [1, 2].
However, this does not alleviate the user from first provisioning the necessary folder
structures. Also classification of documents based on basic email attributes taken
from the header, does not take advantage of the content of the documents during
classification.  Recent research on ontology development is considering the use of
data and text mining techniques in order to derive classification schemes for large
document collections [17]. Such an approach appears also to be attractive for
addressing the problem of creating email folder structures. However, plainly applying
mining tools to email databases in order to create classification schemes, e.g. by
applying text clustering techniques [16], does not take into account existing
knowledge on the application domain and would render specific knowledge of users
in terms of pre-existing folder structure useless.

Therefore we propose in this paper a more differentiated approach. We want to
integrate user-defined folder structures with classification schemes that have been
automatically derived from the email content. This approach is similar to work that is
currently performed in ontology evolution [17], but the profile of the target users is
fundamentally different. Whereas in ontology evolution we may expect experts to
modify existing ontologies to be shared among large communities in a very controlled
and fine-granular manner, probably supported by mining techniques, email users are
normally not experts on ontology evolution and integration. Therefore our goal is to
automate the process of integrating classification schemes derived by mining
techniques with user-defined classifications as far as possible. By analyzing the
content of existing email databases we provide classification schemes that are
specifically well adapted to the current content of the emails, whereas by retaining the
user-provided existing classification by a folder structure we tailor the classification
schemes towards the user needs and expectations. This will allow to substantially
streamlining the classification schemes being derived from the user and extracted
classifications.

The approach we present is based on existing techniques for text content analysis,
feature-based clustering and schema integration. The key insight that we want to
emphasize is that only by tailoring and combining such techniques in a way that
optimally exploits existing knowledge about the structure of the domain it will be
possible to have a practical solution for automated ontology generation and evolution.
In this sense we not only provide a working solution to a practical problem everyone
is facing today, but also a case study on the feasibility and challenges of creating
application and personalized ontologies in general.

We will give first in Section 2 an overview of our approach, before we dwelve into
the technical details of each of its aspects. In Section 3 we will introduce the various
methods for feature extraction we developed. These are essential as they take
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specifically advantage of the application domain. In Section 4 we introduce our
method for creating folder structures automatically based on feature clustering. In
Section 5 we present the algorithm used for integrating computer-generated folder
structures with user folder structures. We may view this as a solution to a specific
instance of a schema integration problem. In Section 6 we discuss the graphical user
interface that has been developed to allow the user to postprocess the automatically
generated folder structures. In Section 7 we report on initial evaluation results
obtained by providing our solution to real users. In Section 8 we give a short
overview on some related work and conclude the paper in Section 9.

2   Overview of the Approach

With our approach we try to combine the best of two worlds: the capability of users to
intelligently classify their email and the power of computers to perform
computationally intensive content analysis to discover possibly useful content-based
classification schemes. An overview of the approach is given in Fig. 1.

Fig. 1. Proposed solution schema to reorganize user data

Given an email database we assume that a user has already created some existing
folder structure which we will call the user view. In practice, after some time, this
view does no longer match the requirements of the user. Therefore by applying
content analysis to the email database we create a new view by providing a computer
generated classification of the email data, which we call the computer view. The
automatic generation of the computer view may be adapated to the needs of the user
by controlling which information is considered in the classification process, e.g.
topics, dates or headers of emails. The two views may be incompatible. Therefore we
need a mechanism to integrate the two views. This is done in a merge step and is a
core element of our approach. The view merge algorithm identifies folders with
overlapping contents and tries thus to identify semantically identical or related
folders. The resulting view is called merged view. In general, the merged view will
have no longer a tree structure, but be a general lattice, even if both input views had
the structure of a tree. The merged view is guaranteed to contain all structural
elements of the original user view and to cover the complete email database.

The resulting merged view may still not meet all expectations of the user.
Therefore in a final step the user can use a graphical user interface to refine the
merged view and thus to produce the final view. This final feedback given by the user
is important as only the user can decide what he ultimately wants. The graphical user
interface displays the merged view to the user and lets him modify it in accordance
with his needs. One issue this graphical user interface has to address is the ability to
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deal with lattice structures, rather than trees, as the merged view is in general a lattice.
As the merge algorithm summarizes the information of the user and the computer
view, for the user it is always possible to retrieve his original view and to remove all
the computer’s suggestions. He cannot loose work he already invested into classifying
emails. In the following we will discuss in more detail the approach taken to realize
each of the steps described.

