
Incremental Algorithms Based
on Discrete Green Theorem�

Srečko Brlek, Gilbert Labelle, and Annie Lacasse

Laboratoire de Combinatoire et d’Informatique Mathématique
Université du Québec à Montréal,

CP 8888, Succ. Centre-ville, Montréal (QC) Canada H3C3P8
{brlek,gilbert,lacasse}@lacim.uqam.ca

Abstract. By using the discrete version of Green’s theorem and bivari-
ate difference calculus we provide incremental algorithms to compute
various statistics about polyominoes given, as input, by 4-letter words
describing their contour. These statistics include area, coordinates of the
center of gravity, moment of inertia, higher order moments, size of pro-
jections, hook lengths, number of pixels in common with a given set of
pixels and also q-statistics.
Keywords: Discrete Green Theorem, statistics about polyominoes.

1 Introduction

In this paper, the word polyomino means a finite union of unit lattice closed
squares (pixels) in the plane whose boundary consists of a simple closed polygo-
nal path using 4-connectedness. In particular, our polyominoes are simply con-
nected (contain no holes), and have no multiple points.

The polygonal path γ (contour) of a polyomino can be encoded by an ordered
pair (s, ω) where s is a lattice point belonging to γ and ω is a word over the
4-letter alphabet

A = {r, u, l, d} = {→, ↑,←, ↓},
known as the Freeman chain code [8,9], corresponding to the unit translations,
respectively, in the right, up, left and down direction. The word ω represents
the perimeter of the polyomino described in a counterclockwise manner starting
from point s. For example, the polyomino of Figure 1 is coded by (s, ω) where
s = (0, 0) and ω = rdrdrrruuruulluuldlddlld.

Many basic parameters associated to polyominoes (see Figure 1) can be repre-
sented by surface integrals. For example, the area A(P), center of gravity CG(P)
and moment of inertia I(P), of a polyomino P are defined by the integrals

A(P) =
∫ ∫

P

dx dy, CG(P) = (x̄, ȳ) =
(∫∫

P
x dx dy∫∫

P
dx dy

,

∫∫
P

y dx dy∫∫
P

dx dy

)
,

I(P) =
∫ ∫

P

((x− x̄)2 + (y − ȳ)2) dx dy =
∫ ∫

P

(x2 + y2) dx dy − (x̄2 + ȳ2)A(P).

� With the support of NSERC (Canada).

I. Nyström et al. (Eds.): DGCI 2003, LNCS 2886, pp. 277–287, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

278 Srečko Brlek, Gilbert Labelle, and Annie Lacasse

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
��

�
�
��
�
�
��
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
��
�
�
�
�
�
�
�

�
�
�
�
�
�
�
� Vertical projections = (1,2,5,6,4,2)

Area= 20

Horizontal projections = (3,4,6,4,2,1)

Center of gravity = (3.3, 0.55)

Moment of inertia = 73.4833

Fig. 1. Some parameters for polyominoes.

The classical Green’s Theorem (see below) relates surface integrals to contour
integrals. Since our polyominoes are given by words describing their contours,
it is natural to use Green’s Theorem for the construction of our first general
algorithms. In Section 2, we introduce the notion of incremental algorithm for
polyominoes given by their contour and show how Green’s theorem can be used
to generate families of such algorithms. In Section 3, we drop the continuity
conditions of Green’s Theorem and deal with general additive incremental algo-
rithms for which the output associated to the sum of two polyominoes is the sum
of the outputs associated to each polyomino. The use of Green’s Theorem is not
new in discrete geometry [9]. Our present approach is similar to the one given in
[8, 11, 12] where discrete Green’s Theorem is applied to efficient moment com-
putations. For a general presentation of polyominoes and their properties see [7].
A survey of enumerative results concerning polyominoes can be found in [10](see
also [2, 3, 5]).

