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Abstract. In this paper a novel method for indexing views of 3D objects
is presented. The topological properties of the regions of the views of a
set of objects are used to define an index based on the region connection
calculus and oriented matroid theory. Both are formalisms for qualitative
spatial representation and reasoning and are complementary in the sense
that whereas the region connection calculus encodes information about
connectivity of pairs of connected regions of the view, oriented matroids
encode relative position of the disjoint regions of the view and give local
and global topological information about their spatial distribution. This
indexing technique is applied to 3D object hypothesis generation from
single views to reduce candidates in object recognition processes.

1 Introduction

In this paper we present a new method for indexing views of 3D objects which
is applied to 3D object hypothesis generation from single views to reduce can-
didates in 3D object recognition processes.

Given a set of views of different 3D objects, the problem of object recognition
using a single view becomes the problem of finding a subset of the set of regions
in the image with a relational structure identical to that of a member of the
set of views. The standard way to reduce the complexity of shape matching is
subdividing the problem into a hypothesis generation followed by a verification.
To be of interest for object recognition, hypothesis generation should be a rel-
atively fast although imprecise procedure in which several possible candidates
for matching are generated. In this way the verification can be carried out using
a more complex, and therefore, slower procedure [1] over a reduced number of
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Fig. 1. Some of the 8 possible relative positions of two regions and the corresponding
descriptions using the formalism of the region connection calculus. The other two can
be obtained from (d) and (e) interchanging a with b. In situation (a) a is disconnected
from b, in (b) a is externally connected to b, in situation (c¢) a is partially overlapped
to b, in (d) a is tangential proper part of b, in (e) a is non-tangential proper part of b
and, finally, in situation (f) a and b coincide.

candidates. The hypothesis generation can be carried out very efficiently if it is
formulated as an indexing problem where the set of views of the set of 3D objects
are stored into a table that is indexed by some function of the views themselves.

In this paper an indexing technique that combines the region connection
calculus and oriented matroid theory is presented. More precisely, the type of
connectivity between connected regions of the views is described by means of the
formalism of the region connection calculus [2], whereas the topological proper-
ties of the disconnected regions of the views are encoded into a data structure
called set of cocircuits [3]. The set of cocircuits, that are one of the several
combinatorial data structure referred to as oriented matroids, encode incidence
relations and relative position of the elements of the image and give local and
global topological information about their spatial distribution. Reasoning with
the region connection calculus is based on composition tables, while oriented
matroids permit algebraic techniques to be used. These two descriptions merged
are used as an index of the database.

This indexing method is employed to the hypothesis generation for 3D object
recognition from single views that can be regarded as a qualitative counterpart
of the geometric hashing technique [4]. For another approach to shape represen-
tation and indexing based on combinatorial geometry see [5].

The region connection calculus and oriented matroids are introduced in Sec-
tion 2 whereas Section 3 describes the proposed indexing method. In Section 4
some experimental results are reported and Section 5 contains the conclusions.

2 Qualitative Spatial Representation

Qualitative reasoning is based on comparative knowledge rather than on metric
information. Many methods for shape representation and analysis are based
on extracting points and edges which are used to define projectively invariant
descriptors. In this paper, instead of points, regions of the images are taken into
account. The motivation behind this choice is that the regions of an image can
be more reliably extracted than vertices and edges. In the following sections two
formalisms for qualitative representation and reasoning are described: the first
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Fig. 2. Some of the possible positions of a convex region with respect to the convex
hull of a non-convex one.

one is based on the region connection calculus and the second one is derived
from oriented matroid theory.

2.1 Region Connection Calculus

For spatially extended objects we can qualitatively distinguish the interior, the
boundary, and the exterior of the object, without taking into account the con-
crete shape or size of the object.

A set theoretical analysis of the possible relations between objects based on
the above partition is provided by [6]. The relation between objects that they
examine is the intersection between their boundaries and interiors. This setting is
based on the distinction of the values empty and non-empty for the intersection.

Some variants of this theory were developed by Cohn and his coworkers in a
series of papers (see for example [2]). In this work the distinction between interior
and the boundary of an object is abandoned, and eight topological relations
derived from the single binary relation “connected to” are taken into account.
Some of them are represented in Fig. 1. Some of these relations, namely those
of Fig. 1.d and Fig. 1.e, are not symmetrical and, following the notation of [2],
their inverses are denoted TPPi(a,b) and NTTPi(a, b), respectively.