3   Feature Extraction

The automated classification of emails consists of the two steps of feature extraction
and classification, which are standard for any content analysis process. Each email
has header fields and a body. Among the header fields “To”, “Cc”, “From”, “Date”
and “Subject” are taken into account to characterize emails. In the feature extraction
process we try to focus already on those features that will be most relevant for the
subsequent classification process. Therefore we use different heuristics resulting in
the following four feature categories which we have identified as being most relevant
for semantically meaningful email classification: one that deals with persons, one that
deals with groups of persons exchanging emails over a limited time frame, a so-called
email thread, one that deals with subject lines that are related and one that deals with
email bodies related over a limited time frame. Each email will be either associated
with a specific feature or not. For example, the features from person category will
consist of the different persons occurring frequently in emails, and emails will either
be related to one of those persons or not. This very selective approach to extracting
features is essential in order to optimize the classification schemes that are obtained in
the subsequent classification process.

The set of features belonging to each of these feature categories are extracted from
the email collection using different methods. We describe these methods in the
following shortly.

•  Extraction of person features: The identification of person features is based on the
email address. An email address can contain two fields: the email address itself and
the optional name. We use the optional name in order to identify whether the same
person uses different email addresses. From this we can create a table relating
email addresses with their corresponding person names and thus identify emails
belonging to the same person, even if different email addresses were used. Only
person names that occur frequently will be used as an email feature.

•  Extraction of email threads: An email conversation thread consists of a series of
replies to a message and the replies to those replies. This is very commonly
occuring in email conversations. A thread can also capture complex discussion
processes among a group of people whose members may change over time. For
extracting threads we examine each email in the database to see if any were sent
after the currently examined email involving the sender of the email at the base of
the search. There is a time distance limit between every email in a thread list. Only
a maximal number of days between two emails are allowed within the same thread.
In order to be considered as email feature, a thread must contain more than a
minimal number of emails.
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•  Extraction of subjects: Each email has a subject line. Sometimes it is empty,
contains a trivial greeting such as “hello” or simply a “Re:”. An email subject
containing a greeting is polite, but not very useful in our case. For this reason, we
maintain a huge list of “stop words”. These words will not be accepted as features.
This list contains French, English, German and Italian words, but it can be adapted
to other language(s) being used.  A list of all the remaining words encountered in
subject lines is created to create the features.

•  Extraction of topics from email bodies: The extraction of topics from email bodies
is based on pairwise evaluation of similarity of the textual content of the email
body using a TF-IDF based similarity measure. In order to extract the relevant
words from an email body, first text that is not relevant for the evaluation of
content–based similarity, like signatures, html tags, webmail signatures and email
headers of replies is removed in a pre-processing step. Stopwords for each of the
four languages French, English, German and Italian are removed as well. The
stopword list was created by using the one found on the Porter’s algorithm web
page [10] and the one from [14]. Once all useless words have been removed, the
person names and email adresses found in the email body, that have been earlier
extracted from the email headers, are removed since person features are covered
separately. For the remaining text word vectors are created.

In order to dramatically reduce the effort in identifying related clusters of emails by
computing the complete email similarity matrix we exploit a specific characteristic of
email texts. The temporal order of writing of emails is known and emails that are
temporally distant are less likely related. This idea has been first exploited in [18] for
news articles. There exists a great similarity between newspaper articles and emails
since both are chronologically ordered documents. The method proposed in [18]
allows the identification of email threads in O(n) time.

A collection of emails is represented as an ordered set { }1 2, ,..., nE e e e= . The

sequence 1, 2,…, n corresponds to the passage of time. Email ei is older than ei+1.
Emails sent on the same day receive an arbitrary order.

The function ( , )i jsim e e calculates the word-based similarity between an email ei

and an email ej from the set
iecomp , where 

iecomp is the set of emails of size k

considered for comparison.
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where ( )
ieC kw is the frequency of word kw in ei, ieC is the number of words in ei

and ( )kN kw  is the number of emails in 
iecomp that contain the word kw. 1,5ie

kwg = if

kw ∈ differential(ei) and 1ie
kwg = otherwise. The function differential(ei) returns the set

of keywords that appear in ei but do not appear in
iecomp .

The original method in [18] was modified in the way of how 
iecomp is determined.