2 Green’s Theorem and Incremental Algorithms

The following version of Green’s Theorem will be sufficient to start our analysis.

Theorem 1. [Green] Let P (x, y), Q(x, y) be continuously differentiable func-
tions on an open set containing a simply connected region Ω bounded by simple
piecewise continuously differentiable positively oriented curve Γ . Then∫ ∫

Ω

(
∂Q

∂x
− ∂P

∂y
) dx dy =

∫
Γ

P (x, y) dx + Q(x, y) dy.

Since the above parameters about polyominoes involve integrals of the form∫ ∫
P

f(x, y) dx dy,

our next step is to choose P (x, y) and Q(x, y), in Green’s Theorem, such that
(∂Q

∂x − ∂P
∂y) = f. There are many ways to do this, and we list three important

ones in the following Lemma.

Lemma 1 Let P be a polyomino with contour γ, and let f = f(x, y) be contin-
uous. Then we have,∫ ∫

P

f(x, y) dx dy
(1)
=

∫
γ

f1(x, y) dy
(2)
= −

∫
γ

f2(x, y) dx
(3)
=

∫
γ

F (x, y)(xdy− ydx),

Incremental Algorithms Based on Discrete Green Theorem 279

where

f1(x, y) =
∫ x

f(u, y) du, f2(x, y) =
∫ y

f(x, v) dv, F (x, y) =
∫ 1

0
f(sx, sy)s ds.

The notation
∫

γ
stands for contour integration on γ while

∫ t means the indefinite
integration.

Proof. For (1), take P = 0, Q = f1 in Green’s Theorem. For (2), take P = −f2,
Q = 0. Formula (3) is more delicate and can be established as follows. Take,
in Green’s Theorem, P (x, y) = −yF (x, y) and Q(x, y) = xF (x, y). Using some
analytical manipulations it can be shown that

(
∂Q

∂x
− ∂P

∂y
) = 2F + x

∂F

∂x
+ y

∂F

∂y
= f.

��

Incremental Algorithms. The evaluation of each line integral in Lemma 1
can be broken into simpler integrals over successive unit (horizontal or vertical)
line segments forming γ:

∫
γ

α =
n−1∑
i=0

∫
[vi,vi+1]

α,

where vi = (xi, yi), i = 0, . . . , n − 1, denotes the successive vertices of the
polyomino P , vn = v0, vi+1 = vi + ∆vi = (xi + ∆xi, yi + ∆yi).

Since our polyominoes are coded by (s, ω) where s ∈ Z × Z is the starting
point and ω is a word over the alphabet A = {r, u, l, d}, the above discussion
gives rise to incremental algorithms in the following sense: Starting from the
source point s, the contour γ of the polyomino is described by reading ω letter
by letter. At each step, the action made depends only on the current position on
the boundary and on the letter read. More precisely, consider four vectors

r = (1, 0), u = (0, 1), l = (−1, 0), d = (0,−1)

and take four functions (one for each letter in A)

Φr(x, y), Φu(x, y), Φl(x, y), Φd(x, y).

Then cumulate sequentially the partial sums on ω = ω1ω2 . . . ωn as follows:

v := (x0, y0); S := 0;
for i = 1 to n do S := S + Φωi(v); v := v + ωi od;
return S.

We will use the following suggestive notation to represent the output of our
incremental algorithm:

∑
→

Φr(xi, yi) +
∑
↑

Φu(xi, yi) +
∑
←

Φl(xi, yi) +
∑
↓

Φd(xi, yi).

280 Srečko Brlek, Gilbert Labelle, and Annie Lacasse

The integral formulas in Lemma 1 yield the corresponding incremental al-
gorithms called respectively V-algorithm, H-algorithm and VH-algorithm, where
the letters V and H stand for the words vertical and horizontal: in a V-algorithm
(resp. H-algorithm) only vertical (resp. horizontal) sides of the polyomino are
used; in VH-algorithms both vertical and horizontal sides are used.

