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67400 Illkirch-Graffenstaden, France

{tajine,daurat}@lsiit.u-strasbg.fr

Abstract. In this paper we investigate the ‘local’ definitions of length
of digital curves in the digital space rZ2 where r is the resolution of
the discrete space. We prove that if µr is any local definition of the
length of digital curves in rZ2, then for almost all segments S of R2, the
measure µr(Sr) does not converge to the length of S when the resolution
r converges to 0, where Sr is the Bresenham discretization of the segment
S in rZ2. Moreover, the average errors of classical local definitions are
estimated, and we define a new one which minimizes this error.

Keywords: Digital segments, local length estimation, frequency of fac-
tors, convergence.

1 Introduction

A digital curve is the discretization of a curve in R2. We investigate the local
definitions of length of digital curves in rZ2 where r is the resolution of discrete
space.
The local definition of length is obtained by associating a weight p(w) to each
digital curve w of size m, where the size of a digital curve is its cardinality
minus one, ie its number of edges between consecutive points. If C(m) is the
set of digital curves of size m, then any digital curve γr, in rZ2, can be ob-
tained by concatenation of elements in C(m) with perhaps a digital curve ε of
size less than m. In other words γr can be viewed as a word in C(m)∗.ε. If
γr = w1w2 . . . wNε where wi ∈ C(m) for all i, then we define the length of γr by
µr,m,p(γ) = r

∑
i p(wi) (we neglect the contribution of digital curve ε).

Actually, we investigate the following problem:

Does there exist m, p(·) such that for any curve γ of R2 the lengths µr,m,p(γr)
converge to the length of γ where r tends to 0 ? (i.e. γr is a discretization of γ).

In this paper, we study this problem for a particular class of curves: the set
of segments in R2, moreover we suppose that the discretization operator δr

restricted to the segments is the “Bresenham” discretization.
We consider the segment S = {(x, αx + β) | A ≤ x ≤ B} of R2 such that the
slope α ∈ [0, 1], the other cases could be studied by symmetry. Its “Bresenham”
discretization Sr = δr(S) ⊂ rZ2 is the set
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We construct µr,m,p as the local definition of measure by using a weight function
p : Sm �−→ R. Then µr,m,p is defined by:

µr,m,p(Sr) = r(p(w1) + p(w2) + . . . + p(wN ))

= r
∑

w∈Sm

n(w, Sr, r)p(w)

where n(w, Sr, r) is the number of i between 1 and N such that wi = w.

On Local Definitions of Length of Digital Curves 115

Sr = r

{
(X, Y ) ∈ Z2

∣∣∣∣
A

r
≤ X ≤ B

r
and αX +

β

r
− 1 < Y ≤ αX +

β

r

}
.

We fix m as a positive integer. As it has been explained for curves the segment
Sr can be seen as the word:

w1w2 . . . wNε

where m · N + Card(ε) = Card(Sr), wi is a word of size m and ε is a word of
size less than m. We call Sm the set of all such factors wi when S describes all
the segments. Figure 1 illustrates this situation.
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The central question of this paper can be formulated as the following: does there
exist m, p(·) such that, for any segment S, the estimation µr,m,p(Sr) converges
to the length of S when the resolution r converge to 0?

In this paper, we will prove that for almost all segments S, the estimation
µr,m,p(Sr) does not converge to the length of S when the resolution r tends
to 0.

2 Segments in Z2

2.1 Preliminaries

Let a ∈ R, �a� (resp. 〈a〉) denotes the integral part (resp. the fractional part) of
a. So, a = �a� + 〈a〉 with �a� ∈ Z, �a� ≤ a < �a� + 1 and 0 ≤ 〈a〉 < 1. We also
define 
a� = −�−a�.

For example, � 7
3� = 2, 
 7

3� = 3 and 〈7
3 〉 = 1

3 .
We have:

Property 1. Let x, u be real numbers then:

�x + u� − �x� =
{ �u� if 〈x〉 < 1 − 〈u〉
�u� + 1 otherwise.

So, for all α, β ∈ R

�α(x + u) + β� − �αx + β� =
{ �αu� if 〈αx + β〉 < 1 − 〈αu〉
�αu� + 1 otherwise.

In this paper, we consider the discretization operator δr in rZ2 of the families of
Bresenham’s discretization.