Rather than considering the k last news articles, as in the original method, we consider
all emails from from the last d days. Taking into account for comparison all emails
written in the last d days (e.g. d = 28) affects the complexity of the algorithm, since
the number of emails compared becomes variable. But from the perspective of email
analysis it appears more logical to compare an email with all the emails written in a
certain period, than with a fixed number of earlier emails. The execution time has not
been a practical problem, since the number of emails considered remains much
smaller than the size of the email database. As a further optimization the feature
extraction algorithm determines in which language every email is written and only
emails written in the same language are compared. This can reduce considerably the
computation cost for users who receive emails written in different languages.

Email threads correspond then to sequences of emails that are linked by a
similarity value ( , )i jsim e e  for i < j  that is larger than a given threshold. Each email

thread represents a feature.
Once all the features have been determined we eliminate all features and emails

that are not useful. A feature appearing only once in an email is not relevant and
therefore will be removed. Emails that do not have enough features will also not be
taken into account in the following. They would generate non-relevant folders and
hurt the result quality. The outlier removal before the start of the clustering and
classification process substantially simplifies the subsequent processing.

4   Automatic Folder Generation

A clustering program, Cluto [4], is used to create clusters of emails using the features
that have been extracted from the emails. This program takes as input a sparse matrix
file whose rows are the data points (in our case email identifiers) and whose columns
are the features. The Cluto toolkit was chosen because of its simplicity of use and its
flexibility and the fact that it is freely available for research purposes.

The user can choose the number of levels the computer view folder structure
should have and the minimal number of folders he wants at each level. The number of
clusters per level is (naturally) monotonically increasing with the level of the tree.
The clustering tool will then generate at each level in separate runs the required
number of clusters. This approach exploits the fact that the clustering tool is using
bisective K-Means and is thus creating clusters by successive (binary) splitting of the
data sets. More precisely the tool proceeds by first splitting the data sets into two
subsets with the closest features, then selecting one of the sets created in this way for
further splitting, and so on till the desired number of clusters is reached. So if, for
example, a clustering for the first level of the folder hierarchy has been created, a
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second execution of the clustering will again first create the same clusters and then
continue to refine these clusters further, thus creating the second level partitioning.
We give a simple example illustrating of how the construction of the folder structure
works in Fig. 2.

email ID   clusters level 1   clusters level 2

1 1 1
2 1 1
3 1 2
4 2 3
5 2 3

Fig. 2. Creation of folder structure through clustering

The optimal number of clusters to be generated is difficult to determine since it
depends both on the available data and the user intentions. If the clustering program
generates too many folders, the potential problem is that the subsequent merge
algorithm, which will be described in the next section, will create too many folders in
the merged view and related emails run the risk of being scattered over multiple
folders. Also result visualization and comprehension becomes difficult. If the
clustering program does not generate a sufficient number of folders some folders will
contain emails on different topics that do not belong together.

The following approach has been used to achieve an optimal number of folders and
still to allow the user to specify a minimal number of folders to be generated. The
minimal number of folders required by the user is the number of clusters that the
clustering program Cluto will have to find among for the email collection. These
email clusters will become folders. There is no warranty that all the emails in a folder
are related, as we want them to be. For this reason there is a further step, called group
outlier removal, which will check every folder and determine if all its emails are
related. If not, it will create new folders until all the emails contained in one folder are
related. This approach will produce the minimal number of folders needed to generate
a meaningful view.

We considered two methods to detect outlier emails within a generated folder. In
the first approach we try to identify a representative email that shares with each other
email in that folder at least one feature. We may consider this as testing whether the
cluster contains a central element. In the second approach we test whether each email
in the folder shares at least one feature with some other email in the folder. We may
consider this as testing whether the cluster is connected. In both cases we exclude
features related to the user’s email address, as they would in general relate all emails
of a folder. The first approach generates more folders and decreases the chances that
one folder contains more than one topic. For this reason this is the method we have
chosen for our implementation. Figure 3 illustrates the group outlier removal process.
Group outlier removal proved to be very effective in order to dramatically improve
the quality of the merged views.
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Fig. 3. Email 6 is an outlier in folder 1 as it cannot share a common feature with a central email
(e.g. 1, 3). The group outlier removal creates a separate folder for it, if it is based on the first
method presented

5   Folder Merge Algorithm

The folder merge algorithm takes two trees as input (the user view and the computer
view) and produces a directed graph called merged view. First the merge algorithms
needs to be able to determine when two folders are to be considered and thus should
be merged. For this we introduce a similarity measure for folders. Then we discuss
the different operations that can be performed to merge folders depending on their
similarity. Finally we present the global algorithm and its properties. Note that even
though we present this algorithm for the context of email folders it is generally
applicable to any hierarchical schema used for data classifications.