Proposition 1 (Incremental Algorithms of Green’s Type). Let P be a poly-
omino encoded by (s, ω). Then,
∫ ∫

P

f(x, y) dx dy =
∑
→

Φr(xi, yi)+
∑
↑

Φu(xi, yi)+
∑
←

Φl(xi, yi)+
∑
↓

Φd(xi, yi),

where the functions Φr, Φu, Φl, Φd are taken from any of the following three
sets of possibilities

V: Φr = 0, Φu =
∫ 1
0 f1(x, y + t) dt, Φl = 0, Φd = − ∫ 1

0 f1(x, y − t) dt.

H: Φr = − ∫ 1
0 f2(x + t, y)dt, Φu = 0, Φl =

∫ 1
0 f2(x− t, y)dt, Φd = 0.

VH: Φr = −y
∫ 1
0 F (x + t, y)dt, Φu = x

∫ 1
0 F (x, y + t)dt,

Φl = y
∫ 1
0 F (x− t, y)dt, Φd = −x

∫ 1
0 F (x, y − t)dt.

where f1(x, y), f2(x, y) and F (x, y) are defined by Lemma 1.

Elementary instances of these algorithms are given in the following tables for
the area (Table 1) where f(x, y) = 1, center of gravity (Table 2), where f(x, y) =
x and f(x, y) = y; and moment of inertia (Table 3), where f(x, y) = x2 + y2.

Table 1. Area.

Algorithm Φr Φu Φl Φd

V-algo 0 x 0 −x

H-algo −y 0 y 0
VH-algo −y/2 x/2 y/2 −x/2

For instance, using the polyomino ω = rrururullulddldd, we obtain:
VH-algorithm for the area:

∑
→−yi/2 +

∑
↑ xi/2 +

∑
← yi/2 +

∑
↓−xi/2,

∫ ∫
P

1 dx dy = −y0/2− y1/2 + x2/2− y3/2 + x4/2− y5/2 + x6/2 + y7/2 + y8/2

+ x9/2 + y10/2− x11/2− x12/2 + y13/2− x14/2− x15/2
= 1− 1/2 + 3/2− 1 + 2 + 3/2 + 3/2 + 1 + 2− 1/2− 1/2 + 1=9.

V-algorithm for x̄ of the center of gravity:
∑
→ 0+

∑
↑ x2

i /2+
∑
← 0+

∑
↓−x2

i /2.∫∫
P

x dx dy = x2
2/2+x2

4/2+x2
6/2+x2

9/2−x2
11/2−x2

12/2−x2
14/2−x2

15/2 = 31/2.

V-algorithm for the integral involved in the moment of inertia:∫∫
P

(x2 +y2) dx dy =
∑
↑

xi

3 +xiyi +
x3

i

3 +xiy
2
i +

∑
↓−xi

3 +xiyi− x3
i

3 −xiy
2
i = 92.

Incremental Algorithms Based on Discrete Green Theorem 281

Table 2. Center of gravity.

Algorithm Φr Φu Φl Φd

V-algo (num x̄) 0 x2/2 0 −x2/2
V-algo (num ȳ) 0 x/2 + xy 0 x/2 − xy

H-algo (num x̄) −y/2 − xy 0 −y/2 + xy 0
H-algo (num ȳ) −y2/2 0 y2/2 0
VH-algo (num x̄) −xy/3 − y/6 x2/3 xy/3 − y/6 −x2/3
VH-algo (num ȳ) −y2/3 xy/3 + x/6 y2/3 −xy/3 + x/6

Table 3. Moment of inertia.