Definition 1. Let r > 0 and let α ∈ [0, 1], β, A, B ∈ R.
Consider the segment S = {(x, αx+β) | A ≤ x ≤ B} of slope α and displacement
β. Sr = δr(S) = {r(X, �αX + 1

r β�) | 
A
r � ≤ X ≤ �B

r � and X ∈ Z} is the
discretization of S in rZ2.

The notion of digital segment is a central notion in this paper for the local
definitions of length. This notion can be defined as particular subset of digital
straight line (as in the Euclidean case) or by using the chaincodes.

Definition 2. Let r > 0. Let α ∈ [0, 1], β ∈ R and m ∈ N∗.

• Let n ∈ Z. A subset S = {r(X, �αX + 1
r β�) | n ≤ X ≤ n + m and X ∈ Z}

is called a segment of size m of rZ2. The point r(n, �αn + 1
r β�) is called the

starting point of S.
• A subset S of rZ2 is a digital segment of size m in rZ2, if there exists a

segment S′ of size m of rZ2 such that S = {p− p0 | p ∈ S′}, where p0 is the
starting point of S. So, a digital segment is a segment up to a translation.

• Sr,m is the set of all digital segments of size m of rZ2 with the slope in [0, 1].
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If the slope α ∈ [0, 1], then the notion of digital segment can be described by
using the relative or the absolute chaincode as the following:

Definition 3. Let α ∈ [0, 1] and β ∈ R.

• The relative chaincode vα,β
x,r,m of length m at abscissa x ∈ rZ (x = rX where

X ∈ Z) is the word on {0, 1} defined by:

vα,β
x,r,m(k) = �α(X + k) +

β

r
� − �α(X + k − 1) +

β

r
�.

for 0 < k ≤ m.
• The absolute chaincode wα,β

x,r,m is defined by:

wα,β
x,r,m(k) = �α(X + k) +

β

r
� − �αX +

β

r
�

for 0 ≤ k ≤ m.

These two chaincodes are equivalent, since vα,β
x,r,m(k) = wα,β

x,r,m(k)−wα,β
x,r,m(k−1)

and wα,β
x,r,m(k) =

∑k
l=1 vα,β

x,r,m(l).
We consider the set of absolute chaincodes for a given slope α and displacement
β:

Cα,β
r,m = {wα,β

x,r,m | x ∈ rZ}
and the set of all the absolute chaincodes

Ar,m = {wα,β
x,r,m | α ∈ [0, 1], β ∈ R, x ∈ rZ}.

So, Ar,m =
⋃

α∈[0,1],β∈R
Cα,β

r,m and Card(Ar,m) = Card(Sr,m).
In the following, we will prove that the set Cα,β

r,m is not depending of β nor r and
the set Ar,m and Sr,m are not depending of r.

2.2 Some Combinatorial Properties of Digital Segments

In this subsection, we consider a segment with the slope α ∈ [0, 1] and the
displacement β ∈ R.

Definition 4. Let m ∈ N∗. Fm is the set of Farey numbers of order m: Fm =
{ p

q | 0 ≤ p ≤ q ≤ m and �= 0}. The elements of Fm are called m−Farey
numbers.

We recall properties about the structure of the chaincodes of a given line (see
[1, 2]). The first one is a direct consequence of Property 1:

Property 2. Let x ∈ rZ. If x = rX with X ∈ Z then

wα,β
x,r,m(k) =

{ �αk� if 〈αX + β
r 〉 < 1 − 〈αk〉

�αk� + 1 otherwise.
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We define (Bα
i )0≤i≤m as the sequence (1 − 〈αk〉)0≤k≤m reordered increasingly,

notice that Bα
m = 1 − a · 0 = 1. By convention we suppose Bα

−1 = 0.

Property 3. [1, 2]

• If α ∈ ([0, 1] \ Fm), then 1 − 〈αi〉 �= 1 − 〈αj〉 for all i, j such that −1 ≤ i <
j ≤ m.

