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Abstract. An invertible Euclidean reconstruction method for a 2D
curve is proposed. Hints on an extension to 3D are provided. The frame-
work of this method is the discrete analytical geometry. The reconstruc-
tion result is more compact than classical methods such as the Marching
Cubes. The notions of discrete cusps and patches are introduced.
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1 Introduction

The reconstruction of discrete objects is mainly performed in practice with the
“Marching Cubes” method [1] (and all its follow ups). For a couple of years
another approach, based on discrete analytical geometry, is investigated in the
discrete geometry community. The aim is to decompose the boundary of a dis-
crete object into discrete analytical polygons and then these polygons into Eu-
clidean polygons. The method has to be invertible, i.e. the discretization of the
reconstructed boundary has to be equal to the original discrete object. We don’t
want any information to be added or lost. The aim of this new approach is to
provide a more compact reconstruction. Several other attempts have already
been made in this direction that are not satisfying and usually not invertible
(see [2] for details). Our method is based on Vittone’s recognition algorithm
for the decomposition of the discrete boundary into discrete line pieces in 2D
and discrete plane pieces in 3D. The analytical framework is provided by the
standard discrete analytical model that defines 2D and 3D discrete polygons
[3]. A working solution in 2D and indications on how to tackle the 3D case are
proposed. The method works basically as follows: a discrete boundary is decom-
posed with Vittone’s algorithm [4] into discrete line pieces in 2D (resp. discrete
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plane pieces in 3D). The result of Vittone’s algorithm is adapted to the standard
analytical model as it is, for the moment, the only suitable discrete analytical
model [3]. The reconstruction process is guided by so called discrete cusps in or-
der to propose a reconstruction that fits better a “common sense” recontruction.
A Euclidean line (resp. 3D plane) candidate is chosen among all the possible so-
lutions. This is done for each discrete line piece (resp. 3D plane piece). All these
2D lines (resp. 3D planes) form a Euclidean 2D polygon (resp. 3D polyhedron).

The discretization of this Euclidean object (2D polygon or 3D polyhedron) is
not necessarily equal to the boundary of the discrete object but is usually larger.
In 2D, in order to avoid this problem, and provide the revertibility property,
patches are introduced. In 3D, the problem is more difficult and not completely
solved so far. Not only the vertices but also the 3D edges of the polyhedron can
be located outside the discrete object. Several hints are given on how to solve
these problems, especially with convex and non-convex discrete objects.

In section 2, a new discrete curve reconstruction method is provided. Notions
such as discrete cusps and patches are introduced. In section 3, the 3D case is
examined. The convex and non-convex case are studied and hints on solutions
are given. We conclude in section 4 with some perspectives.
Brief recall on the standard model. The standard digitization of a Euclidean
object consists in all the pixels (resp. voxels) that are cut by the object. The
standard lines (resp. planes) can be defined arithmetically: a discrete standard
line (resp. plane) of parameters (a, b, µ) (resp. (a, b, c, µ)) is the set of integer
points (x, y) (resp. (x, y, z)) verifying −ω ≤ ax + by(resp. + cy) + µ < ω where

ω = |a|+|b| (resp.+|c| )
2 . A standard line (resp. plane) is a 4-connected line (resp.

6-connected plane). If we denote St(O) the standard digitization of the object O,
the following useful properties can be derived from the geometrical definition of
this model: St(O1 ∩O2) ⊆ St(O1)∩St(O2) and St(O1 ∪O2) = St(O1)∪St(O2)

2 Reconstruction of a 2D Discrete Curve

2.1 Principle

We consider here 4-connected curves. To reconstruct a discrete curve, we first
choose a point on that curve, recognize a discrete straight-line segment and then,
repeat this process along the curve.

The recognition algorithm used was developed by Vittone [5]. For a given
discrete edge, it provides the set of all corresponding Euclidean straight lines as
a polygon in a parameter space (well studied by Veelaert in [6]). The standard
discretization [7] [3] of any of these Euclidean lines contains the original discrete
edge. It has been proven that the set of solutions is a (3 or 4)-vertex convex
polygon (see [8]) in the (α, β) parameter space P , and can only have one of the
five shapes illustrated in fig. 1.