5.1   Folder Similarity Measure

We view a folder structure as a tree where internal nodes correspond to folders and
leaf nodes correspond to emails. For a folder A we denote by leaf(A) the set of all
direct and indirect leaves that it contains. Then the Shared Leaves Ration (SLR) is the
measure used to determine the similarity of the content of two folders. This measure
will be used to identify which folders should be compared and what actions are taken
based on the comparison. The Shared Leaves Ratio comparing folders A and B is
defined as

( ) ( )
( )

( )A

leaf A leaf B
SLR B

leaf A

∩
=

(3)

It is important to note that SLR is a non-symmetric relationship. If
( ) ( )leaf A leaf B≤

then
( ) ( )B ASLR A SLR B≤

with equality only if
( ) ( )leaf A leaf B= .

Sparse Matrix File:
1 3 2 1 3 1
6 2 7 1 8 1
1 1 3 1 4 1
5 1 7 2 8 1
4 1 9 1 9 1
4 2 9 2 1 2

Cluto Cluster 1:
Email Number 1,3,5,6

Cluster 2:
Email Number 2,4

Group
Outlier

Removal

Folder 1:
Email Number 1,3,5

Folder 3:
Email Number 6

Folder 2:
Email Number 2,4Minimal

Folders
Number
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5.2   Basic Operations

Different merge operations can be applied after two folders from the user and the
computer view have been compared. We introduce first the basic merge operations
and then the merge algorithm that applies these operations in a proper order to merge
two folder structures.

Basic operations always involve a folder A from one of the two input trees. The list
GA contains all the folders C such that folder C and A have some leaves in common
(i.e. contain some common emails). If GA is non empty, the merge algorithm will try
to combine folders contained in list GA with the folder A, otherwise folder A will no
be modified and be considered as merged. The merge algorithm will be designed such
that it always guarantees that the condition ( ) ( )leaf A leaf C≤  is satisfied (see

algorithm FolderSelection in Section 5.3). Therefore when introducing the basic
operations we will assume that this condition holds.

Specialization
If, after comparison, it turns out that a folder C in GA is contained in A then C can
appear as a subfolder of A in the merged folder structure. This situation occurs if

( ) 1,A ASLR C C G= ∈ (4)

An example of specialization is given in Fig. 4. Creating subfolders through
specialization is particularly interesting for partitioning large folders in the original
folder structure into smaller folders.

Fig. 4. Result of the specialize operation

Specialization with a Shared Folder
This operation is executed when folder A and a folder C in GA have only some leaves
in common, but neither is contained in the other. This operation creates a new folder
to contain the common emails. The new folder becomes a subfolder of both folders A
and C and thus in general the folder structure generated by the merge algorithm will
be a directed graph. This operation occurs if:

0 ( ) 1,A ASLR C C G< < ∈ (5)

An example of specialization is given in Fig. 5.
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Fig. 5. Result of the specialization with shared folder operation

This operation is useful in dealing with emails that belong to more than one topic.
It is also useful to correct classification errors. It happens quite often that an email is
classified into a wrong folder. Such an email will appear in the wrong folder in the
user view, but it will be regrouped with related emails in the computer view. After
performing this operation, the problematic email will appear both in the wrong and
right folder. Later, this email will attract the user’s attention when he is inspecting the
folder structure with the graphical user interface and he will be able to decide what to
do. Either he or the computer did a classification mistake and the email should appear
in only one folder, or it is of interest to have the email in two folders, because it is
related to more than one topic.

If GA contains more than one folder, folder A shares leaves with more than one
folder C. In this case, the basic operation of specialization with a shared folder is
executed once with every folder in GA, but folder A is inserted only once into the
merged graph.

Insertion of the Folder in the Merged Graph
If none of the two basic specialization operations can be executed, i.e. if GA is empty,
the folder A is inserted in the merged graph without modifications. The leaves of
folder A are as well inserted into the merged graph.