• The chaincode wα,β
x,r,m at x depends only on the position of the number

〈αX + β
r 〉 relatively to the elements of the sequence (Bα

i )−1≤i≤m. So if x =
rX, x′ = rX ′ ∈ rZ then wα,β

x,r,m = wα,β
x′,r,m ⇐⇒ ∃i ∈ {−1, 0, . . . , m − 1} such

that 〈αX + β
r 〉, 〈αX ′ + β

r 〉 ∈ [Bα
i , Bα

i+1[.
• If Bα

i < Bα
i+1 then for all β ∈ R and r > 0 there exists X ∈ Z such that

〈αX + β
r 〉 ∈ [Bα

i , Bα
i+1[. So, the sets Cα,β

r,m do not depend on β nor r and will
be denoted Cα

m and thus the set Ar,m (resp. Sr,m) does not depends on r
and will be denoted Am (resp. Sm).
Moreover Card(Cα

m) = Card({i | 0 < i < m and Bα
i < Bα

i+1}) ≤ m + 1.
Thus, if α ∈ ([0, 1] \ Fm), then Card(Cα

m) = m + 1.

Property 4. [1]

• Sm is the set of segments of Z2 with (0, 0) as starting point.
• Card(Sm) = 1 +

∑m
i=1 ϕ(i) where ϕ is the Euler’s totient function (ϕ(i) =

Card({j | 1 ≤ j < i and i and j are coprime})).
• Card(Sm) = m3

π2 + O(m2log(m)).

Definition 5. Let α ∈ ([0, 1] \ Fm). σα is the permutation on {1, . . . , m} such
that: 1−〈ασα(i)〉 < 1−〈ασα(i + 1)〉 for 1 ≤ i < m. So, Bα

i = 1−〈ασα(i)〉 for
all 1 ≤ i ≤ m.

Lemma 1. Let f, f ′ be two consecutive m-Farey numbers and α, α′ ∈ ]f, f ′[.
Then σα = σα′ . In other words, the function α �→ σα is a constant function on
]f, f ′[. Moreover, the function α �→ Bα

i is an affine function on ]f, f ′[.

The proof of Lemma 1 is omitted due to space constraints and is available in [3].

Theorem 1. Let m ∈ N∗ and 0 ≤ j < m. Let I ⊆ [0, 1] be an interval. Then

lim
r→0

Card({X ∈ (mZ + j) | 〈αX + βr〉 ∈ I and 
A
r � ≤ X ≤ �B

r �})
�B

r � − 
A
r � + 1

=
1
m

µ(I)

where µ(I) is the length of the interval I.

The proof of Theorem 1 is analogous to the proof of Theorem 1.19 of [4] (Weyl’s
Theorem), and is given in [3].
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2.3 Local Definitions of Length of Digital Segments

Let m ∈ N∗. We construct the local definition of length by using a weight function
p : Sm �−→ R as the following:
Let S = {(x, αx + β) | A ≤ x ≤ B} be a segment in R2 with α ∈ [0, 1],
β, A, B ∈ R, and let r > 0.
Then Sr = δr(S) = r

{(
X,
⌊
αX + 1

r β
⌋) | 
A

r � ≤ X ≤ �B
r � and X ∈ Z

}
.

Let N(r) = � �B
r �−	A

r 
+1

m �.
So, Sr can be seen as the word w1,rw2,r...wN(r),rεr where wi,r ∈ Sm for i =
1, ..., N(r) and εr a word of size less than m.

Consider µr,m,p(Sr) = r(p(w1,r)+p(w2,r)+ ...+p(wN(r),r)) as an approximation
of the length of the segment S (we neglect the contribution of εr).
Put, DAm,p(S) = limr→0(µr,m,p(Sr))

Definition 6. Let j such that 0 ≤ j < m. The frequency Fα,β,A,B
j,r (w) of a

word w of length m in the segment δr(S) = {r(X, �αX + 1
r β�) | 
A

r � ≤ X ≤
�B

r � and X ∈ Z} of rZ2 is defined by:

Fα,β,A,B
j,r (w) =

Card({X ∈ (mZ + j) | 
A
r � ≤ X ≤ �B

r � and wα,β
x,r,m = w})

�B
r � − 
A

r � + 1
.

Lemma 2. Let α ∈ [0, 1] be an irrational number, β, A, B ∈ R, w ∈ Cα
m, 0 ≤

j < m and i as in Property 3. Then

Fα,β,A,B
j (w) = lim

r→0
Fα,β,A,B

j,r (w) =
1
m

(Bα
i − Bα

i−1).

In particular Fα,β,A,B
j (w) does not depend on j, β, A and B, and will be denoted

Fα(w) in the following.

