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Abstract. The usefulness of topology in science and mathematics
means that topological spaces must be studied, and computers should be
used in this study. We discuss how many useful spaces (including all com-
pact Hausdorff spaces) can be approximated by finite spaces, and these
finite spaces are completely determined by their specialization orders.
As a special case, digital n-space, used to interpret Euclidean n-space
and in particular, the computer screen, is also dealt with in terms of the
specialization. Indeed, algorithms written using the specialization are
comparable in difficulty, storage usage and speed to those which use the
traditional (8,4), (4,8) and (6,6) adjacencies, and are of course completely
representative of the spaces.
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(order), connected ordered topological space (COTS), Alexandroff space,
Khalimsky line, digital n-space, metric and polyhedral analogs, chaining
maps, calming maps, normalizing maps, inverse limit, Hausdorff reflec-
tion, skew (=stable) compactness, (graph) path and arc connectedness
and components, (topological) adjacency, Jordan curve, robust scene,
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1 Introduction: Why Topological Spaces?

During the first calculus or post-calculus course with any intellectual glue, stu-
dents meet the idea of topology:

Definition 1. A topological space is a set X, together with a collection τ , of
subsets of X, such that:

(a) if G is a finite subset of τ then its intersection,
⋂

G ∈ τ , and
(b) if G is any subset of τ then its union,

⋃
G ∈ τ .

A subset of X is called open if it is in τ , closed if its complement is in τ .

As a result of this definition, since ∅ is a finite subset of τ , ∅ =
⋃ ∅ and

X =
⋂ ∅ are open (are in τ).

Why does topology come up there? First, metrics (distance functions) are
noticed in calculus, such as d(x, y) = |x − y|, or for vectors, d(x, y) = ‖x − y‖.
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It is easy to define a topology using from a metric: a set T is open if whenever
x ∈ T , then some ball of positive radius, Br(x) = {y | d(x, y) < r}, is contained
in T (for some r > 0, Br(x) ⊆ T ). Essentially no properties of the distance
are used in the proof that this gives a topology, and for metrics satisfying the
triangle inequality: d(x, z) ≤ d(x, y)+d(y, z), Br(x) is open (if y ∈ Br(x) then for
s = r−d(x, y) > 0, Bs(y) ⊆ Br(x) (if d(y, z) < s then d(x, z) ≤ d(x, y)+d(y, z) <
d(x, y)+ (r − d(x, y)) = r). Good references in general topology include [18] and
[19].

Using topology one can easily define:
• Limit (thus derivative), continuous function (at a point or always),
• closure, interior and boundary of sets,
• connected set, compact set.

It then becomes easy to show that each function is continuous at each
point where it has a derivative. Also, the connected sets of real numbers are
the intervals and the compact sets are the bounded closed sets; thus the closed
bounded intervals (sets of the form [a, b] = {x | a ≤ x ≤ b}) are the connected
compact subsets. If f : X → Y is a function and A ⊆ X, the image of A
under f is f [A] = {f(x) | x ∈ A}; further, if B ⊆ Y , the inverse image of
B, f−1[B] = {x | f(x) ∈ B}. We don’t bother with any of these textbook
proofs, although we do some later which are related to our particular interest.

Facts: Suppose f is continuous and A ⊆ X. If A is connected then f [A] is
connected, if A is compact, then f [A] is compact. Thus in particular, if X = IR
and a < b then f [[a, b]] is a closed, bounded interval, [m, M ], so:

There are x, y ∈ [a, b] so that f(x) = m and f(y) = M – that is, f achieves a
minimum and a maximum on [a, b], so these are worth looking for. This justifies
much of differential calculus.

Since f(a) and f(b) are in the interval f [[a, b]], if p is between f(a) and f(b)
then p ∈ f [[a, b]], which is to say that for some c ∈ [a, b], p = f(c). That is, the
equation p = f(y) has a solution in [a, b]. This justifies much of the search for
roots in algebra.

The above and many similar facts mean that topological questions permeate
analysis, thus theoretical science. Therefore, much computing must be done with
topological data. We now discuss methods to do this.

2 Finite and Alexandroff Spaces

Definition 2. A topological space is Alexandroff if:
(a’) if G is ANY subset of τ then

⋂
G ∈ τ .

(The above is in addition to (b), and implies (a) of Definition 1.) These
spaces were studied systematically long ago by the author after whom they are
named; see [2].

This is quite atypical of spaces. In IR for example, {0} =
⋂∞

1 (−1/n, 1/n) =⋂∞
1 B1/n(0) is an intersection of open sets which isn’t open. But it is typical of
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the finite topological spaces that one can completely store in a computer, since
then any subset of τ is finite, so its intersection is in τ . The theory of Alexandroff
spaces, applied especially to digital topology, is discussed in [11] and [7]. Most
of the results in Lemma 2 through Theorem 1 can be found there conveniently
(though none originate there).