Furthermore in [2] the theory is extended to handle concave objects by dis-
tinguishing the regions inside and outside of the convex hull of the objects. A
convex object can be inside, partially inside or outside the convex hull of a
non-convex one (Fig. 2). If both regions are non-convex 23 relations between
them can be defined. These relations permit qualitative description of rather
complex relations, such as that represented in Fig. 3. Moreover, by means of
this formalism called region connection calculus it is possible, for instance, to
infer the relative position of two regions knowing their position with respect to
a third one. Reasoning with the region connection calculus is essentially based
on composition tables.

2.2 Oriented Matroids

Oriented matroid theory [3], [7], [8] is a broad setting in which the combinato-
rial properties of geometrical configurations can be described and analyzed. It
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Fig. 3. With the formalism of the region connection calculus the relation between these
two disconnected non-convex regions, where a is partially inside the convex hull of b
and vice versa, is denoted by P-INS_P-INSi_DC(a, b).

provides a common generalization of a large number of different mathematical
objects usually treated at the level of usual coordinates. In this section oriented
matroids will be introduced over arrangements of points using two combinato-
rial data structures called chirotope and set of cocircuits, which represent the
main tools to translate geometric problems into this formalism. In the abstrac-
tion process from the concrete configuration of points to the oriented matroid,
metric information is lost but the structural properties of the configuration of
points are represented at a purely combinatorial level.

Oriented Matroids of Arrangements of Points. Given a point configuration

in R?~! whose elements are the columns of the matrix P = (p1,pa,...,pn), the
associated vector configuration is a finite spanning sequence of vectors {z1, w2,
..., o, } in R? represented as columns of the matrix X = (1, @9, ..., 2, ) where

each point p; is represented in homogeneous coordinates as x; = (pl’)
To encode the combinatorial properties of the point configuration we can use
a data structure called chirotope [8], which can be computed by means of the

associated vector configuration X. The chirotope of X is the map

xx :{1,2,...,n} = {+,0, =}
()\1, /\2, .. .,/\d) — Sign([xh, Trgy--- ,JC)\dD

that assigns to each d-tuple of vectors of the finite configuration X a sign +
or — depending on whether it forms a basis of R? having positive or negative
orientation, respectively. This function assigns the value 0 to those d-tuples that
do not constitute a basis of R?. The chirotope describes the incidence structure
between the points of X and the hyperplanes spanned by the same points and,
at the same time, encodes the relative position of the points of the configuration
with respect to the hyperplanes that they span.

Consider the point configuration P represented in Fig. 4 whose associated
vector configuration X is given in Table 1.

Table 1. Vector configuration that corresponds to the planar point configuration rep-
resented in Fig. 4.

z1 = (0,3, 1) [z = (=3,1,1) oz = (-2, -2, 1)T
1= (2,-2, )" 5= (3,1,1)T | x5 = (0,0,1)T
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Fig. 4. A planar point configuration.

Table 2. Chirotope of the planar point configuration represented in Fig. 4.

X(17273) =+ X(17274) =+ X(11275) =+ X(17276) =+ X(17374) =+
X(1,3,5) =+ X(1,3,6) =+ X(1,4, 5) =+ X(1,4, 6) )((1,5,6) = —
X(2,3,4) =4 X(2,3, 5) =4 X(2,3,6) =+ X(2,4, 5) =+ X(2,4,6) =4
X(2,5,6) X(3,4, 5) =+ X(3,4, 6) =+ X(3,576) =+ X(475,6) =+

(0,0, +,+,+,+)[(0,—,0,+,+,+)[(0,—, —,0,+, —)
0,—,—,—,0,-)|(0,—, —,+,+,0)[(+,0,0, 4+, +,+)
(+,0,—,0,+,+)|(+,0,—,—,0, =) |(+,0, —, —, +,0)
(+,+,0,0,+,+) (+,+,0, ,0,+)|(+,4+,0,—,—,0)
(+,+,+,0,0,+)[(—, +,+,0,—,0)|(—, —, +,+,0,0)

The chirotope xx of this vector configuration is given by the orientations
listed in Table 2. The element x(1,2,3) = + indicates that in the triangle formed
by p1, p2, and p3 these points are counterclockwise ordered. These orientations
can be rearranged in an equivalent data structure called set of cocircuits of X
shown in Table 3. In this planar case, the set of cocircuits of X is the set of all
partitions generated by the lines passing through two points of the configuration.
For example, (0,0,+,+,+,+) means that the points ps, ps4, ps, and pg lie on
the half plane determined by the line through the points p; and p;. Reversing
all the signs of the set of cocircuits we obtain an equivalent description of the
planar arrangement of points.