Proof. By Property 3 we have:

Fα,β,A,B
j (w) = lim

r→0

Card({X ∈ (mZ + j) | 
A
r � ≤ X ≤ �B

r � and wα,β
x,r,m = w})

�B
r � − 
A

r � + 1

= lim
r→0

Card({X ∈ (mZ + j) | 
A
r � ≤ X ≤ �B

r � and 〈αX + 1
r β〉 ∈ [Bα

i−1, B
α
i [})

�B
r � − 
A

r � + 1

So, by Theorem 1, Fα,β,A,B
j (w) = 1

m(Bα
i − Bα

i−1). �
Remark 1. This lemma is wrong for rational slopes. For example, if we consider
the line y = � 1

2x�, then the frequency of the word w = (0, 0, 1) is 1. But this

word corresponds to the interval [B
1
2
−1, B

1
2
0 [ whose length is 1

2 .

Theorem 2. Let f, f ′ be two consecutive m−Farey numbers. There exist u, v
such that DAm,p(S) = (B −A)(uα + v) for all segments S = {(x, αx + β) | A ≤
x ≤ B}, such that α ∈ (]f, f ′[\Q) (i.e. α is an irrational numbers between the
two m−Farey numbers f, f ′).
In other words, DAm,p(.) is piecewise affine function in α for α ∈ ([0, 1] \ Q).
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Proof. We suppose the weight function p : Sm �→ R which associates to each
chaincode w of size m a weight p(w). The digital segment Sr can be seen as the
word:

w1,rw2,r...wN(r),rεr

where N(r) = � �B
r �−	A

r 
+1

m �, wi,r ∈ Sm for i = 1, ..., N(r) and εr is a word of
length less than m.
So, the approximated length of the digital segment Sr is:

µr,m,p(Sr) = r(p(w1,r) + p(w2,r) + . . . + p(wN(r),r)

= r
∑

w∈Sm

n(w, Sr , r)p(w)

where n(w, Sr , r) = Card({X ∈ mZ | 
A
r � ≤ X ≤ �B

r � and wα,β
x,r,m = w}) which

is the number of i such that wr
i = w.

So,

DAm,p(S) = lim
r→0

r
∑

w∈Sm

n(w, Sr, r)p(w)

= lim
r→0

r(�B

r
� − 
A

r
� + 1)

∑
w∈Sm

n(w, Sr, r)
�B

r � − 
A
r � + 1

p(w)

= (B − A)
∑

w∈Sm

Fα(w)p(w). (1)

So, according to Lemma 1 and Lemma 2, DAm,p(S) is an affine function on α
if α is irrational numbers between two consecutive m−Farey numbers. �

Corollary 1. There are at most (2
∑m

i=1 ϕ(i)) irrational numbers α ∈ [0, 1]
such that DAm,p(S) = length(S) where S = {(x, αx + β) | A ≤ x ≤ B} (i.e.
length(S) is the length of the segment S and ϕ is the Euler’s totient function).

Proof. We consider an interval ]f, f ′[ bordered by two consecutive m−Farey
numbers. By the previous theorem, there exist u, v ∈ R such that the estimated
length of the segment S = {(x, αx + β) | A ≤ x ≤ B} is DSm,p(S) = (B −
A)(uα + v) for the irrational slopes α. The exact length of S is length(S) =
(B − A)

√
1 + α2. But the equation

DSm,p(S) = length(S) ⇔ (1 + α2) = (uα + v)2

⇔ (u2 − 1)α2 + 2uvα + (v2 − 1) = 0

has more than two solutions only when u2 − 1 = 0, uv = 0, v2 − 1 = 0 which
never happens. So the estimated length can be equal to the exact length for only
two values on each interval. There are exactly

∑m
i=1 ϕ(i) such intervals. So the

estimated length is exact for at most 2
∑m

i=1 ϕ(i) slopes. �
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Remark 2. Theorem 2 and Corollary 1 imply that: for any m ∈ N∗ and any
weight p(·) the set of slopes α ∈ [0, 1], such that the length of segments S of
slope α is equal to DSm,p(S) is at most a countable set. So, for any m ∈ N∗, for
almost all segments S of slope α ∈ [0, 1], length(S) �= DAm,p(S).

