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Abstract. Information on the shape of an object can be combined with
information on the shape of the complement of the object, in order to
describe objects having complex shape. We present a method for de-
composing and characterising the convex deficiencies of an object, i.e.,
the regions obtained by subtracting the object from its convex hull, into
parts corresponding to cavities, tunnels, and concavities of the object.
The method makes use of the detection of watersheds in a distance image.
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1 Introduction

The description of objects having complex shape, but that are not easily de-
composable into meaningful simple parts, can be achieved if also the shape of
the complement of the object, the background, is investigated. In fact, object
and background play dual roles, and concavities of the object can be described
as convexities of the background. The analysis of the entire background can be
rather time consuming and, for this reason, only the voxels of the background
that are embedded in concavities of the object should be taken into account.
Therefore, it is convenient to compute the convex hull of the object, since in this
way the portion of the background to be investigated can be limited to the con-
vex deficiencies, i.e., the difference between the convex hull and the object, [1]. A
bounding box could be used instead of the convex hull to save computation time.
However, the use of a bounding box would only limit the size of the portion of
the background to be investigated, but would not provide useful hints to achieve
object’s description. In fact, the difference between the bounding box and the
object seldom originates components that can be in faithful correspondence with
the perceived convex deficiencies.

Topological features involve both the object and its complement and, as such,
are particularly useful for the description of non-intuitively decomposable com-
plex objects. Topological features of objects in 3D images are the connected
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Fig. 1. Object with one concavity, one tunnel, and one cavity, left. A cross section of
the object and both topological and shape features, right.

components of the object, called object components, and for each object com-
ponent, the connected components of the background that are completely en-
closed by the object component, also called cavities, and tunnels. A tunnel exists
whenever a component of the background is interpenetrating the object. Besides
topological features, also some shape features are of interest for the description
of non-intuitively decomposable complex objects. For example, this is the case
for concavities of the object that can be interpreted as convexities or protrusions
of the background. Concavities of the object, as well as tunnels and cavities can
be identified by computing the convex hull and by analysing the convex deficien-
cies. A simple case is given in Fig. 1. There, a brick-shaped object consisting of
one connected component is shown. The object includes a concavity, visible on
top of the object, a tunnel, crossing the object in the middle, and a cavity on
the bottom of the object, visible only in the cross section of the object.

While the number of object components and the number of cavities are easy
to compute by means of local operators, tunnels are more difficult to identify
and only recently some contributions have appeared dealing with this subject.

In [2], an algorithm was presented to close tunnels, called holes in that article.
The purpose of that algorithm was actually that of detecting tunnels (especially
in nearly thin objects, as it is clear by looking at the examples shown in the
article) in order to suppress them (or to suppress only those considered as less
significant, based on the size of the tunnels). In this respect, the algorithm works
nicely as it identifies a closure located in the middle of each tunnel. However,
our purpose is to count, represent and describe complex tunnels in object char-
acterised by any thickness. In this sense, the algorithm [2] is not adequate. In
fact, for a complex tunnel consisting of crossing branches it is not possible to
know a priori how many distinct closures will be identified, since this depends
on the length of the different branches.

More recently, a method to detect tunnels (and cavities) and to represent
them by linear structures (and single voxels) has been introduced in [3]. The
method is based on the topological erosion of the convex deficiencies of the
object. The number of crossing points (or better clusters of crossing points)
found within the linear representation of the tunnel is used to estimate tunnel
complexity, and the number of end points accounts for the number of exits of the
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tunnel. Moreover, information on the maximal thickness of the tunnel is given
in terms of the number of iterations of topological erosion necessary to generate
the linear representation.

In this paper, we perform the analysis of concavities, tunnels and cavities, still
using the convex deficiencies of the object. In particular, we here face the problem
of decomposing convex deficiencies, corresponding to a number of concavities
and tunnels merged into a unique component, into the constituting entities.
To this aim, we use a combination of constrained distance transformation and
watershed segmentation. Once the convex deficiencies have been decomposed
into individual entities, the method in [3] can be applied to extract from each
entity its representation.

2 Preliminaries

We consider volume images consisting of object and background. We treat the
object as 26-connected, i.e., two object voxels are adjacent if they share a face,
an edge, or a vertex, and the background as 6-connected, i.e., two background
voxels are adjacent if they share a face. For an object voxel v, we denote N26(v),
the set of voxels from the immediate neighbourhood of v including all face, edge,
and vertex neighbours of v, and N18(v), the set of voxels including all face and
edge neighbours of v.