5.3   Merge Algorithm

We give a general overview of the merge algorithm that relies on the basic operations.
For initialization the computer and user view are merged into a common tree. This
step is performed by merging the two root nodes of the two trees into a common root
node resulting in the unified input tree.

After initialization the merge algorithm can be divided into three steps which are
repeatedly executed as illustrated in Fig. 6. The first step called TreeTraverseStrategy
ensures that the unified input tree is traversed in the correct order. It maintains a
folder list called PossibleBaseFolder, which contains the list of folders whose sons
must be merged. PossibleBaseFolder is a FIFO queue that determines the folder
currentRoot. Initially PossibleBaseFolder contains the common root node of the
unified tree. This folder is passed to the next step of the algorithm.

A
4

6
5

C

1

6

4

C

A

4

6
5

1
Specialization

with
Shared Folder

SN1



Automatic Expansion of Manual Email Classifications Based on Text Analysis         795

Fig. 6. Merge algorithm structure

The second step called FolderSelection determines a folder list l. This list contains
the sons of the folder currentRoot. Once the list is determined, it is sorted in
increasing order according to the number of leaves each folder contains. The first
element of this list will then successively be removed from list l and passed to the
next step of the algorithm, along with the remaining list l. The folder passed
successively to the next step of the algorithm part will be called folder A.

FolderSelection(currentRoot)
l = { A | A is a son of currentRoot};
Sort l in increasing order according to |leaf(A)|;
while l not empty

A := first element of l;
Drop first element of l;
FolderComparison(l, A)

endwhile;

The third and last step, called FolderComparison, derives the list GA from l. This is
done by calculating the SLR of all vertices in list l with folder A and including those
folders in l that have a SLR greater than 0 into  GA. If GA is empty, the folder will be
inserted into the merged graph directly. If there is an element in GA that satisfies the
condition for the specialization or specialization with a shared folder operation, then
the operation is executed. Every time when the algorithm adds a folder to the merged
view by executing a basic operation, this folder is also added to the FIFO queue

Tree Traverse Strategy
FIFO queue: Possible Base Folder

Folder Selection

currentRoot

List l

Folder Comparison

List l, folder A

Append folder A, if it
is inserted into the

Merged View

Merged View

Insert folder A into
merged view as son

of currentRoot

Initialization
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PossibleBaseFolder. The detailed folder comparison algorithm is given in the
following

FolderComparison(l, A)

Calculate SLRA(C) for each folder C � l;

CloseFolders = { C | C � l, SLRA(C) > 0 };
Sort CloseFolders in decreasing order according to SLRA(C);
ClosestFolder = first element of CloseFolders;
nrSharedLeaves = |leaf(A) ∩ leaf(ClosestFolder)|;
if SLRA(ClosestFolder) > inclusionThreshold

then specialize(A, closestFolder)
elseif SLRA(ClosestFolder) > 0 and

nrSharedLeaves � nrSharedLeavesThreshold
then specializeWSharedFolder(A, CloseFolders);

 insertFolderIntoMergedGraph(A, currentRoot)
else insertFolderIntoMergedGraph(A, currentRoot);

The algorithm terminates when PossibleBaseFolder is empty while executing
TreeTraversalStrategy. This algorithm does not loose any information that is
contained in the user view. All folders from the user view will be retained in the
merged view. Also no emails can be lost since all emails contained in a folder of the
user view will show up as elements of the respective folder retained in the merged
view.

We demonstrate the execution of the merge algorithm by a simple example. Let the
following two folder structures be given as input.

The first step is to create a unified tree with a common root. At the beginning
CurrentRoot is set to {A} PossibleBaseFolder is empty. The folder selection
algorithm produces initially a list l = {B, E, F, C}. Processing folder B produces the
first graph in the following figure. The following steps are related to processing the
remaining elements in A.
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Once the merge algorithm termiantes, the output must still be post processed.
Folders with no leaves and containing only a single folder will be removed, unless
these folders are not user folders.