3 Examples of Estimators for Segments

In this section we compare different local estimators. Table 1 gives for each
method, the irrational slopes for which the asymptotic length is exact (By Corol-
lary 1 for every local estimator there is always a finite number of such slopes),
and the root mean square error. This last is given by the formula:

RMSE =

√√√√
∫ 1

0
(lest(α) − lreal(α))2D(α)dα∫ 1

0
D(α)dα

where lest(α) = DAm,p(S(α)) is the estimated length of the segment S(α) =
{(x, αx) | 0 ≤ x ≤ 1}, lreal(α) is the real length: lreal(α) =

√
1 + α2, D(α) is the

density of the lines of slope α. In the following we suppose that the distribution
of the angles of the lines is uniform, which means: D(α) = d arctanα

dα = (1+α2)−1.
In the previous section we have computed lest(α) for every irrational α, so we
can compute precisely the RMSE for every local estimator of length.

3.1 Some Classical Estimators

We have considered three classical kinds of estimators: Freeman’s estimator ([5]),
Chamfer estimators ([6]) and BLUE estimators ([7]). The weights of these esti-
mators and their RMSE are given in Table 1. For more details see [3].

3.2 Minimum RMSE Estimator

In this paragraph we propose estimators which minimize the RMSE. In fact
Formula (1) and Lemma 2 permit easily to express the RMSE in the weights:
(∫ 1

0

D(α)dα

)
RMSE2 =

∫ 1

0

(lest(α) − lreal(α))2D(α)dα

=
∫ 1

0

(( ∑
w∈Sm

Fα(w)p(w)

)
−
√

1 + α2

)2

D(α)dα

=
∑

(w1,w2)∈(Sm)2

(
p(w1)p(w2)

∫ 1

0

Fα(w1)Fα(w2)
)

D(α)dα

− 2
∑

w∈Sm

(
p(w)

∫ 1

0

Fα(w)
√

1 + α2D(α)dα

)
+
∫ 1

0

(1 + α2)D(α)dα
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so the function (p(w))w∈Sm �→ RMSE2 is a quadratic form. It is positive so it
reaches its minimum for some values of weights which give the minimum RMSE
estimators.

Each last line of the two parts of Table 1 gives these weights for the word-
lengths m = 1, 2 and the corresponding errors. (computed with the formal cal-
culus system Maple)

Figure 2 gives the estimated length when the resolution tends to zero for
three different estimators. By definition, the minimum RMSE estimator is the
more closed to the real length.

Table 1. Comparison of length estimators in the plane.

m = 1

p(00) p(01)
asymptotic root

mean square error
slopes with no errors

Freeman 1
√

2 0.066143 {0, 1}
Chamfer 3-4 1 4

3
0.042255 {0, 3

4
}

BLUE 1.059416 1.183276 0.084863 {0.510130}
minimum
RMSE

0.941246 1.351320 0.026524 {0.184382, 0.743633}

m = 2

p(000) p(001),p(011) p(012)
asymptotic root

mean square error
irrational slopes
with no errors

Chamfer 5-7-11 2 22
10

28
10

0.011875 none

BLUE 2.037583 2.226499 2.583985 0.043534 {0.480972}
minimum
RMSE

1.958843 2.205554 2.811569 0.007466
{0.106259, 0.408328,
0.634893, 0.897172}

Estimated length
Real length

Legend

1

1.1

1.2

1.3

1.4

0 0.2 0.4 0.6 0.8 1

x

Estimated length
Real length

Legend

1

1.1

1.2

1.3

1.4

0 0.2 0.4 0.6 0.8 1

x

Estimated length
Real length

Legend

1

1.1

1.2

1.3

1.4

0 0.2 0.4 0.6 0.8 1

x

Chamfer 5-7-11 BLUE Minimum RMSE

Fig. 2. Length approximated by three estimators in function of the slope of the seg-
ment. (m = 2).
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4 Conclusion

In this paper we have proved that local definitions of digital length cannot be
used to estimate the length of continuous curves because we does not have the
convergence of such measurements to the searched length when the resolution
tends to infinity, even if we restrict the curves to the segments. But, of course it
does not mean that the discretizations of the curves do not permit to compute
a good estimation of the length of the continuous curve. For example in [8]
the authors measure the length of a curve by summing the length of segments
included in the curve. They prove that the limit length when the resolution tends
to infinity is the searched length if the curve satisfies some regularity properties.
See also [9] for a comparison between different estimators.
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