An object component is a set of voxels for which each pair of voxels, u and
v can be connected by a path, u = w0, w1, ..., wn = v, within the object and
such that wi+1 ∈ N26(wi), i = 0, . . . , n − 1. For simplicity, in this paper we
will consider a volume image including a single object component. In case of
more than one object component, connected component labelling (performed by
using, e.g., the algorithm in [4]) is preliminarily performed, so as to work on each
object component individually.

The convex hull of an object is the smallest convex set containing that ob-
ject. Different, equivalent, definitions for a convex set S exist, e.g., a set is convex
when for all points P, Q ∈ S the straight line connecting P and Q is also in S.
Defining and finding the convex hull of a discrete object is not trivial, [5]. Often
an approximation of the convex hull, e.g., a covering polyhedron, is adequate.
In this paper, we use the method described in [6] to build a covering polyhe-
dron by repeatedly applying concavity filling operators. Though using 3 × 3 × 3
operators, the method actually derives and uses information from a 5 × 5 × 5
neighbourhood of each voxel, to establish whether the voxel is located in a pla-
nar region. Thus, the resulting approximation of the convex hull is quite good,
as the covering polyhedron is characterised by a number of up to 90 faces. An
even larger number of faces could be obtained by deriving and using information
from a larger neighbourhood. However, for our purpose this is not necessary, as
the increased accuracy does not affect the result enough to justify the increase
in computational cost.

The convex deficiencies of an object are obtained by computing the difference
between the covering polyhedron and the object. In what follows, we denote the
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Fig. 2. Two cross sections of a box with a cavity shaped as a torus, left, and of a box
with a concavity including a torus, right.

convex deficiencies by CDs. For each CD we call cap each connected compo-
nent of voxels belonging to the CD and having at least a face-neighbour in the
complement of the covering polyhedron.

An object has a tunnel if there exists a closed connected path in the object
which cannot be deformed to a single voxel (for details, see [7]). A tunnel is
identified by a CD having more than one cap (two caps for a simple tunnel, more
than two caps for tunnels consisting of many branches). An object has a cavity if
a background component is fully enclosed in the object. A cavity is identified by
a CD having no cap at all. An object has a concavity, whenever a CD including
a single cap is found. We note that using the number of caps to establish the
nature of a CD allows us to be consistent also in presence of otherwise ambiguous
cases. For example, see Fig. 2, left, where both the definition of cavity (i.e., a
background component fully enclosed by the object) and the definition of tunnel
(i.e., a background region such that there exists a closed connected path that
cannot be deformed to a single voxel) apply. By using the number of caps, the
CD is classified as a cavity. Analogously for the example shown in Fig. 2, right,
the CD is classified as a concavity, though part of it is clearly shaped as a tunnel.

An object voxel v is simple if the object including v is homotopic to the
object obtained after v has been assigned to the background, [8]. This means
that the number of object components, the number of tunnels, and the number
of cavities is the same, independently of whether v is in the object or in the
background. A decision on whether v is simple or not can be taken based on
the local neighbourhood configuration of v, [9,10]. The voxel v is simple if the
number of object components in N26(v) is one and the number of background
components, having v as a face neighbour, in N18(v) is also one.

Topological erosion of the object is a process that assigns simple voxels to
the background. The process terminates when no more object voxels are simple.

Distance between voxels or sets of voxels in an image can be represented
by means of a distance transform, [11]. In a distance transform, each voxel in
the object is assigned a value corresponding to the distance to its closest voxel
in a reference set, which is often the background. A good approximation to the
Euclidean distance, i.e., a distance that is stable under rotation, can be obtained
by taking the distance between two voxels as the length of the minimal path
between the voxels, where each step in face direction is weighted 3, each step in
edge direction is weighted 4, and each step in vertex direction is weighted 5, [12].
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We will use this distance function through this paper. In case the reference set
with respect to which the distance is computed is a subset of the object, instead
of the background, the distance transform is said to be constrained, [13].