A Euclidean straight line y = αx + β, in the cartesian space C, corresponds
to a point (α, β) in P . Thus, the three (resp. four) vertices of the solution set
correspond to three (resp. four) Euclidean straight lines in C. We chose one
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Fig. 1. The 5 possible shapes of the solution set and in each case, the chosen solution.

Fig. 2. Example of discrete cusps and Euclidean solutions. In (a), a regular case. In
(b), addition of a patch.

particular line as a solution and called it the median solution. This seems to
be a reasonable choice, as illustrated on fig. 1. This figure shows the median
solution in P and C for each possible shape of the set.

Prior to the recognition process, we look for remarkable points on the discrete
curve. We call those points discrete cusps and define them as follows: a point
of a discrete curve is a discrete cusp iff the segment composed of this point,
the next two points and the previous two points, is not a discrete segment.
We use the Freeman code to determine whether or not such a 5-pixel set is a
discret segment. Fig. 2 shows an example of discrete cusps. These cusps act like
“anchors” and help us to adjust segments’ extremities: during the recognition of
a discrete segment, we preferably begin (and end) a segment on a discrete cusp.

Starting Point. If there are cusps, we choose as a starting point of the al-
gorithm, the cusp with the smallest x-coordinate and then with the smallest
y-coordinate. If there are no cusps on the curve, we choose a regular point that
fits the same conditions. This choice ensures the unicity of the process. We pro-
ceed then with the recognition of the curve counter clockwise.
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2.2 Details on the Reconstruction

Before going on, we have to introduce some useful notations: pi denotes the i-th
pixel of a curve and sk is the k-th segment of the polygonalized curve.

After the Vittone’s algorithm, for each discrete segment we found, we obtain
an equivalence class of all the lines that match this discrete segment and we
choose the median line as a solution (see fig. 2). Then, we have to handle the
intersections between those Euclidean lines. The most simple case occurs when
two lines intersect in a pixel which belongs to the two corresponding discrete
segments sk and sk+1 (see fig. 2 (a)).

In this section, we explain the different cases we face during the reconstruc-
tion.

Fig. 3. (a) addition of a patch. (b) smoothing of this patch.

Patch. Our first problem is the intersection of two lines outside a pixel of the
curve, or even, the non-intersection of two lines. As we must “constrain” the
Euclidean curve inside the discrete curve, we decide to add a little patch to join
the lines together (see fig. 2 (b)).

But for some cases, adding a patch causes undesired visual results as shown
on fig. 3 (a). We soften this patch by extending it to the neighbouring pixels, as
illustrated on fig. 3 (b).

In order to reduce the number of patches, we allow two solution lines to
intersect in a 3-pixel long area, that is, the pixel common to the two discrete
segments and its two neighbours. This little trick still allows reversibility.

Post-process Patch Removal. Sometimes, we can get rid of a patch thanks to
a second pass of the recognition algorithm in the opposite direction. In fig. 4 (a),
we see the result of a first reconstruction. As the two solution lines do not
intersect in the permitted intersection area, we normaly should add a patch.
But a second recognition, in the opposite direction, leads to (b) and a valid
intersection. So, we eventually end up with the result (c).

2.3 The Algorithm

Initialization:

– we consider a discrete curve, i.e. a sorted sequence of n pixels: p1 . . . pn

– the cusps of the curve are determined
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Fig. 4. Patch removal thanks to a reverse recognition.