V-algo Φr = 0 Φu = x/3 + xy + x3/3 + xy2

Φl = 0 Φd = −x/3 + xy − x3/3 − xy2

H-algo Φr = −y/3 − xy − x2y − y3/3 Φu = 0
Φl = y/3 − xy + x2y + y3/3 Φd = 0

VH-algo Φr = −y/12 − xy/4 − x2y/4 − y3/4 Φu = x/12 + xy/4 + x3/4 + xy2/4
Φl = y/12 − xy/4 + x2y/4 + y3/4 Φd = −x/12 + xy/4 − x3/4 − xy2/4

The next example computes the probabilty that a random point (x, y) ∈
R×R, under a normal bivariate probability distribution, f(x, y) = 1

π exp(−x2−
y2), falls in a given polyomino P . In this case the VH-algorithm is complicated
and only the V and H-algorithms are given (see Table 4). Discrete probability
distributions (such as uniform distributions over rectangles) will be considered
in the next section.

Due to its formulation, the VH-algorithm is in general more complicated
than the corresponding V and H-algorithms. There is, however, an important
class of functions for which the VH-algorithm is generally preferable: the class
of homogeneous functions f(x, y). That is those functions satisfying a functional
equation of the form f(sx, sy) = skf(x, y) for a constant k, called the degree of
homogeneity. The corresponding VH-algorithm is described in Corollary 1.

Corollary 1 Let f(x, y) be a continuous homogeneous function of degree k > −2
and let Φr, Φu, Φl, Φd be defined by

Φr(x, y) =
−y

k + 2
(f1(x+1, y)−f1(x, y)), Φu(x, y) =

x

k + 2
(f2(x, y+1)−f2(x, y)),

Φl(x, y) =
−y

k + 2
(f1(x−1, y)−f1(x, y)), Φd(x, y) =

x

k + 2
(f2(x, y−1)−f2(x, y)),

where f1(x, y) and f2(x, y) are defined in Lemma 1. Then the corresponding
additive incremental VH-algorithm computes

∫∫
P

f(x, y) dx dy, for P.

Here is a typical illustration of Corollary 1 for which the VH-algorithm is
simpler than the corresponding V or H-algorithms. The computation of the av-
erage euclidean distance from a given point (a, b) ∈ Z× Z to a random point in
a polyomino P is given by the formula

282 Srečko Brlek, Gilbert Labelle, and Annie Lacasse

Table 4. f(x, y) = 1
π
exp(−x2 − y2), erf(x) = 2√

π

∫ x

0 exp(−t2) dt.

V-algo Φr = 0, Φu = 1
4erf(x)(erf(y + 1) − erf(y)),

Φl = 0, Φd = 1
4erf(x)(erf(y − 1) − erf(y)),

H-algo Φr = − 1
4erf(y)(erf(x + 1) − erf(x)), Φu = 0,

Φl = − 1
4erf(y)(erf(x − 1) − erf(x)), Φd = 0.

∫∫
P

√
(x− a)2 + (y − b)2 dx dy

A(P)
.

This is reducible to the computation of the integral
∫∫

P
f(x, y) dx dy by simply

replacing the starting point s = (x0, y0) by s − (a, b) = (x0 − a, y0 − b). This
corresponds to the choice f(x, y) =

√
x2 + y2 and k = 1 in Corollary 1. In this

case, the functions f1(x, y) and f2(x, y) are given by the formulas

f1(x, y) =
1
2
x
√

x2 + y2 +
1
2
y2 ln(x +

√
x2 + y2),

f2(x, y) =
1
2
y
√

x2 + y2 +
1
2
x2 ln(y +

√
x2 + y2).