3 Decomposing the Convex Deficiencies of an Object

We first briefly summarise the method introduced in [3] to associate a represen-
tation to cavities and tunnels, because this constitutes the final part of the pro-
cedure described in this paper. In [3], once the covering polyhedron is achieved
and the difference to the object is computed, the CDs are identified using a
connected component labelling algorithm, [4], to assign an identity label to each
component. Among the CDs, cavities could be easily distinguished as the CDs
having no face neighbour in the background. However, all CDs, including those
corresponding to cavities, undergo the topological erosion, done to detect the
relative representations, because these structures are easier to manage than the
CDs, and carry enough information for shape description. Topological erosion
of the CDs is accomplished by removing simple voxels having no face or edge
neighbours in the complement of the covering polyhedron. To guide the erosion
through successive, more and more internal, voxels of the CDs, the constrained
distance transform of the CDs (called DT, for short) is computed, where the
reference set from which to derive distance information is the original object.
Using DT also allows us to associate with each CD, information concerning its
maximal thickness, given by the maximal distance label found within the DT.
The resulting representation will consist, for each cavity, in an isolated voxel
having no face neighbours in the complement of the covering polyhedron, and,
for each tunnel, in a linear structure where a number of voxels have edge or
vertex neighbours in the complement of the covering polyhedron (the voxels are
as many as the exits of the tunnel). If CDs corresponding to concavities are also
found, an isolated voxel having edge or vertex neighbours in the complement of
the covering polyhedron is found for each connected set of concavities.

A limit of the above method is that whenever a CD corresponds to a com-
bination of more than a single entity, e.g., a number of concavities or a number
of tunnels and concavities, the obtained representation only accounts for one
entity, namely the thickest concavity, if the CD is in correspondence with a com-
bination of concavities, or the tunnels, in case of a combination of tunnels and
concavities. As an elucidative example, consider the object in Fig. 3. There, a
solid brick-shaped object is shown, from which a number of cylinders and (parts
of) balls have been removed to create tunnels and concavities. Though eight en-
tities are perceived (two tunnels and six concavities), only four CDs are found:
one simple concavity; one simple tunnel; one component consisting of the combi-
nation of one tunnel and three concavities; and one component consisting of the
combination of two concavities. The corresponding representations are shown in
Fig. 4, where we note that the structures corresponding to the combination of
concavities and tunnels and to the combination of concavities, account only for
the tunnel and for one concavity, respectively.
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Fig. 3. From left to right: object, a cross section and the convex deficiencies.

Fig. 4. Representation of the convex deficiencies for the object in Fig. 3, framed by a
cross section of the borders of the CDs.

It is clear that to obtain correct representations by the method in [3], the CDs
corresponding to combinations of concavities and combinations of tunnels and
concavities should be preliminarily decomposed into their constituting entities.
In this paper, we aim at achieving a decomposition of these CDs into parts
corresponding to single tunnels and single concavities.

To decompose CDs corresponding to combinations of concavities or combi-
nations of tunnels and concavities, we resort to watershed segmentation, [14,15].
The concept of watershed is based on the idea of a “topographic” interpretation
of a multi-valued image, e.g., a grey-level image or a distance transform where
distance labels play the role of grey levels. The three spatial coordinates x, y,
and z of a voxel v, together with elevation of v, which is the grey-level of v,
are used. This gives raise to an elevation model in terms of a hyper-surface. In
this interpretation we have three types of voxels: voxels that are minima; voxels
belonging to catchment basins; and voxels belonging to watersheds (crest lines).
See Fig. 5 for the 2D case. Watersheds are found by “immersion”. Imagine each
minimum as pierced so that when immersing the hyper-surface into water, the
catchment basins start to be filled. A watershed is built in correspondence with
any voxel which is reached by water coming from two basins.

To identify the minima within the CDs, we compute the DT, where we use as
reference set the complement of the covering polyhedron. The minima for the wa-
tershed segmentation are the voxels farthest from the reference set. Accordingly,
they are detected as the maxima on the DT. In correspondence of each tunnel
most of maxima will be placed midway with respect to the caps delimiting the
tunnel. A problem to be solved is that the number of connected components of
maxima generally exceeds the number of entities, so that an over-segmentation
is likely to be obtained. Well known techniques to reduce this over-segmentation
can be applied, e.g. , see [16]. We do not discuss here these techniques, but
concentrate on additional criteria we adopt to reduce over-segmentation. Specif-



130 Stina Svensson, Carlo Arcelli, and Gabriella Sanniti di Baja

watershed
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Fig. 5. Voxels involved in watershed computation.

Fig. 6. Object, left, and its convex deficiencies, right. Only the convex deficiency cor-
responding to the tunnel is meaningful.

ically, our criteria involve the reduction of the number of components of maxima,
merging of components of maxima, and merging of parts of the decomposition.

