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Abstract. In this contribution, we propose the notion of homotopy for
both combinatorial maps and weighted combinatorial maps. We also de-
scribe transformations that are homotopic in the defined sense. The use-
fulness of the concept introduced is illustrated using two applications.
The first one consists in calculating a skeleton using homotopic transfor-
mations of weighted combinatorial maps. The result is a compact com-
binatorial map describing the structure of the skeleton which may be
viewed as a “combinatorial map skeleton”. The second application con-
sists in run length encoding of all the regions described by a combinatorial
map. Although these demonstrations are defined on combinatorial maps
defined on a square grid, the major insights of the paper are independent
of the embedding.
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1 Introduction

Homotopy characterizes, in continuous topology, elastic transformations that
preserve certain topological properties, transforming a simple arc into a simple
arc for example. The definition of homotopy for digital sets has been proposed
[I5] in order to characterize transformations of such sets preserving topologi-
cal properties such as the region inclusion tree, or more generally, equivalence
classes of paths. The definition of homotopy of transformations on gray-level
images has also been proposed [T5]12], as well as on ordered sets [2]. Homotopy
is an important concept, as it characterizes topological properties of skeletons,
graytone skeletons and watersheds [I5JT2[T3T4]. Combinatorial maps have been
introduced as a code for planar graphs. They have been already used in image
analysis to encode topological maps with different embeddings [TJ6IBITI]. Some
transformations of combinatorial maps have been proposed [4].

In this paper, we propose to extend the notion of homotopy to combinatorial
maps (section [2), and to weighted combinatorial maps, i.e. combinatorial maps
in which a single real number is associated with each dart (section[3)), coherently
with the classical definitions. The main advantage is in the design of classes
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Fig. 1. A combinatorial map

of transformations that have nice topological properties, independently of the
embedding of the sets studied. Thus, combinatorial maps with different embed-
dings can be treated with the same classes of transformations and algorithms
such that properties defined independently from their embedding are preserved.
Some transformations that are homotopic in the defined sense are also presented.
Two applications are presented (section Hl), demonstrating the advantages of the
proposed definitions and transformations. Defining homotopy on a combinatorial
map naturally leads to the definition of a new class of skeletonization algorithm
(section ET]), producing combinatorial map skeletons. The second application,
presented in section EE2] consists of constructing a combinatorial map conve-
niently encoding horizontal runs.

2 Combinatorial Maps

2.1 Basic Definitions

Let us review some definitions. A combinatorial map is a triplet G = (D, 0, @)
where D is a set of elements called darts (or half-edges), and o and « are two
permutations defined on D such that « is an involution without fixed point
(Vd € D,a?(d) = d). An example of a combinatorial map is drawn in Fig. [l
Each dart may be viewed as a directed half-edge of an embedded planar graph,
and is associated to a vertex. The darts d and «(d) are associated to a unique
edge of the drawn planar graph. o defines the arrangement of darts turning
counterclockwise around a vertex. A combinatorial map can be seen as a graph
with explicit orientation around the vertices.

A combinatorial map may be used to encode a topological map, i.e. a cel-
lular complex of dimension 2 which partitions an orientable surface into a set
of vertices (0-cells), a set of arcs (1-cells), and a set of faces (2-cells). Here, the
continuous embedding of the underlying cellular complex is assumed, although
most of the following results can be also interpreted with embeddings on other
topological spaces. The darts of D may be viewed as cell-tuples (s,a, f) [10],
where s, a and f are incident. The orbits o*(d) are bijectively associated to
vertices of the represented topological map, the orbits a*(d) are associated to



136 Jocelyn Marchadier, Walter G. Kropatsch, and Allan Hanbury

A N

a) Initial map. b) Removal of e. ¢) Contraction of e.

Fig. 2. Removal and contraction transformations

edges of the topological map, and the orbits ¢*(d) of the permutation ¢ = oo«
are associated to the faces of the encoded topological map.