Step 1: Recognition

– sk denotes the current segment (at first k = 1)
– pi denotes the current pixel (at first i = 2)
– we use Vittone’s algorithm to recognize a discrete segment:

• we insert pixel pi in sk

• if this extended sk is still a discrete segment, we go on: i = i + 1
• else sk ends up on pi−1 and either pi−1 or pi−2 becomes the starting

point of the new segment: i = i − 1 (or i = i − 2) and k = k + 1
– until we reach the last pixel (i = n)
– in the case of a closed curve we carry on the recognition until we meet a

cusp, and then we possibly merge the last and the first segment
– at this point, the curve is entirely recognized and splitted into k discrete

segments and each one is linked to a coset of Euclidean solutions in the
parameter space

Step 2: Reconstruction

– for each coset of solutions, we choose the median line dk

– we must now create the Euclidean segments that are contained in dk

– so, we set the first extremity of the first Euclidean segment r1 (a point on
d1 that belongs to p1, the first pixel of the curve)

– then, we enter a loop through the lines dk:
• if dk (segment sk = [pa, pb]) and dk+1 (segment sk+1 = [pb, pc]) intersect

in pb, pb−1 or pb+1

• then∗, this intersection point becomes the second extremity of rk and
the first one of rk+1

• else (intersection outside or no intersection), we launch another recogni-
tion between pc and pa, which can lead to two cases:

� we still have the same two segments sk and sk+1, therefore, the patch
is unavoidable, and then, the second extremity of rk is the first vertex
of the patch, and the first extremity of rk+1 is the second vertex of
the patch

� sk+1 has been extended and the intersection between dk and the
new solution line allows us to avoid the patch; thus we go back to
the regular case (see ∗)

– we eventually have a sequence of Euclidean segments rk (each one defined
by two Euclidean points) and this sequence forms a polygonal line of which
discretization perfectly matches the starting discrete curve
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3 Discrete Object Surface Polygonalization

In this section, we present the problem for 3D discrete volumes. We point out
the type of difficulties we encounter and give some indications on the possible
solutions to solve them.

3.1 Discrete Surface Segmentation

We consider an 18-connected discrete volume and its surface defined as the set of
voxels sharing one face with the background object. Since discrete naive planes
are the thinnest 18-connected discrete planes without 6-connected holes [9], they
are well adapted for a segmentation of an object surface. In an arithmetical way,
a discrete naive plane of parameters (a, b, c, µ) is the set of integer points (x, y, z)
fulfilling the conditions 0 ≤ ax + by + cz + µ < max(|a|, |b|, |c|). We use, as in
2D, a discrete naive plane recognition algorithm proposed by Vittone [10] in 3D.
For a given discrete plane, it provides the set of all corresponding Euclidean
planes as a polyhedron in a parameter space. The standard discretization of any
of these Euclidean planes contains the original discrete plane.

Consider a discrete point (x0, y0, z0) and the parameter space (α, β, γ) where
a point (α0, β0, γ0) stands for the plane α0x + β0y + z + γ0 = 0. The discrete
point corresponds to a double constraint defined by the double inequality 0 ≤
αx0 +βy0 + z0 +γ < 1 in the parameter space. Hence, the recognition algorithm
adds the voxels one by one, reducing the solution set in the parameter space
according to the corresponding double inequality. Figure 5 gives an illustration
of a piece of plane and the corresponding set of solutions in the parameter space.

Fig. 5. A piece of the discrete naive plane (1, 3,−5, 0) and the corresponding set of
solutions in the parameter space.

We proposed in [11] a discrete surface segmentation based on this algorithm.
We will not describe precisely this algorithm but just give some hints. The general
idea is to propose a coplanarity test ensuring a “regular shape” for the recognized
plane pieces. To do so, we use a local configuration of discrete planes called
tricube. Let P be a discrete plane in the first quadrant. Then, a tricube is a set
of 9 voxels of P such that the projection fo those voxels onto the plane (x, y)
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is a 3 × 3 square: T (i, j) = {(x, y, z) ∈ P | i ≤ x < i + 3, j ≤ y < j + 3}.
There exist 40 different tricubes [12–14] and it has been shown that any discrete
plane can be built using tricubes. In our algorithm, we impose that any voxel of
a plane piece belongs to a tricube of this plane, which means that at least 3 out
of 8 neighbours of any voxel of a plane piece P belong to P . Moreover, we allow
planes overlapping to avoid as much as possible tiny plane pieces. The pieces of
planes recognized may contain holes that can be removed splitting them around
the holes. Hence, the result of the algorithm is a labelling of the voxels faces
with discrete plane pieces numbers.