To reduce the number of components of maxima, we perform a small num-
ber of erosion/dilation operations. This results in smoothed CDs, since spurs
and thin protrusions are removed. We note that erosion/dilation is also useful
to avoid considering spurious CDs. In fact, when building the covering polyhe-
dron, concavity filling changes the status of a number of voxels that are not
really placed in concavities of the object, but are such that the planes passing
through them and tangent to the object are not oriented according to permitted
directions. Thus, CDs are likely to be identified even when no concavities are
actually present in the object. In Fig. 6, a cube rotated 30◦ in z-direction with
respect to the upright position is shown together with the found CDs. It can
be noted that besides the expected CD corresponding to the tunnel, also other
four spurious CDs are detected. In fact, the faces of the cube are not oriented
along directions permitted for the faces of the covering polyhedron. Thus, in
correspondence with each face of the cube, concavity filling adds to the covering
polyhedron all voxels understood as belonging to local concavities as far as a
face of the covering polyhedron oriented along a permitted direction is obtained.

The tool used to merge components of maxima is active only for maxima
found midway with respect to the caps delimiting each tunnel. To this aim,
we need to compute closures in correspondence with tunnels and accomplish
this task similarly to [2]. Since the DT is already available, we can use it to
guide a topological erosion that removes simple voxels, starting from the voxels
having minimal distance label and proceding inwards, until the closures are
obtained. The process is illustrated in Fig. 7, where a brick-shaped object with
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Fig. 7. Object with a combination of concavities and a tunnel, left, a cross section,
middle, and the closure of the tunnel, right.

Fig. 8. Decomposition for the CDs of the object in Fig. 7, left, and in Fig. 3, right.
(Fig. 8 is actually in colours. For a better understanding, please refer to the electronic
version of the paper.)

a combination of concavities and a tunnel is shown. The closure of the tunnel is
shown in Fig. 7, right.

Connected component labelling of the closures is accomplished. Then, we can
ascribe the same identity label to all components of maxima found midway with
respect to the caps delimiting the tunnels. These maxima are either included
in a closure (and as such already have the same identity label as the closure
they belong to), or are adjacent to it (and the identity label of the closure can
be assigned to them). The latter case occurs when the length of the tunnel is
expressed by an even number of voxels and, hence, the set of maxima is two-voxel
thick.

Connected component labelling is, then, accomplished on the remaining max-
ima. This completes the process to identify the markers for the watershed seg-
mentation. We use an algorithm for computing the watersheds which is basically
an extension to deal with 3D images of the algorithm presented in [14].

The watershed decomposition for the CDs of the objects in Fig. 7 and in
Fig. 3, are respectively shown in Fig. 8 to the left and the right.

As concerns merging among parts of the decomposition, we distinguish two
cases respectively dealing with complex tunnels, and with tunnels or concavi-
ties with significant protrusions that have not been removed by erosion/dilation.
For tunnels having complex shape and, hence, more than one branch, e.g., a
Y-shaped tunnel, more than one closure can be found. As a consequence it may
happen that, after the watershed segmentation, a branch of the tunnel is as-
signed more than one identity label. See Fig. 9. Merging of the parts identified
within the tunnel can be easily accomplished. In fact, closures have been as-
signed identity labels that not only distinguish a closure from other closures,
but also discriminate between components of maxima found in correspondence
with a closure and all other components of maxima. The second merging case
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Fig. 9. A Y-shaped tunnel with the found two closures, left, watershed segmentation
before merging, middle, and after merging, right.

Fig. 10. From left to right: a tunnel with a significant protrusion, a cross section, its
convex deficiencies, and watershed segmentation before merging. Result after merging
is one tunnel part. (Fig. 10 is actually in colours. For a better understanding, please
refer to the electronic version of the paper.)

regards entities with significant protrusions, see Fig. 10. When this is the case,
maxima in the DT are found also in correspondence with the significant pro-
trusions of the tunnel which will cause creation of parts of the decomposition,
once watershed segmentation is implemented. Since according to our definition,
all entities, except cavities, have at least one cap, we merge all adjacent parts
without cap until a compound part with cap is achieved.

Once all parts of the decomposition have at least one cap, over-segmentation
can be treated by well known techniques. Finally, the representations consisting
in a linear structure for tunnels and in isolated voxels for concavities and cavities
can be obtained by using the method described in [3].

4 Conclusion

We have characterised an object in a 3D binary image in terms of topology and
shape by analysing the convex deficiencies of (an approximation of) the convex
hull of the object. While the identification of cavities is a trivial problem, de-
tection of tunnels and concavities is often tricky. Various techniques have been
used, including distance transformation, connected component labelling, water-
shed segmentation and topological erosion. The method has given satisfactory
results, when tested on a large set of artificial objects. No evidence is available
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yet of the effectiveness of the method on real images. We expect that new prob-
lems will arise that have not occurred with the artificial objects used so far. This
will be a topic for future research.
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