3 Additive Incremental Algorithms

In the above examples, the function f = f(x, y) was assumed to be continuous.
We can often drop this condition on f and still use Proposition 1 as a guideline to
devise corresponding algorithms. For example, algorithms for the computation
of horizontal and vertical projections of a polyomino can be found in this way:
take an integer α and define f(x, y) = χ(α ≤ x < α + 1), where χ denotes the
characteristic function (which takes the value 1 if the inequations are satisfied,
and 0 otherwise). Then, obviously,

∫∫
P

f(x, y) dx dy is the α-vertical projection
of the polyomino P :∫ ∫

P

f(x, y) dx dy = #{β ∈ Z | pixα,β ⊆ P} = vα(P),

where pixα,β denotes the unit pixel of the plane having the point (α, β) ∈ Z×Z

as its lowest left corner:

pixα,β = {(x, y) ∈ R× R | α ≤ x < α + 1, β ≤ y < β + 1}.
In this case, using Proposition 1, we find that

f1(x, y) =
∫ x

χ(α ≤ u < α + 1) du =




0 if x < α;
x− α if α ≤ x < α + 1;
1 if α + 1 ≤ x.

This gives the following V-algorithm for the vertical projection vα(P):

Φr = 0, Φu = X (x ≥ α + 1), Φl = 0, Φd = −X (x ≥ α + 1).

Incremental Algorithms Based on Discrete Green Theorem 283

Similarly, taking f(x, y) = χ(β ≤ y < β + 1), the β-horizontal projection of the
polyomino P defined by

#{α ∈ Z | pixα,β ⊆ P} = hβ(P),

can be computed by the H-Algorithm for the horizontal projection hβ(P):

Φr = −X (y ≥ β + 1), Φu = 0, Φl = X (y ≥ β + 1), Φd = 0.

These algorithms for the projections are special instances of the general notion
of additive incremental algorithm defined as follows.

Definition 1 An incremental algorithm Φr(x, y), Φu(x, y), Φl(x, y), Φd(x, y),
is called additive if, whenever P is the union of two polyominoes P1, P2 with
disjoint interiors, we have

output(P) = output(P1 ∪ P2) = output(P1) + output(P2).

An example of a non additive incremental algorithm is given by Φr = Φu =
Φl = Φd = 1 which simply computes the perimeter of a polyomino.

Proposition 2 An incremental algorithm Φr(x, y), Φu(x, y), Φl(x, y), Φd(x, y),
is additive if and only if

Φl(x, y) = −Φr(x− 1, y) and Φd(x, y) = −Φu(x, y − 1).

Moreover the output of an additive incremental algorithm on P is given by

output(P) =
∑

pixα,β⊆P

∆xΦu(α, β)−∆yΦr(α, β), (1)

where ∆xΦ(x, y) = Φ(x + 1, y)− Φ(x, y) and ∆yΦ(x, y) = Φ(x, y + 1)− Φ(x, y).

Proof. (Sketch) The main idea is to reduce the analysis to the case where the
polyomino is a (horizontal or vertical) domino, where the sum cancels over the
common edge. ��

Proposition 2 can be used, for example, to prove rigourously that a given additive
incremental algorithm actually works. For example, the reader can check, using
it, that the above algorithms for the projection vα(P) and hβ(P) are valid. The
validity of the boolean valued additive incremental algorithms below can also
be checked using Proposition 2. Another use of this proposition is to create new
algorithms starting first from an arbitrary choice of functions Φr(x, y), Φu(x, y);
then by defining the associated functions Φl(x, y), Φd(x, y); and, finally, by com-
puting the corresponding output.

284 Srečko Brlek, Gilbert Labelle, and Annie Lacasse

��
��
��
��
��
��
��
��

(b) (a)

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��
�
�
�
�
�
�
�
�

��
��
��
��

��
��
��
��
�
�
�
�

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
���

��
��
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
��
�
�
��
�
�
�

Fig. 2. (a) Pixel pix1,3 in the polyomino (b) pixel pix4,3 not in the polyomino.

Deciding if a Polyomino Contains a Given Pixel. Let (α, β) ∈ Z×Z and
consider the boolean-valued function Wα,β(x, y) = χ(x = α)χ(y = β). Since

∑
pixx,y⊆P

Wα,β(x, y) = χ(pixα,β ⊆ P) =
{

1 if pixα,β ⊆ P ,
0 otherwise,

then, the following additive incremental algorithms can be used to decide
whether the pixel determined by (α, β) belongs or not to a polyomino P .