3.2 Use of the Standard Model

After the discrete surface segmentation, we need to define discrete polygons onto
this surface in order to get a polygonal reversible surface. This implies the defini-
tion of vertices and edges and thus the study of the discrete planes intersections.
Unfortunately, naive planes, that were well adapted for the segmentation step, do
not have the geometrical consistency properties needed to define discrete edges
and vertices.

To solve this problem, we choose to swap to another model, called standard
model that was already presented briefly for lines in the introduction.

We use the connectivity characteristics of naive and standard planes to add
to the naive plane pieces, the voxels needed to get standard planes. As we do
not want to add information to the initial object, we must add those vox-
els inside the object. If we look at the arithmetical definition of naive and
standard plane, this means that we only add voxels (x, y, z) which satisfies
−(|a|+ |b|+ |c|−max(|a|, |b|, |c|)) ≤ ax+ by + cy +µ < 0 and which lies “under”
a surface voxel of the considered plane piece. Once we have done this transfor-
mation, we need to move the set of solutions in the parameter space, in order
to fit to the definition of standard plane we gave. Consider a point (a, b, c, µ) of
the parameter space, solution for the piece of naive plane P . Then, the point
(a, b, c, µ + |a|+|b|+|c|−2max(|a|,|b|,|c|)

2 ) is a solution for the standard plane defined
by the previously given transformation.

3.3 From a Discrete Surface to a Polygonal Surface

We have shown how to get a segmentation of a discrete surface into pieces of
standard planes. In the following, we show how to get a polygonal surface for
convex objects, and give some hints on the problems encountered for non convex
objects.

First Approach for Convex Objects. For each piece of discrete plane of the
segmentation, we know the whole set of solutions in the parameter space. Thus,
one can choose a solution for each piece of plane, and the intersection of all those
half-spaces is a polygonal approximation of the object surface. Figure 6(a) gives
the result we get with such a solution for a discrete sphere of radius 20.
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Fig. 6. Some examples on convex discrete volumes.

This solution is, however, usually not a reversible one. Figure 6(b) shows an
example where some of the reconstructed edges and vertices are outside the dis-
crete volume. Thus, the standard digitization of this polygonal surface contains
more voxels than the original volume. This is exactly the same type of prob-
lems we discussed and solved by adding patches for discrete curves. In 3D, such
patches are more difficult to define but a solution would be to run the discrete
plane recognition algorithm on the surface places where the polygonal surface
goes through the discrete object. This new plane would give the needed patch
as shown on figure 6(c).

General Case and Specific Problems. Solving the reversibility problems
is a second step after the construction of a polygonal surface. The half-spaces
intersection method presented above can not work on non convex volumes. In
order to reconstruct a polygonal surface from the segmentation for any object,
we propose a contruction face by face. Moreover, this allows us to control the
position of edges and vertices as we calculate them one by one. The general
algorithm we propose is shown in Algorithm 1.

Algorithm 1 Construction of a polygonal surface
Polygonal Surface(S)
1: For each piece of discrete plane of S, choose an Euclidian solution.
2: Let p be a piece of discrete plane, and E(p) the Euclidian solution chosen.

– track the 6-connected border of p, numbering its neighbour planes pi, 0 ≤ i < n,
n ≥ 3;

– for all i, compute Li = E(p)∩ E(pi); [edges]

– for all i, compute Li ∩ Li+1. [vertices]

3: Repeat for each pi, 0 ≤ i < n until each discrete plane has been treated.
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From the face by face construction, we derive that this very simple algorithm
is valid for convex and non convex objects. Nevertheless, the discrete structure
of the volume induces many problems. Let us look at this algorithm step after
step.