Alexandroff spaces have a particular property that is extremely useful in
computing. Recall that a preorder is a relation ≤ such that each a ≤ a and a ≤
b&b ≤ c ⇒ a ≤ c; a partial order is a preorder for which a ≤ b&b ≤ a ⇒ a = b.
We now work toward a proof that for finite spaces, topology and continuity are
completely determined by a preorder (which should be seen as an asymmetric
adjacency relation). That is (see Theorem 1 (b), or [11]):

There is a preorder such that the open sets are the upper sets; those for
which x ∈ T&x ≤ y ⇒ y ∈ T (lower sets are similarly defined). Furthermore, a
function between Alexandroff spaces will be continuous if and only if it preserves
the order. Here are some relevant textbook proofs:

Lemma 1. Given any topological space:
(a) Finite unions and arbitrary intersections of closed sets are closed.
(b) For each A ⊆ X there is a smallest closed set containing A called its

closure, and defined by clA =
⋂{C closed| A ⊆ C}, and a largest open subset of

A, its interior, intA =
⋃{T open| T ⊆ A}.

A function f : X → Y is defined to be continuous at a point a if whenever
f(a) ∈ T and T is open, then for some open U � a, f [U ] ⊆ T . It is continuous
if continuous at every point in X.

(c) The following are equivalent: f is continuous ⇔ for each open T , f−1[T ]
is open ⇔ for each closed C, f−1[C] is closed ⇔ for each A, f [ cl(A)] ⊆ cl(f [A]).

Proof. (a) Let G be a collection of closed sets. By de Morgan’s laws, X \ ⋃{C |
C ∈ G} =

⋂{X \ C | C ∈ G} so the complement of
⋃{C | C ∈ G} is open if G

is finite, thus
⋃{C | C ∈ G} is closed if G is finite; the other proof is similar.

(b) By definition of a topological space,
⋃{T open| T ⊆ A} is an open set,

and is certainly contained in A, and the largest such set (since if U ⊆ A is open,
then U is one of the sets whose union is being taken). Thus int(A) is the largest
open set contained in A. By (a),

⋂{C closed| A ⊆ C} is closed, and the proof
that it is the smallest closed set containing A is like the above.

(c) For this proof it’s necessary to notice some properties of f−1:
x ∈ f−1[

⋃
G] ⇔ f(x) ∈ ⋃

G ⇔ for some
B ∈ G, f(x) ∈ B ⇔ x ∈ ⋃{f−1[B] | B ∈ G},

x ∈ f−1[
⋂

G] ⇔ f(x) ∈ ⋂
G ⇔ for each

B ∈ G, f(x) ∈ B ⇔ x ∈ ⋂{f−1[B] | B ∈ G},
x ∈ f−1[Y \ B] ⇔ f(x) ∈ Y \ B ⇔ f(x) 
∈ B ⇔ x 
∈ f−1[B].

That is, f−1[
⋃

G] =
⋃{f−1[B | B ∈ G}], f−1[

⋂
G] =

⋂{f−1[B | B ∈ G}],
and f−1[Y \ B] = X \ f−1[B]. Another useful property is that A ⊆ f−1[B] ⇔
f [A] ⊆ B.

Suppose f is continuous, T is open and a ∈ f−1[T ]. Then f(a) ∈ T so for
some open Ua � a, f [Ua] ⊆ T , thus a ∈ Ua ⊆ f−1[T ], therefore f−1[T ] ⊆ ⋃{Ua |
a ∈ f−1[T ]} ⊆ f−1[T ], showing f−1[T ] to be open.
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If the inverse image of each open set is open and C is closed, then Y \ C is
open, so f−1[C] = X \ f−1[Y \ C] is closed.

If the inverse image of each closed set is closed, then so is f−1[ cl(f [A])] ⊇ A.
But then as the smallest closed set containing A, cl(A) ⊆ f−1[ cl(f [A])], showing
f [ cl(A)] ⊆ cl(f [A]).

Finally if each f [ cl(A)] ⊆ cl(f [A]) and f(x) is in an open set T , then for
each x, f(x) 
∈ cl(Y \ T ), thus x 
∈ cl(f−1[Y \ T ]). But this says that for some
open set, x ∈ U ⊆ X \ cl(f−1[Y \ T ]) ⊆ X \ f−1[Y \ T ] = f−1[T ]. Therefore f
is continuous at x.

The same principles are used to see the key facts for Alexandroff spaces.
But we need other definitions first.

Definition 3. Let X be any set and B any collection of subsets of X. Then
there is a smallest topology τB on X which contains B.

Let (X, τ) be a topological space. The specialization is defined by x ≤X y ⇔
x ∈ cl{y}.

The space X is T0 if whenever x ∈ cl{y} and y ∈ cl{x} then x = y, and T1
if each {x} is closed.