5.4   Label Creation

During the merge processes new folders are created by the algorithm. For these
folders new labels have to be created. Creating intelligible labels is an extremely
important and equally difficult problem. The labels are generated using the features of
the emails in the folder. We chose to use both person and subject related features. We
developed several rules to generate from terms found in the emails labels enriched by
additional information extracted from the structure of the email. The following rules
were applied to that respect:
•  email f name a subject: a folder with this label contains essentially emails from a

person with name. The most frequent terms related to a subject are indicated.
•  a subject: a folder with this label contains emails essentially related to a specific

subject, which is the most frequently observed feature.
•  g-email(number of person in the email-list) name1 name2 email-list a subject

words: a folder with this label contains essentially emails which had always the
same recipient list email-list. The first two members of the email list are
mentioned.

•  e received w name a words: a folder with this label contains essentially emails that
have been received from a person with name. Frequently emails of this type are
sent via a distribution list.

•  discussion w name a subject: a folder with this label contains emails where a
discussion is carried on with person name. The person whose name is included into
the label is involved as person feature in most of the folders or emails, both in the
from field and in the recipient list.

6   Graphical User Interface

In general, the merge algorithm results in a directed graph. This graph contains new
access points to email either created through folders integrated from the computer
view or created through the specialization with new folder operation. Since the
resulting folder structure is a directed graph it cannot be directly displayed with
standard tools for tree-like directory structures. A special user interface was thus
developed to allow the user to visualize the generated folder structure, and more
importantly to manipulate it according to his needs. The user interface also allows to
filtering the merged view in order to focus the users’ attention on specific aspects of
the folder structure. Thus the user interface provides a tool that allows the user to
efficiently transform the merged view into the desired final user view.

The graphical user interface for postprocessing the merged view is an essential part
of the solution we propose. Ultimately, only the user is able to decide whether certain
folders created by the preceding process are semantically meaningful. All the steps for
the automatic reorganization of folder structures presented earlier are designed in
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order to produce potentially useful results, but the final decision about their utility has
to be left to the user.

The most challenging requirement when designing the graphical user interface was
to provide the user the possibility to explore the different parents of a folder and at the
same time exhibit the structure of the original user view. In order to help the user to
navigate easily in the result, tools have been added that aid in quickly understanding
the automatically created folder structure and accepting or rejecting changes swiftly.
For doing that two modes of browsing are supported, namely browsing vertically
along the paths of the tree hierarchy and browsing horizontally among the different
fathers of a shared folder. Folders from the merged view which should be examined
by the user are specially marked (with the letter “M” as it is shown in Fig. 7). Marked
folders that have been examined and processed by the user are unmarked.

Fig. 7. This is a screenshot of the implementation of the graphical user interface. It shows how
folder structures are displayed and how the different characteristics described in this section are
implemented. The letter “M” near the folder “discussion w Aweinma…” indicates to the user
that he should start to examine the merged view by looking at this folder and thus to focus his
attention.

With respect to editing of the folder structures the following rules have to be
observed. (1) It is only possible to remove a folder if it has no parents left and (2) if a
folder that is shared among multiple folders is removed, it is only removed from one
of the parent folders. The second rule allows to reorganizing shared folders such that a
more tree-like structure can be achieved. With respect to filtering the user can specify
to see only folders that contain a maximal or minimal number of emails. This is useful
to eliminate potentially useless folders and thus to reduce the complexity of the folder
structure.

S

S

S

Shared Mailbox

New access point
to user data
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Fig. 8. This figure shows how the graphical user interface displays folders having more than
one parent

Fig. 9. This figure shows the folder structure of the merged view displayed in Fig. 8. It is
interesting to observe of how the folder “rendez”, that has two parents, is displayed.

7   Evaluation

The approach described in this paper has been fully implemented. To connect the
various steps of the overall process, including feature extraction from emails,
processing by the clustering tool and display at the graphical user interface a set of
perl scripts was used that communicate through files. The graphical user interface has
been implemented in Delphi. For mailboxes the Eudora format has been used.

For evaluation different user tests have been performed. Two types of questions
have been addressed in the evaluation: the evaluation of the quality of the merged
view and the evaluation of the usability of the graphical user interface. A secondary
issue that we evaluated was the computational performance of the implementation of
the algorithms. The results of the usability test were reflected in several redesigns of
the graphical user interface. In the following we focus on the test concerning the
generation and quality of the merged view. We report the results from one
representative test.