The first important step is to track the border of each piece of plane in order
to get an order on the plane neighbours. This step highly depends on the seg-
mentation we get. Indeed, the segmentation algorithm we proposed allows planes
overlapping and this leads to many neighbourhood relationships between discrete
planes whatever neighbourhood definition we use. It is sometimes impossible to
get an order on the neighbours which is consistent with the contruction of a
polygonal face. We tried other strategies to get rid of this problem, the under-
lying idea always being the suppression of useless neighbourhood relationships.
Algorithm 2 describes the solution we propose to compute the neighbourhoods.

Algorithm 2 Neighbourhood calculation
Neighbours()
1: Apply the segmentation algorithm allowing only one piece of discrete plane for each

voxel: the voxels already labelled by another plane piece are added to the current
plane but not labelled.

2: Compute the 4-connected border B(p) of the projection of each piece of plane p;
3: Order the neighbour planes of each p tracking B(p): two planes are neighbours

when there exist v1 ∈ p1 and v2 ∈ p2 such that v1 and v2 are 18-neighbours.
4: For each plane piece, label the voxels that were added but not labelled during step

1.

With Algorithm 2, we use the minimal plane number to compute the neigh-
bourhood relationships, but finally get the same pieces of planes as before. This
method gives most of the time good neighbourhood relationships but needs to
be improved because the order in the plane segmentation has an influence on
the result we get.

The next and last problem of algorithm 1 occurs during the vertices calcula-
tion when one vertex should be the intersection of more than three planes. For
instance, let us consider a vertex that should be the intersection of four planes
p0, p1, p2 and p3. This vertex is computed four times, one for each polygon, and
we denote them α0 = p0 ∩ p1 ∩ p2, α1 = p0 ∩ p1 ∩ p3, α2 = p0 ∩ p2 ∩ p3 and
α3 = p1∩p2∩p3. Figure 7 illustrates this situation. Those four vertices are either
confounded or all different. Thus, either we get one point or four. Moreover, in
the case of four points, they cannot be coplanar.

In the case of four different points, we need to make some changes in order
to get a surface. For instance, if at least one of the αi is outside the discrete
object, then we need to add a patch. An other case is when the four vertices
belong to the same voxel: then we can delete some of those vertices or add some
little triangle faces. Otherwise, the four vertices are inside the object but do not
lie in the same voxel. This case may be very tricky and the most simple way to
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Fig. 7. The multiple vertices problem: four planes and four different vertices. The
polygonal faces computed are drawn with dashed lines.

Fig. 8. Illustration of the different steps for the reconstruction of a polygon.

solve the problem is probably to try to recognize a new piece of digital plane
with the voxels containing the vertices αi.

Figure 8 illustrates the whole process described in this section: on the left, a
digital piece of plane P : the 4-connected border of its projection is represented
by a polygonal line, and the labels of the neighbour voxels are depicted; on the
right, an illustration of the reconstructed polygon from the neighbour planes.

4 Conclusions and Future Work

In this paper we described a framework to find a polygonal curve (resp. surface
in 3D) from a discrete curve (resp. surface in 3D) with an invertible method. In
2D a new algorithm has been developed to vectorize a discrete curve. We first
introduce some remarkable points called discrete cusps and use the Vittone’s
algorithm for line recognition. The addition of patches allows to keep the Eu-
clidean curves inside the discrete curve. Then a post-processing stage removes
patches in order to give a visually correct result. In 3D, a solution has been
presented for convex objects which is for the moment not reversible. We have
also proposed a general algorithm to construct a polygonal surface based on
the Vittone’s algorithm and a face by face neighbourhood calculation. We have
pointed out the main problems encountered to find neighboorhood relationships
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and have proposed some solutions. In a future work improvements have to be
done in order to keep the Euclidean surface inside the object even on identified
particular cases.
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5. Vittone, J.: Caractérisation et reconnaissance de droites et de plans en géométrie
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