If Y ⊆ X then the subspace topology τ |Y is defined by saying that T ∈ τ |Y
if (and only if) for some U ∈ τ, T = U ∩ Y .

Given a collection of spaces, (Xi, τi), i ∈ I, the product topology on the
set

∏
i∈I Xi

1, is the smallest one containing each set of the form {x | xi ∈ U},
where i ∈ I and U ∈ τi.

Lemma 2. (a) For each X, ≤X is a preorder. It is a partial order iff the space
is T0, and equality if and only if the space is T1.

(b) Each closed set is a ≤X lower set and each open set is a ≤X-upper set.
For each continuous f : X → Y , x ≤X y ⇒ f(x) ≤Y f(y).

(c) Given a subspace Y of a space X, for x, y ∈ Y, x ≤Y y ⇔ x ≤X y. In
a product, for x, y ∈ ∏

i∈I Xi, x ≤∏
i∈I Xi

y if and only if for every coordinate,
xi ≤Xi yi.

Proof. (a) Of course, x ∈ cl{x}. Next notice that x ∈ cl{y} if and only if
cl{x} ⊆ cl{y}; it is immediate that ≤X is transitive. The assertion about partial
order is immediate from our slightly non-standard definition of T0, and that
about equality is immediate from our standard definition of T1.

(b) If x ∈ C, C is closed, and y ≤X x, then y ∈ cl{x} ⊆ C, so y ∈ C, thus
C is lower. Therefore each open set is upper since its complement is lower. If f is
continuous and y ≤X x, then y ∈ cl{x} so f(y) ∈ f [ cl{x}] ⊆ cl(f [{x}]), which
is to say, f(y) ≤Y f(x).

(c) Notice that in the subspace topology, C ⊆ Y is closed if and only if
C = Y ∩ D for some closed D ⊆ X. Thus Y ∩ cl{y} is closed in τ |Y and if
y ∈ C closed in τ |Y then for some closed D ⊆ X, y ∈ D (thus cl{y} ⊆ D) and
1 Recall that the product is the set of all maps x on I such that each x(i) ∈ Xi.

Usually x(i) is called the i’th coordinate, and denoted xi.
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C = Y ∩ D. Thus C ⊇ Y ∩ cl{y}. This shows that Y ∩ cl{y} is the smallest
closed set in τ |Y , containing y, and of course, for x ∈ Y , x ∈ cl{y} ⇔ x ≤X y.

Notice that if each Ci ⊆ Xi is closed, then
∏

i∈I Ci = {x ∈ ∏
i∈I Xi |

each xi ∈ Ci} =
⋂

i∈I{x ∈ ∏
i∈I Xi | xi ∈ Ci} and is thus closed in

∏
i∈I Xi

since for each i, the complement {x ∈ ∏
i∈I Xi | xi ∈ Xi \ Ci} ∈ τi. Thus for

each y,
∏

i∈I Ci = {x ∈ ∏
i∈I Xi | each xi ∈ cl{yi}} is the smallest closed set

containing y, and of course x is in this set iff each xi ≤Xi
yi.

The converses of (a) and (b) above are not true: Notice that each function
must preserve =, the specialization order of T1 spaces, while most are not con-
tinuous. For similar reasons, each set in a T1 space is both upper and lower,
but the only sets in IR which are both open and closed are ∅ and IR. But the
converses hold for Alexandroff spaces:

Theorem 1. (a) A space is Alexandroff if and only if all unions of closed sets
are closed; equivalently, if and only if each A is contained in a smallest open set,
which we call n(A).

(b) For an Alexandroff space (X, τ), the closed sets are precisely the ≤τ -
lower sets, and the ≤τ -upper sets are exactly the open sets. Further, the contin-
uous functions are simply the specialization order preserving functions.

Proof. (a) The first assertion is shown using de Morgan’s laws, exactly as Lemma
1 (a) was shown. For the second, the existence of n(A) in Alexandroff spaces
is shown just like that of cl(A) in all topological spaces, in Lemma 1 (b). Con-
versely, if n(A) always exists and G is a collection of open sets, then for each
T ∈ G, n(

⋂
G) ⊆ T ; therefore n(

⋂
G) ⊆ ⋂

G; but since in general A ⊆ n(A),
we have that

⋂
G = n(

⋂
G), an open set.

(b) One direction of each assertion in the first sentence holds by Lemma
2. For the converses, if C is a lower set in an Alexandroff space, then C =⋃{ cl({x}) | x ∈ C}, a closed set. Thus if T is an upper set then its complement
is lower, so closed, thus T is open.

For functions, we show more than stated in (b): a function f : X → Y, X, Y
Alexandroff, is continuous at x ∈ X ⇔ whenever x ≤X y then f(x) ≤Y f(y).
To see this, note that “x ≤X y ⇒ f(x) ≤Y f(y)” is equivalent to f [ n{x}] ⊆
n(f [{x}]), and if the latter holds and f(x) ∈ T , an open set, then n{f(x)} ⊆ T ,
so for U = n{x}, x ∈ U and f [U ] ⊆ T .