Some topological notions such as loops, bridges, etc, can be defined straight-
forwardly for combinatorial maps [4]. We recall the following configurations, as
they are special cases to be considered in the following text. Let us consider a
combinatorial map G = (D, 0, «) and one of its darts d € D. d is a self loop
iff a(d) € o*(d). d is a bridge iff a(d) € ¢*(d). d is pendant iff o(d) = d. d is
redundant iff o%(d) = d.

Paths and loops can also be defined for combinatorial maps. A path of a
combinatorial map G = (D, 0, «) is an ordered sequence of darts P = (dy, ..., dy,)
such that Vi € {1,...,n — 1},d;y1 € o*(a(d;)). The reverse path «(P) of P is
defined by a(P) = (a(d,), ...,a(d1)). A loop is a path P = (dy, ..., d,) such that
dy € o*(a(dy)).

The dual of a combinatorial map G = (D, o, «) is the combinatorial map
G = (D, 0, ). It is well defined when the combinatorial map is (path-)connected,
ie. Vd,d € D,3 apath P = (di,...,d,) with d € a*(d;) and d’ € a*(d,). In the
following text, we will consider only connected combinatorial maps.

The remowval of an edge a*(d) removes d and a(d) from the initial combi-
natorial map. Consider a combinatorial map G = (D, 0,«) and a dart d € D
with d not being a bridge. The removal of the edge a*(d) creates the sub-map
G\ a*(d) = (D\ a*(d), o, a) defined by:

(d) if ' € D\ {o71(d), 0™ (a(d))}
if 0(d) # a(d) and o(a(d)) #d
a(d)) if o(d) = a(d)

The contraction of an edge o*(d) transforms a combinatorial map G into
a combinatorial map G’ where d and a(d) have been removed from the dual
G’. Consider a combinatorial map G = (D, 0, «) and a dart d € D with «a*(d)

not being a self-loop. The contraction of the edge a*(d) creates the sub-map G’
defined by:

G =GJa*(d) =G\ a*(d)

The two transformations are illustrated in Fig. 2.

2.2 Homotopic Transformations

Let us recall that a continuous path is the image of the unit interval by a bi-
jection f into some space X (f : [0,1] — X). Two continuous paths defined by
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f:00,1] = X and ¢ : [0,1] — Y are said to be homotopic iff there exists a
continuous map H : X x [0,1] — Y that transforms f into ¢g: H(x,0) = f(x)
and H(z,1) = g(z). Homotopic transformations are used to define fundamental
groups in both continuous and digital topological spaces [I]. The fundamental
group of a topological space X is the group formed by all equivalence classes of
loops (paths f with f(0) = f(1)) under the equivalent relation of homotopy.

We introduce the new notion of homotopy on combinatorial maps, derived
from the definitions of [I5] p.187. However, for combinatorial maps, the dual
structure is straightforwardly defined as shown in the previous section, and the
definition is simpler.

We say that two paths are equivalent if one can be obtained from the other
by a finite sequence of operations of the form:

— if dk = a(dk,1) replace -..,dk72,dk71,dk’dk+1... by ...,dkfg,korl...
— or conversely replace ...,dg_1,dg... by ...,dg_1,d, a(d), dj...

Its clear that two equivalent paths must contain the same loops.

Consider the set G of all combinatorial maps. A mapping @ from G onto itself
is said to be homotopic if it transforms a combinatorial map G into a combi-
natorial map @(G) such that each pair of equivalent path of G is transformed
into a pair of equivalent path &(G). As a direct consequence, there must be a
bijection between the orbits of ¢ of G and of &(G).

Theorem 1. The contraction of an edge a*(d) is a homotopic transformation.

The proof is straightforward, as the contraction does not either remove nor create
a face. This trivial result demonstrates the power of the notion of “homotopy”
for combinatorial maps. Moreover, as underlined above, there is a direct interpre-
tation of this notion for continuous topological maps. The contraction operation
applied on combinatorial maps will lead to a description of topological maps
having the same fundamental group (in the common continuous interpretation).
This simple definition is completely equivalent to more complex frameworks [,
and can benefit from previously published results. Moreover, the contraction
of pendant darts can be interpreted as the operation of simple point removal,
neither of them changing the topology of the described set.