Besides chirotopes and cocircuits there are several data structures capable
of encoding the topological properties of a point configuration. In [8] their def-
initions can be found and it is shown that all of them are equivalent and are
referred to as oriented matroids.

Oriented Matroid of Arrangements of Regions. Consider a segmented
view of a 3D object. Extracting the oriented matroid of a view is not straight-
forward since the regions that form the image cannot be reduced to points, taking
for instance their centroids, without losing essential topological information for
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object recognition. Therefore, the convex hull [9] of each region is employed to
represent the region itself. Then, pairs of the resulting convex polygons are con-
sidered and the oriented matroid is computed based on the spatial location of
the other convex regions of the image with respect to the two lines arising in
merging the convex hulls of pairs disconnected regions.

Consider, for instance, the ordered pair of convex regions (S,T') of Fig. 5.a.
It is easy to see that the convex hull of these two planar convex disconnected
polygonal regions is a polygon whose set of vertices is included in the union of
the set of vertices of S and T'. On the contrary, the set of edges of the convex
hull of S and T is not included in the union of their set of edges. Indeed, two new
“bridging edges,” e; and eq, appear as illustrated in Fig. 5.a. Actually, efficient
algorithms for merging convex hulls are based on finding these two edges [10].

Fig. 5. Steps of encoding of the combinatorial properties of a view of an object into a
chirotope.

Consider the two lines [; and [5 that support e; and e5. These two lines divide
the image into three or four zones depending on the location of their intersection
point with respect to the image. Let Rg 1, Lsr (Fig. 5.b) be, respectively, the
rightmost and leftmost zones with respect to l; and [y and Zg 1 the zone of the
image comprised between them.

Since, Rs,1, Ls,r and Zgr can be univocally determined from the ordered
couple of region (S,T), the location of a region U with respect to the regions
(S,T) of the image is encoded into a chirotope using the following rule

+ iU € Lsr,
X(S, T, U) =<0 ifU GIS’T,
— ifU € RS,T~

It has been implicitly assumed that U is completely contained into either
Rs,r Lsr or Igr but, in general, it belongs to more that one of them. In this
case, since the ratio of areas is an affine invariant, introducing an approximation,
we can choose the sign based on which region contains the largest portion of the
area of U. For instance, if regions U, V' and Z are located as in Fig. 5.c we have
that x(S,T,U) =+, x(S,T,V) =0 and x(S,7,7) = —.

2.3 Invariance of the Representation

Consider a 3D point configuration and one of its views. The combinatorial struc-
ture of the 3D point configuration and that of its 2D perspective projection are
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related in the following way: if xg represents in homogeneous coordinates the
center of the camera, pg, we have that

sign[z;, z, T1] = sign[z;, z;, Tk, T (1)

where z;, ; and xj, are the homogeneous coordinates of the 3D points p;, p;
and py, and Z;, ¥; and Zj, are those of the corresponding points in the view, p;,
p; and pi. Equation (1) can be regarded as a projection equation for chirotopes.

It is easy to see that, whereas the matriz that represents in homogeneous
coordinates the vertices of a projected set of points is coordinate-dependent, an
oriented matroid is a coordinate-free representation. Moreover, the representa-
tion of object views based on oriented matroid is a topological invariant, that
is, an invariant under homeomorphisms. Roughly speaking, this means that the
oriented matroid that represents the arrangement of points of a view of an object
does not change when the points undergo a continuous transformation that does
not change any orientation of the chirotope. Doe to this property this represen-
tation is robust to discretization errors of the image as well as to small changes
of the point of view that does not change any orientation of the chirotope.

Since projective transformations can be regarded as special homeomorphisms,
we can assert that the representation of the projected set of points based on
oriented matroids is projective invariant. However, since affine and Euclidean
transformations are special projective transformations, the oriented matroid of
the projected set of points of a view of an object does not change under ro-
tations, translations, and affine transformations of the planar arrangement of
points themselves.

These considerations can be extended to the case in which oriented matroids
represent arrangements of planar regions. Since the ratio of areas is not invariant
under projective transformations this representation will be invariant only under
affine and Euclidean transformations of the views.

3 Indexing Views of 3D Objects

The process of indexing a database of views of a set of objects starts with some
preliminary choices, namely the features used to characterize the regions of the
segmented views of the set of 3D objects. Suppose that hue and area are used
to characterize each region.