From the last paragraph, it results that a function between Alexandroff
spaces is continuous if and only if it is specialization preserving.

The results in Theorem 1 essentially say that for all Alexandroff spaces,
(including each space, X, that can be completely stored in a computer), all the
information about X can be learned from the “asymmetric adjacency” ≤X . We
use this below.

3 The Computer Screen

Since the execution of programs and the computer screen are “discrete”, pro-
grams for the computer screen operate in terms of adjacencies, that is, binary
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Fig. 1. (4,4) and (8,8) violations of the Jordan curve theorem.

relations that are symmetric and irreflexive; the most popular are 4-adjacency,
where each (x, y) ∈ Z

2 is adjacent to (x, y+1) and (x+1, y) and 8-adjacency, in
which each (x, y) ∈ Z

2 is adjacent to (x+1, y+1) and the above 4 points. This
very well known theory is discussed in [5] and [12], and many other places.

Given an adjacency A on X and a subset S of X, an A-path in S (from
y to z), is a finite sequence x1, . . . , xn ∈ S such that for each 1 ≤ k < n,
(xk, xk+1) ∈ A (and y = x1, z = xn). The subset S is A-connected if for each
y, z ∈ S, there is an A-path in S from y to z. An A-component is a maximal
A-connected subset. Further, an an A-arc is an A-path x1, . . . , xn such that
whenever 1 ≤ k, m ≤ n and (xk, xm) ∈ A, then m = k+1, and an A-Jordan
curve is an A-arc, except that (xn, x1) ∈ A.

But adjacencies that seem to respect nearness need not mirror topological
reality. For example, Figure 1 shows well-known, easy examples of a 4-Jordan
curve whose complement has 3 4-components, and an 8-Jordan curve whose
complement is 8-connected.

But: if {k, m} = {4, 8} then whenever J is a k-Jordan curve, then Z
2 \ J

has exactly two m-components. This suggests the care needed in selecting an
adjacency to represent Euclidean space.

With the help of the earlier discussion, we discuss the solution of putting a
topology on the finite computer screen which behaves like that on a the rectangle
in the plane that it is supposed to represent. This raises several issues:

Finite T1-spaces are discrete (each singleton is the finite intersection of the
complements of the other singletons; thus singletons are open, and therefore all
sets are open). Thus they can’t be connected if they have more than one point.

When a space (X, τ) isn’t T1, its specialization order becomes important.
For us, the specialization is centrally important; it will be the tool for writing
algorithms which, by Theorem 1, fully represent the topology of the space. It
isn’t difficult to see that if ≤ is any preorder, then the collection of ≤-upper sets,
α(≤), is an Alexandroff topology, and by Theorem 1 (a), for each Alexandroff
space, τ = α(≤τ ).

For the moment, we take dimension in its most trivial sense: an object
will surely be k-dimensional if it is the product of k 1-dimensional objects. The
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computer screen certainly looks like the product of two such spaces – in fact, it
looks like the product of two intervals. Recall that a topological space is connected
if whenever A ⊆ X is both open and closed, then A = X or A = ∅. We take the
following to be the essence of 1-dimensionality in IR and intervals: a connected
ordered topological space (COTS) is a connected space such that among any three
points is one whose deletion leaves the other two in separate components of the
remainder. Certainly the reals and intervals have this property; IR2 doesn’t since
the deletion of any singleton leaves the remainder connected. But figure 2 shows
a finite COTS.

� � � �

� � � � � � � �

Fig. 2. A COTS with 8 points: 4 open, 4 closed.

The diagram uses two conventions which enable us to draw “Euclidean”
pictures and interpret them as finite T0-spaces:

• apparently featureless sets represent points,
• sets which ‘look’ open are open.

Figure 3 below uses these conventions, to show products of 2 and 3 COTS,
looking appropriately 2 and 3-dimensional.

The computer screen seems reasonably, to be the product of two long fi-
nite COTS; in it, the open points can be seen (are the ‘pixels’) and the others
are invisible addresses that might be used in programs. (In fact, would it be
reasonable to think of space as the product of 3 long finite COTS?)

These diagrams suggest that COTS are natural 1-dimensional spaces. Here
is a theorem which reinforces that idea:

Theorem 2. A topological space X is a COTS if and only if there is a linear
order < on X such that for each x ∈ X, (x,∞) 2 and (−∞, x) are the two
components of X \ {x}. In this case there are exactly two such total orders, the
other being <−1.