In [9], a dual graph is transformed such that the degree of the surviving
vertices is preserved. This rule can be applied to a combinatorial map.

Theorem 2. The contraction of a*(d), where d is a redundant dart, preserves
the cardinality of the orbits of surviving darts.

We just give an intuitive idea of the result: Fig. Bl demonstrates the contrac-
tion of a redundant dart; as |0*(d)| = 2, the contraction of d does not change
lo*(o(a(d)))] and |o™ (a(d))]-

Contraction of redundant edges is connectivity preserving. It is a homotopic
transformation, as it preserves the number of orbits of ¢ of a combinatorial map.



138 Jocelyn Marchadier, Walter G. Kropatsch, and Allan Hanbury

¢ : : :
> : : :
d

a) Initial map. b) Contraction of d.

Fig. 3. Contraction of a redundant dart d

3 Weighted Combinatorial Maps

3.1 Definitions

We introduce here new notions related to combinatorial maps whose darts are
associated with a single real number.

A weighted combinatorial map is a 4-tuple (D, o, a, w) where (D, o, ) defines
a combinatorial map, and w : D — R is a function defined on D, associating
a real number w(d) to each dart d € D. Weights associated to darts can take
any value, depending on the application. We restrict ourselves to the study of
a particular class of weighted combinatorial maps, where two opposite darts d
and «(d) have opposite weights. We say that a weighted combinatorial map
M = (D, o, a,w) is antisymmetric iff Vd € D, w(d) = —w(a(d)).

The following notions interpret weights of darts of a weighted combinatorial
map as difference of elevations of connected vertices. An upstream path is a path
P = (dy,...,d,) with only positive weights (Vi < n,w(d;) > 0). A downstream
path is a path P = (dy, ..., d,) with only negative weights (Vi < n,w(d;) < 0). A
plateau path is a path P = (dy, ..., d,,) with only null weights (Vi < n,w(d;) = 0).
Since the weights on opposite darts of a weighted combinatorial map can have
any value, the reverse of an upstream path is not necessarily a downstream path.
However, for an antisymmetric weighted map, this is the case, as stated by the
following theorem:

Theorem 3. If a weighted combinatorial map G = (D, 0, «,w) is antisymmet-
ric, then the opposite of every upstream path is a downstream path.

Proof. By definition, the opposite of a path P = (dy,...,d,) is the path P’ =
(a(dp), ..., (dy1)). Suppose that P is upstream, then Vi < n,w(d;) > 0. As the
map is antisymmetric, we have Vi < n, —w(a(d;)) > 0, and P’ is downstream.

The removal and the contraction transformations are defined as removal and
contraction of the combinatorial map, and do not modify the weights of the
remaining darts.

3.2 Homotopy Revisited

We define here the concept of homotopy for weighted combinatorial maps, in
such a way that it is coherent with the definition of Serra ([15] p. 448). Consider
the set G of all weighted combinatorial maps. A mapping @ from G onto itself
is said to be homotopic if it transforms a weighted combinatorial map G into a
weighted combinatorial map @(G) such that:
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1. combinatorial maps underlying G' and ¢(G) are homotopic,
2. @ preserves upstream and downstream paths.

Two weighted combinatorial maps G; and G are homotopic iff there exists a
homotopic transformation ¢ such that Go = ¢(Gy).

In the preceding definition, the path preserving condition (condition 2) has to
be understood as: any upstream (downstream) path is transformed into an up-
stream (downstream) path, possibly empty, and no new upstream (downstream)
path is created.

The contraction of a dart d of an antisymmetric weighted combinatorial map
G = (D,0,a,w) is path-preserving iff o*(d) = {d} (d is a pendant dart) or d is
not a self loop and w(d) # 0 and Vd' € o*(d), w(d)w(d") < 0 (the weights of d
and of any of the darts adjacent to the same vertex have opposite signs). The
contraction of path preserving darts is a homotopic transformation, as stated in
the following theorem.