Another parameter to choose is the number of levels in which the hue is
quantized and the number of regions having the same hue that will be taken
into account. These choices, of course, depend on the properties of the views of
the database.

Then, the views are segmented according to these choices and the convex
hull of each region is computed. As a consequence, the resulting images are
compositions of convex polygonal regions that can be disconnected or partially
or completely overlapped. In Fig. 6 are represented two views of two objects in
which a hue quantization with 6 levels W, R, Y, G, B and N has been applied
and only the two biggest regions with the same hue value are taken into account.
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Let (W, R,Y,G, B, N) be the ordered tuple of hue levels considered. For example,
labels G; and G5 in Fig. 6 denote, respectively, the first and the second regions
of the views with the biggest area having the same hue value G.

The type of connection between the existing regions is described using the
formalism of the region connection calculus. For each pair of disconnected regions
the set of cocircuits is computed. This is done for each view of the database and
this information is combined into a unique index table whose entries are spatial
combinations of features and whose records contain a list of the views in which
each combination is present.

Object 1 Object 2

Fig. 6. Two views of two objects whose topological properties are indexed in Table 4.

In Table 4 the index of the topological properties of the two views v;; and
v1,2 of the objects represented in Fig. 6 is reported.

In the first column the relation between ordered couples of regions is described
in terms of the region connection calculus. The symbol “})” for a certain couple
(S, T) indicates that no view contains two regions having features S and T'. This
is the case of the regions R and Y.

When S and T are disconnected, the corresponding cocircuit is present in
the index. The symbol “x” in correspondence with a certain feature indicates
that no region with that feature is present in the views listed in the record. For
example, the cocircuit W R contains a * in the column Y because no region with
the Y feature is present in vy ;.

If (S,T) is a couple of connected regions, the corresponding row of the index
is empty because the cocircuit cannot be computed.

3.1 Hypothesis Generation for Object Recognition

Given a database of views of a set of 3D objects and a view v; of one of them,
not necessarily contained in the database, its set of cocircuits is computed. Each
cocircuit is used to access the table that constitutes the index of the database.

Then the views that best match v; are selected based on the number of
correspondences they have with v; in terms of cocircuits.

It is easy to see that this method for hypothesis generation, that can be
regarded as a qualitative version of the geometric hashing technique [4], is also
robust to partial occlusions of the objects. Indeed, if a region of an image is
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Table 4. Index of the topological properties of the two views v1,1 and v1,2 of the two
objects represented in Fig. 6.

Connection| W| R | Y |G |G2|B1|B2| N |Objects

WR DC 010|000 -1+ V1,1
wy DC O} *]0]0|*|0|0]- V1,2
WG1| NTPP V1,1
WG1 DC 0 * 0 0 k 0 0 0 V1,2
WG, DC |00 0] 0[+[0[0] vis
W B DC 0{0|=*]0|010]0]O0 v1,1
W B1 NTPP V1,2
W Bs DC 0|0 x|+ |+|+|0|+] vin
W B2 NTPPi V1,2
WN DC 0 * - - 0 V1,1

WN DC Ol x|+ [+|*|0]0]0]| vi2

RY 0

RG1 NTPP V1,1
BaN DC —+ *x | - - -101]0 V1,1
BsN DC - x|+ |+ *x|+]0]0 V1,2

occluded, the set of cocircuits can still be computed and therefore, the number
of correspondences with the views of the database can still be calculated. In this
case, obviously, its selectivity decreases.

4 Experimental Results

The method has been fully implemented and experiments with different sets of
3D objects have been carried out to validate it. Sixteen views of each object with
angular separation of 22.5 degrees have been used for the experiments. These
images have been segmented using the segmentation method described in [11].
Then, the index of the learning set of eight views per object taken at the angles
0, 45, 90, 135, 180, 225, 270 and 315 has been created. In the recognition process
the set of cocircuits of each image of the test set composed by the eight views
not used in the learning process that is, the views taken at angles: 22.5, 67.5,
115.5, 157.5, 202.5, 247.5, 292.5 and 337.5 degrees, has been calculated. The
experimental results are encouraging and currently we are refining the method
introducing a distance measure between set of cocircuits.

5 Conclusions

In this paper a new method for indexing a database of views of 3D object has
been presented. It is based on the combination of two qualitative representa-
tions derived from the region connection calculus and oriented matroid theory.
This combination of qualitative representations characterizes the local and global
topology of the regions of an image, is invariant under affine and Euclidean trans-
formation of the views, intrinsically robust to discretization errors of the image
and insensitive to small displacements of the point of view.
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