In Z or IR, the orders which satisfy Theorem 2 are the usual order and its
reverse; note that the specialization order, ≤Z, discussed after Proposition 2, is
quite differenct, relating only adjacent numbers (and not all of them). Although
we haven’t assumed any separation, the following result tells us that our spaces
are T0, and shows the generality of Figure 2:

Proposition 1. For a COTS at least 3 points:
(a) Each point is open or closed, but never both. The space is T0.
(b) Distinct points x, y ∈ X are adjacent (with respect to <) if and only if

{x, y} is connected.
(c) X is T1 if and only if it has no adjacent points; in this case, X infinite.

2 For x, y ∈ X, (x, ∞) = {z | x < z}, (−∞, y) = {z | z < y}, and (x, y) = (x, ∞) ∩
(−∞, y).
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Fig. 3. A product of 2 9-point COTS A 9 × 9 × 3 “3-space”.

Proposition 2. The set Z of integers, with the smllest topology in which each
{2n−1, 2n, 2n+1}, n ∈ Z is open, is a T0 COTS such that each finite T0 COTS
is homeomorphic to some (x, y), x, y ∈ Z.

In fact, the numbers in Figure 2 indicated one of many ways that finite
COTS could be imbedded in Z. The space of Proposition 2 is often called the
Khalimsky line. In it, a set T is open if and only if whenever it contains an even
number, it contains the odd numbers adjacent, 2n ∈ T ↔ 2n−1, 2n+1 ∈ T . that
is, 2n ∈ T ↔ 2n − 1, 2n + 1 ∈ T . Thus a set C is closed if and only if, whenever
it contains an odd number, it contains the two even numbers adjacent, that is,
2n + 1 ∈ T ↔ 2n, 2n + 2 ∈ T . As a result, x ≤ZZ y if and only if x = y, or
for some n, x = 2n&y = 2n+1. By Lemma 2 (c), the specialization in diital
n-space, Z

n, is found coordinatewise by the rule: for x, y ∈ Z
n, x ≤ZZk y if and

only if for each i = 1, . . . , k, xi = yi, or for some n, xi = 2n&yi = 2n+1.
With Theorem 1 (b) and the usefulness of adjacencies in mind, we define the

adjacency A(τ) induced by τ by (x, y) ∈ A(τ) if {x, y} is a set connected in τ (that
is, if and only if, x ≤τ y or y ≤τ x), and x, y are distinct. We also let A(p) denote
the set of points which are A(τ)-adjacent to p. Note that this adjacency depends
only on the topological space, and not on the “background” and “foreground”.
In Z

k, for example, A(p) depends on how many of the coordinates are odd and
how many are even. For example, if both coordinates are even: A(2n, 2m) =
cl{(2n, 2m)} ∪ n{(2n, 2m)} \ {(2n, 2m)} = {(2n, 2m)} ∪ {2n − 1, 2n, 2n + 1} ×
{2m−1, 2m, 2m+1}\{(2n, 2m)}, the points 8-adjacent to (2n, 2m), and similarly
(but exchanging the roles of cl, n) each A(2n + 1, 2m + 1) (both coordinates
odd), is again the set of points 8-adjacent to (2n+1, 2m+1). For a point where
1 coordinate is even (the other odd), we have A(2n+1, 2m) = cl{(2n+1, 2m)}∪
n{(2n + 1, 2m)} \ {(2n, 2m)} = {2n + 1} × {2m − 1, 2m, 2m + 1} ∪ {2n, 2n +
1, 2n+2}×{2m} \ {(2n+1, 2m)}, the points 4-adjacent to (2n+1, 2m). Figure
4 below illustrates some typical cases in Z

2, Z
3.

We then have the notions of τ -path, etc., and:



Topological Digital Topology 9

�

�

�

�

�

�

�
�
�
��

�
�
�
��

��
��
��

��
��
��

��
��
��

��
��
��

Fig. 4. A(2, 1) A(1, 2, 1).

Proposition 3. Let (X, τ) be an Alexandroff space.
(a) A subset S ⊆ X is an A(τ)-path if and only if it is the continuous image

of a COTS (equivalently, of an interval in Z). It is an A(τ)-arc if and only if it
is a COTS.

(b) A subset S ⊆ X is connected if and only if it is A(τ)-connected (also, if
and only if for each x, y ∈ S there is an A(τ)-arc in S from x to y).

(c) If J ⊆ Z
2 is a Jordan curve then Z

2 \ J has two connected components.

Boundary-tracking is another concern of digital topology. The plane is often
about a million pixels, and a region in it has comparable magnitude, but a rela-
tively straight boundary might be a few thousand bytes in size. So considerable
savings in storage is often achieved by replacing regions by their boundaries. Not
all Jordan curves are closed sets, so not all can be boundaries, and not every set
has as its boundary a Jordan curve. (Examples: the boundary of the set of closed
points is the set itself, and that of the set of open points is its complement.) But
these issues are overcome in a natural way:

A set S is regular if int( cl(S)) ⊆ S ⊆ cl( int(S)). A robust scene is a partition
of Z

2 into regular sets whose interiors are connected. A cartoon is a finite union
of Jordan curves. Then (see [8]):

Theorem 3. (a) For any finite S ⊆ Z
2, ∂S is a (closed) Jordan curve if and

only if S is regular and int(S), int(Z2 \ S) are both connected.
(b) The union of the boundaries of the sets in a robust scene is a cartoon,

and every cartoon is such a union.