Theorem 4. A path-preserving contraction of an antisymmetric weighted com-
binatorial map G is a homotopic transformation.

Proof. Condition 1. is already proved in theorem [l Condition 2. holds for the
following arguments: If o*(d) = {d}, then d is a pendant dart, and its con-
traction does not create new upstream or downstream path. Consider an up-
stream path P = (di,...,di—1,d;, dit1, ..., dy). By definition, Vj < n,w(d;) >
0. By contraction of d;, this path will be transformed into the path P’ =
(d1y.eeydi—1,diy1,...,dy,) which is upstream. Suppose that by contraction of a
dart d; with w(d;) # 0, the non-upstream path P = (dy,...,d;—1,d;, diy1, ..., dy)
is transformed into the upstream path P’ = dy,...,d;_1,d;11,...,dy). Then, as
P’ is upstream and not P, Vj # i,w(d;) > 0 and w(d;) < 0. As the com-
binatorial map is antisymmetric, we have w(a(d;—1)) = —w(d;—1) < 0. Then
w(a(d;—1))w(d;) > 0 and the contraction of d; is not path-preserving. This rea-
soning can also be used for proving that no downstream path is created.

On Fig.[4.a, the contraction of a dart which is not path preserving is illus-
trated. We can remark that a downstream path which did not exist is created
(in bold). On Fig. Hlb, the contraction of the path preserving dart d does not
create any upstream nor downstream path.

4 Applications

4.1 Gray-Tone Skeletons

In this section, we apply the preceding treatments to the computation of skele-
tons of gray-level images, i.e. thin subsets of the crest network of a gray level
image [12]. Dual graph contractions invariant to monotonic transformations have
been studied in [§]. The framework presented here is different in that it is based
on an alternative original graph, and uses the notion of homotopic transforma-
tion for combinatorial map discussed above.
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b) Path preserving contraction.

Fig. 4. Contraction of a dart d which is not path preserving

For skeletonisation applications, we start by constructing a weighted com-
binatorial map on a pixel based scale. Then, by applying some transformations
which reduce the number of darts while preserving the homotopy of the com-
binatorial map until stability is reached, we obtain a compact representation of
the skeleton of the original image.

The initial combinatorial map can be obtained from a straightforward al-
gorithm first introduced by M. Pierrot Deseilligny and al. [I3]. An image I is
defined as a function of digital support [0, Zymaz] X [0, Ymaz] to Z. We define I’
as the image:

I/(xvy) = ((I(z,y) dmaz + D(2,Y)) Tmaz + ) Ymaz + Y (1)

where D(x,y) is the distance of a point (z,y) to the nearest point with lower
intensity and dpae = mar(y ) D(z,y) (D can easily be related to the classical
distance transform of cross-sections of the original gray level images). I’ assigns
to each pixel a unique value. The weighted combinatorial map is built using a
simple algorithm based on a local analysis of the 8-neighborhood of each pixel p of
I'. Each 3 x 3 neighborhood is decomposed into sets of 4-connected components,
the values of which are greater than the value of the central pixel. We construct
the contour map by adding an edge (pair of conjugate darts) that connects
the central pixel with the highest valued pixel of each component. The weights
being associated to the darts are given by the difference between the end-vertex
and the origin-vertex of each dart. The map is obviously antisymmetric. One
can demonstrate that the combinatorial map is connected, and that a bijection
between the faces (@-orbits) of the combinatorial map and the local minima of
I’ exists [13].

Homotopic transformations can then be applied in order to simplify the com-
binatorial map, and to get rid of the undesired edges. For example, darts that
are either redundant or pendant, and whose contraction is path-preserving, can
be contracted until stability in order to obtain the simplest combinatorial map
(kernel of the transformation) describing the crest network of the image. Some
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Fig. 5. Skeleton of a weighted combinatorial map

darts describing relevant features can be excluded from the contraction oper-
ation in order to preserve these features. This is equivalent to defining anchor
points [I314]. As a classical example of “anchor darts”, we may want to keep
pendant darts with negative weights, corresponding to peaks in the image, lead-
ing to results very similar to [11]. Fig. [3l shows the results of path-preserving
contractions until stability of the redundant darts (on the right), with pendant
darts with negative weight as anchor darts (characterizing peaks in the original
image).