A user provided his mailbox containing 3466 emails organized into 4 folders. The
user then requested the tool to produce a merged view on two levels with 5 folders on
the first level and 20 folders on the second level. It took approximately 26 minutes to
produce the merged view on a Pentium PC with 700Mhz. After the creation of the
merged view the user inspected 15 of the new folders. 11 out of the 15 folders were
judged to be meaningful since they concerned a specific topic. The user remembered
that sometime he classified his emails without much consideration, but he was
astonished to see how many topics were spread over different mailboxes. Most of the
time topics were split among two folders, but one topic even had been split among
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three folders. The 4 folders that were considered meaningless had two kinds of
problems. The most frequent problem (also in other experiments) has been folders
containing unrelated emails. This typically results from using person-related features
from the email. This indicates a possible improvement in the feature extraction
process. The second problem was related to the intelligibility of the produced folder
structure. As it turns out it is difficult for a user to well understand the folder
structure, in particular in the presence of shared folders, when the depth of the folder
structure is more than one.

From this and the other tests made (a total of 9) we can thus draw the following
conclusions. The different tests show that a majority of the folders and mailboxes
produced by the proposed solution are meaningful. An average of 50 to 70% of
meaningful folders is achieved when the number of clusters from which the computer
view is generated is reasonable. It is difficult to say in general what a reasonable
value would be as this parameter depends on the characteristics of the user mailbox
and the number of preexisting folders. But experience showed that this parameter
should be chosen such that the number of folders in the computer view should be
approximately the number of folders in the user view, unless the user view does not
contain too many small folders that the user wants to group together. Increasing the
minimal number of folders to be generated increases the probability of creating
meaningful folders, but it decreases the probability of finding all the emails related to
a topic in the same folder. Once a user has made the necessary effort to understand the
graphical user interface, the comprehension of a merged view of depth one is
straightforward. Some parts of the merged view become difficult to understand if the
depth of the user or the computer view is greater than one. There are two possible
solutions to improve the result intelligibility. Either the display at the graphical used
interface is changed or the merge algorithm is modified such that complex folder
structures are avoided while maintaining the user information retention property.

8   Related Work

The application of text classification techniques to email documents has been widely
studied in the literature. We do not give a complete overview on this field, but just
mention some typical examples. We can characterize this work along two dimensions:
the techniques used and the specific application targetted. As for the techniques that
have been considered in the literature we find rule induction [1], word-based TF-IDF
weighting [15], naïve Baysian text classification [8, 11, 12], and hierarchical
clustering [6], the latter being the method also we were using. In most cases emails
are considered as unstructured text, not taking advantage of the specific email
structure during feature extraction. A notable exception is [6], who use similar feature
extraction methods as we do. As for the scope of the different approaches they are
more limited than our approach, as they focus on a specific task. The following
standard tasks can be identified:

•  automatic creation of folder structures, e.g. [6]
•  automatic classification by filtering of email messages, e.g. [12]
•  filtering of email messages into user defined folders, e.g. [1]
•  spam detection, e.g. [8]
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None of these approaches aims at reorganizing user-defined folder structures as we
do. Either no user-defined folders are used at all and classifications are automatically
generated only, or the preexisting folder structure is the target of an email filtering
method. On the other hand these works provide a rich set of methods that could be
used as alternative methods to the one we have applied in the computer view
generation. Our focus was not so much to make use of sophisticated text classification
techniques, but to use existing techniques in a way that took most advantage of the
specific problem structure at hand.

The merge technique that we applied is essentially based on ideas that have already
been introduced in the very first works on database schema integration [7]. The
approach of integrating techniques for document analysis, for schema integration and
user interfaces can be seen in line with current developments on ontology engineering
tools [3]. Similarly as our work, these tools have been recently extended by
introducing document analysis methods, as in [5], to enable semi-automatic
development of ontologies.

9   Conclusions

In this paper we have introduced an approach to evolve user-defined email folder
structures taking advantage of text content analysis techniques. One challenge was to
completely preserve existing knowledge of users while at the same time apply
modifications obtained from email content analysis. In this sense the method bridges
the gap on earlier work on email filtering (relying on user-defined folder structures
only) and email classification (relying on computer generated folder structures only).
Another challenge was to address all the phases of the process starting from email
classification, to folder merging and interactive postprocessing of the result by the
user, while taking in each phase advantage of the specific knowledge available on the
email domain. The approach has been implemented and evaluated.

The approach is besides addressing an important practical problem also a relevant
study on the application and combination of various techniques for creating and
maintaining user/application specific ontologies. Many of the observations and
techniques would naturally generalize to onotology management in more general
settings.
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