Although we have only discussed the two-dimensional case, most of these
results extend to arbitrary (finite) dimensions. An important fact however, is
that while the proofs in the two-dimensional case are all appropriately digital
(carried out, for example, by induction on the lengths of the shortest paths with
certain properties), those now known in higher dimensions require uses of other
techniques.

Problem 1: Find digital proofs in higher dimensions.
There are algorithms written in terms of the topological adjacency, but in

overwhelming number, they are in terms of the traditional adjacencies and some
newer ones that have the advantage of providing a great deal of guidance by
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being “small” – since boundaries are traced by going from point to adjacent
point, adjacencies in which few points are adjacent require fewer steps to carry
out. Thus the best that can be hoped, is:

Problem 2: Are the sound algorithms in digital topology those that can be
shown sound by comparison to some finite T0-space?

For example, soundness of the (4, 8), (8, 4) and (6, 6) algorithms can be
shown this way (see [13]).

4 Comparing to Polyhedra

The following basic tool is developed in [10], from which most results in this
section come.

Definition 4. A metric analog of a topological space X with base point x0,
is a metric space M with base point m0, together with an open quotient map
q : M → X, such whenever A is a metric space with base point a0:

for any map f : A → X there is a map f̂ : A → M such that f = qf̂ .
for any maps f, g : A → M so that qf = qg there is a homotopy F :

A × [0, 1] → M such that whenever x ∈ A and t, u ∈ [0, 1]: F (x, 0) = f(x);
F (x, 1) = g(x); F (a0, t) ≡ m0, and for each qF (x, t) = qF (x, u) (t → qF (x, t)
is constant).

Composition by the open quotient q induces a bijection between the path
components (see [6]) of M and those of X, and this composition induces isomor-
phisms between the homotopy groups of M and those of X; that is to say, q is
a weak homotopy equivalence between M and X.

A homotopy which, like the above, has the property that t → qF (x, t) is
constant, is said to ignore the quotient q. Further, suppose (M, q) is a pair such
that M is a metric space and q : M → X is an open quotient, and suppose
A is a metric space; then for any maps F, G : A → M , F and G are quotient
homotopic if there is a homotopy H : A × [0, 1] → M between F and G such
that qH(x, t) = qH(x, 0) = qH(x, 1) for all x in A and t in [0, 1]; this relation is
denoted F � G.

Theorem 4. Each T0 countable join3 of Alexandroff topologies has a metric
analog.

By the following, any two metric analogs of the same space are homotopy
equivalent. (Below, let 1A denote the identity map on A.)

Theorem 5. Suppose (M, q) is a metric analog of a space X. If (N, r) is another
metric analog of X, then there are maps F : M → N and G : N → M such that
GF � 1M and FG � 1N .

Conversely, if N is a metric space, r : N → X is an open quotient, and
there are maps g : M → N, h : N → M so that gh � 1N and hg � 1M , then
(N, r) is metric analog of X.
3 The join of a collection of topologies is the smallest topology containing them all.
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Fig. 5. Approximation of the unit interval by finite COTS.

The converse is useful in creating other metric analogs from a given one.
In particular, it is used in showing the existence, for each finite T0 space K,
of a polyhedral analog: a subset |K| of a finite dimensional Euclidean space,
with a vertex for each point in K, and whose simplices are the convex hulls
of the specialization order chains in K, together with the quotient map which
takes each point of this metric space into the specialization-largest vertex of the
smallest simplex in which the point lies.

Two results shown using polyhedral analogs are the Jordan surface theorem
for three-dimensional digital spaces and that the product topology on Z

n is the
only simply-connected one whose connected sets include all 2n-connected sets
but no 3n − 1-disconnected sets.

This last result (of [9]) is a two-edged sword: it gives a complete representa-
tion of topological adjacencies that emulate finite dimensional Euclidean space
topologies. In doing so, it points out their scarcity among all adjacencies. There
are other adjacencies which emulate many of the properties of Euclidean space,
and give rise to faster algorithms.

5 Finite Approximation of Compacta

Now we will use finite spaces to approximate others. Figure 5 illustrates such an
approximation and motivates the mathematics that is needed. Its top horizontal
line represents the unit interval, but those at the bottom are meant to be finite
COTS: Dn = { i

2n | 0 ≤ i ≤ 2n} ∪ {( i
2n , i+1

2n ) | 0 ≤ i < 2n}, with 2n+1 + 1 points
and the quotient topology induced from [0, 1]. The vertical lines indicate maps
going down, for which a closed point is the image of the one directly above it,
while an open point is that of the three above it.