The recursive contraction of pendant darts is applied first, and then path-
preserving contraction of redundant darts is computed. The algorithm in that
order leads to a time complexity linear in the number of edges (two passes on all
edges). As the combinatorial map can be constructed within a single pass onto
the original image, the complete algorithm is linear in the number of pixels of
the original image.

The obtained result is a compact combinatorial map describing the structure
of the skeleton in a much more compact way than a raster graph, which may
be thought of as a “graph”-skeleton. Hierarchies of combinatorial maps may
be defined describing different simplification levels of the underlying graph. The
homotopic kernel of the contraction (made up of loops only) may then be thought
as the top level of the hierarchy. Other criteria than homotopy such as geometry,
etc, may be considered. With the criteria used, the result is independant of the
order of the contractions, and the algorithm can be implemented in parallel.
The above scheme also works for different types of grid or digital topologies, by
giving a proper embedding of the underlying combinatorial maps.

4.2 Curve-Based Runlength Encoding

The main idea proposed in this section is to construct a combinatorial map such
that in a band defined by two consecutive vertices of the map, no topological
events occur (no region appears or disappears, the interior of regions being de-
scribed by convex domains). For example, in Fig.[@, a simple region described by
its boundary is decomposed into two bands (A and B) within which the region
is decomposed into connected components which are convex on each horizontal
line.

By carefully choosing the weights associated to each dart of the map, we can
use the algorithm described in the preceding section in order to compute the
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Fig. 6. Curve-based encoding of horizontal runs

combinatorial map. We consider an antisymmetric weighted combinatorial map
G = (D,0,a,w) such that each vertex o*(d) is a point of Z2, each edge a*(d)
relates a pair of (4 or 8)-neighbors, and for a dart d € D, w(d) =y — y with ¢/
and y the vertical coordinate of respectively the vertex o*(«a(d)) and o*(d).

The algorithm computing the sought combinatorial map performs the con-
traction until stability of the path-preserving redundant darts. Fig. [ illustrates
the result of such an algorithm. On the left, the initial map is drawn. On the
right, the contracted map is represented. The regions A and B indicate the rows
of the image for which the connected components associated to each region are
convex.

The resulting map can be used for filling regions by a simple scan line algo-
rithm which retrieve from the curves horizontal runs [5] describing the interior
of regions. The first part of the algorithm is to sort the vertices of the computed
map according to the vertical coordinates. Between two vertices, the curves of
the map decrease monotonically. Thus, a simple loop can be used to deduce the
left and right extremity of a run filling a connected component associated to a
region. When a line corresponding to the end of the treated band is reached, the
followed curves can be updated according to the topological events that occur
on that line (insertion/deletion of followed curves, insertion/deletion of filled
connected components).

5 Conclusion and Perspectives

In this paper, we have proposed the concept of homotopy for combinatorial maps
and weighted combinatorial maps. This leads to defining homotopy between un-
embedded structures encoding topological maps. The main advantage in doing
s0 is to define homotopic transformations independently of the embedding. Con-
cepts, demonstration, and algorithms proposed are simple. Nenertheless, the
proposed concepts lead to results completely analog to the more complex frame-
works. This apparent simplicity demonstrates the usefulness of this research.
As an application, we considered the computation of skeletons, for example,
for which a compact structure is produced. This naturally extends the concept
of skeleton leading to the new concept of “combinatorial map skeletons”, i.e.
planar embedded graphs which describe homotopic digital or continuous topo-
logical structures in the classical sense. The encoding of a combinatorial map
whose vertices define bands decomposing the described topological map into
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convex connected components has been proposed in the same framework. Other
applications are possible. For example, the computation of hierarchies of skele-
tons is straightforward. We could also consider the extension of the proposed
framework into higher dimensions.
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