Recall that a topological space X is compact if whenever X =
⋃

G for some
collection of open sets, then there is a finite subcollection H ⊆ G such that
X =

⋃
H. It is Hausdorff (T2) if whenever x 
= y there are T, U ∈ τ such that

x ∈ T , y ∈ U and T ∩ U = ∅.
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The following result has long been known ([Al]):

Theorem 6. A T2 space X is compact, if and only if there is an inverse system
of finite spaces and continuous maps such that X is the largest T2 continuous
image of the limit of the system.

The largest T2 continuous image of a space is called its Hausdorff reflection.
Also, recall that an inverse system of topological spaces and continuous maps is a
directed set (Γ, ≤) together with a space Xγ for each γ ∈ Γ and whenever δ ≥ γ,
a continuous fδγ : Xδ → Xγ , such that each fγγ = 1Xγ

and if δ ≥ γ ≥ β then
fδβ = fγβfδγ . Its inverse limit (unique to homeomorphism) is an XΓ , together
with, for each α, pα : XΓ → Xα, such that for whenever α ≥ β, pβ = fαβpα,
and minimal among such spaces, in that whenever we have a Y and for each α,
a gα : Y → Xα such that α ≥ β, gβ = fαβgα, then there is a unique g : Y → XΓ

such that for each α, gα = pαg. This inverse limit can be represented as the
subspace of the product

∏
γ∈Γ Xγ whose elements are those x in the product

such that whenever α ≥ β, xβ = fαβ(xα).
In the case of the diagram above, the inverse limit is essentially [0, 1] ∪

{d+ | d = m/2n, 0 ≤ m < 2n} ∪ {d− | d = m/2n, 0 < m ≤ 2n}, where
d+(k) = (m+1)/2n. This space is rarely Hausdorff, thus rarely the X we set out
to approximate. It is for this reason that we need to use the Hausdorff reflection.

We now look at cases of this construction that are sufficiently general to
study all compact Hausdorff spaces, but relatively easy to understand; these are
studied in [16], [15] and [14] (related earlier constructions can be found in [1], [2],
[4] and [3]). First we look at the method used to get the inverse system, which
dates from [Al] and is in our notation in [KW]. Suppose (X, τ) is our compact
Hausdorff space. Whenever F is a finite set of open sets, we get a partition of
X into a finite number subsets: for each of the finite number of subsets G of
F , let PG = {x ∈ X | for T ∈ F, x ∈ T ⇔ T ∈ G}. Let XF = {PG 
= ∅},
with the map πF : X → XF defined by f(x) be the element of the partition in
which x lies. Also, let τF be the quotient topology resulting from πG (that is,
U ∈ τF ⇔ π−1

F [U ] is open in X. Each XF is a T0 space. Also, we get increasingly
fine partitions of X by taking more and more open sets; that is, if F ⊆ F ′, then
fF ′F (P ′

G) = PF∩G′ defines a map fF ′F : XF ′ → XF , such that πF = fF ′F πF ′ .
Certainly, {F ⊆ τ | F finite} is directed by ⊆, and it can be checked that
fFF = 1XF

and the fF ′F are continuous maps such that if F ⊆ F ′ ⊆ F ′ then
fF”F = fF ′F fF”F ′ . Thus this method of considering partitions by larger and
larger finite sets of open sets, yields a natural inverse system of finite spaces and
maps.

The above has been refined to cases that are easy to handle, but the re-
finement is best understood if we work with bitopological spaces: sets with two
topologies (X, τ, τ∗). A bitopological space is pseudoHausdorff (pH) if whenever
x 
∈ clτ (y) then there is a T ∈ τ and U ∈ τ∗ which are disjoint and such that
x ∈ T and y ∈ U . It is pairwise Q if both it and its dual, (X, τ∗, τ), are Q. It is
joincompact if it is pairwise pH and the join, τ ∨ τ∗ is compact and T0.

A topological space (X, τ) is skew compact if there is a second topology τ∗

on X such that (X, τ, τ∗) is joincompact.
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For example, if X = [0, 1] then τ = {(a, 1] | 0 ≤ a ≤ 1} ∪ {X} is skew
compact, using τ∗ = {[0, a) | 0 ≤ a ≤ 1} ∪ {X}, and each compact Hausdorff
space is skew compact, with τ∗ = τ .

In what follows, µ(X) will denote the set of specialization-minimal elements
of X - that is, those x ∈ X such that {x} is closed. Further, m will denote the
relation {(x, y) | y ∈ cl({x}), {y} closed}.

Proposition 4. Suppose X is skew compact.
(a) µ(X) is a compact subspace of (X, τ).
(b) If each x ∈ X lies above a unique element mx ∈ µ(X), then m is a

continuous map from (X, τ) onto (µ(X), τ |µ(X)).
(c) Suppose T ∩ U 
= ∅ whenever x ∈ T, y ∈ U and T, U ∈ τ . Then there is

a z ∈ X such that x, y ∈ cl(z).
(d) If each element of X has a unique minimal element in its closure, then

µ(X) is a Hausdorff subspace of (X, τ).

A topological space is normal if disjoint closed sets are contained in disjoint
open sets.

Theorem 7. The following are equivalent for a skew compact space X:
(a) X is normal,
(b) Each point of X has a unique closed point in its closure,
(c) m is a retract from X to its subspace µ(X).

If any of these hold, then (µ(X), m), is the Hausdorff reflection of (X, τ).

While there are many finite normal spaces, normality is best built up in the
approximation:

Definition 5. Suppose that X and Y are T0-spaces; we say that a map f : X →
Y is:
normalizing if inverse images of disjoint closed sets are contained in disjoint
open sets,
chaining if f [ cl{x}] is a specialization chain for each x.

Then a space X is normal if and only if the identity map 1X on X is a
normalizing map.

An inverse system of topological spaces and continuous maps (Xα, fβα)
whose inverse limit is X, is eventually normalizing (resp. chaining) if for each
α ∈ I there is some γ ≥ α such that fγα is normalizing (resp. chaining).

Theorem 8. (a) The limit of an inverse system of finite T0-spaces and contin-
uous maps is normal if and only if the system is eventually normalizing.

(b) Each compact Hausdorff space is the Hausdorff reflection of the inverse
limit of a spectrum of an eventually chaining inverse system of finite T0-spaces
and continuous maps. Also, every chaining map is normalizing, so the same
holds for normalizing maps.

The simplicialization of a finite T0-space X is the set XC of nonempty chains
(totally ordered subsets) of (X, ≤), with the Alexandroff topology A(⊆) whose
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specialization order is containment (that is, if S, T ∈ XC , then S ∈ cl{T} if
and only if S ⊆ T ). Define the simplicial quotient pX : XC → X, by pX(S) =
max(S).

Proposition 5. The map pX : XC → X is continuous, open, and chaining.
Furthermore, a continuous map f : X → Y is chaining if and only if there is
a continuous map f̃ : X → Y C such that pY f̃ = f . Finally, if h : X → Y C is
closed and pY h = f then h = f̃ .

A calming map is a chaining map f for which f̃ is a closed map.
Compact Hausdorff spaces are also ofen approximated using polyhedra (see

the survey [17]; the following relates our approach to this:

Theorem 9. Suppose (Xn, fn) is an inverse sequence of finite T0-spaces and
calming maps. Then the limit of the (|XC

n |, |fC
n |) is homeomorphic to the space

of minimal points of the limit of the (Xn, fn).

Corollary 1. (a) A metrizable space is compact if and only if it is the Hausdorff
reflection of the limit of an inverse sequence of finite T0-spaces and calming maps.

(b) Under these conditions, our space is ≤ k-dimensional if and only if
these finite spaces can be assumed ≤ k-dimensional, and is connected and only
the finite spaces can be assumed connected.

6 Summary and Further Indicated Work

Of course, the topological spaces that can be completely stored and studied
in a computer are finite. These spaces can be completely analyzed using the
specialization order, x ≤X y ⇔ x ∈ cl(y), and this “asymmetric adjacency gives
rise to an adjacency, defined by: for x 
= y, (x, y) ∈ AX ⇔ x ≤τ y or y ≤τ x.

The traditional adjacencies, (4, 8), (8, 4), and (6, 6), and their n-dimensional
analogues can be used to study Z

n, and have been shown to capture the notions of
connectedness and boundary quite well. But by their definitions, ≤ZZn perfectly
captures all of the properties of these spaces, and determines the adjacency AZZn ,
with which boundary tracking and other traditional algorithms (typically written
in terms of the traditional adjacencies) can be written. Further, the latter need
not be adjusted to take into account the background and foreground. It should be
repeated that there are “sparse” (nontopological, and typically nonsymmetric)
adjacencies which limit the number of choices available and thus can result in
faster execution times.

However, all compact Hausdorff spaces arise by approximation using finite
T0-spaces. These finite spaces can be completely analyzed as partially ordered
sets, using their specializations ≤X and, algorithms in terms of this relation work
well for them as they do for the traditional digital n-spaces that arise in image
processing. Note that it is easy to find spaces for which “boundary tracking” is
a useless idea; for example, in the two-dimensional space on the left hand side of
Figure 3, imagine that none of the points both of whose coordinates are odd are
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in the space (so it represents a “graph paper” grid). Then almost no boundaries
are connected, and none can be tracked. On the other hand, they can still be
found, and can be useful in storing sets.

More must be learned about this approximation; we know, for example that
dimension is preserved in the approximation of spaces, and are presently working
to find how homotopy and homology are preserved. We are also studying how
to best represent functions between spaces in terms of finite approximation.
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