V-algorithm: Φr = 0, Φu = χ(x ≥ α + 1)χ(y = β),
Φl = 0, Φd = −χ(x ≥ α + 1)χ(y = β + 1).

H-algorithm: Φr = −χ(x = α)χ(y ≥ β + 1), Φu = 0,
Φl = χ(x = α + 1)χ(y ≥ β + 1), Φd = 0.

For example, the V-algorithm applied to Figure 2(a) with (α, β) = (1, 3)
and to Figure 2(b) with (α, β) = (4, 3) gives respectively (only non-zero terms
listed):

χ(pix1,3 ⊆ P) = χ(x11 ≥ 2)χ(y11 = 3)− χ(x16 ≥ 2)χ(y16 = 4)
+ χ(x22 ≥ 3)χ(y22 = 3)

= 1− 1 + 1 = 1 (since pix1,3 ⊆ P);
χ(pix4,3 ⊆ P) = χ(x11 ≥ 2)χ(y11 = 3)− χ(x16 ≥ 2)χ(y16 = 4)

= 1− 1 = 0 (since pix4,3 �⊆ P).

Of course there is an uncountable family of algorithms Φα,β
r , Φα,β

u , Φα,β
l , Φα,β

d

from which one can compute χ(pixα,β ⊆ P).

Pixels in Common between a Polyomino and a Given Set. Let S be a
set of pixels and let Φp,q

r , Φp,q
u , Φp,q

l , Φp,q
d be an algorithm for the computation of

χ(pixp,q ⊆ P), (p, q) ∈ Z× Z.

Then, to decide if a polyomino P intersects S, one must compute χ(S ∩P �= ∅).
This can obviously be done by taking ΦS

r , ΦS
u , ΦS

l , ΦS
d , where

ΦS
r (x, y) = sup

pixp,q⊆S
Φp,q

r (x, y), ΦS
u(x, y) = sup

pixp,q⊆S
Φp,q

u (x, y),

ΦS
l (x, y) = sup

pixp,q⊆S
Φp,q

l (x, y), ΦS
d (x, y) = sup

pixp,q⊆S
Φp,q

d (x, y).

Incremental Algorithms Based on Discrete Green Theorem 285

To compute the number #(S∩P) of pixels in common between S and P , simply
replace in the last algorithm the sup symbols by summation symbols

∑
.

Computation of Hook-Lengths. Consider the north-east corner in the R×R

plane associated to a given lattice point (α, β) ∈ Z× Z

NEα,β = {(x, y) ∈ R× R | α ≤ x, β ≤ y} = [α,∞)× [β,∞).

Then the reader can check that the following algorithms can be used to compute,
for a polyomino P , the number of pixels in P ∩NEα,β , i.e., the number of pixels
of P which are to the north-east of (α, β) (see Figure 3):

V-algorithm: Φr = 0, Φu = (x− α)χ(x ≥ α + 1)χ(y ≥ β),
Φl = 0, Φd = −(x− α)χ(x ≥ α + 1)χ(y ≥ β + 1).

H-algorithm: Φr = −(y − β)χ(x ≥ α)χ(y ≥ β + 1), Φu = 0,
Φl = (y − β)χ(x ≥ α + 1)χ(y ≥ β + 1), Φd = 0.

��
��
��
��

�
�
�
��
�
�
��
�
�

�
�
�
�
�
�

�
�
�

�
�
�
�
�
�
�
�
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��������������

Fig. 3. There are 21 pixels in P to the north-east of (α, β), and 11 pixels in the Hookα,β .

Let (α, β) ∈ Z × Z and P be a polyomino. The hook-length of (α, β) ∈ P
is hookα,β(P) = #(P ∩ Hookα,β) where Hookα,β = NEα,β \ NEα+1,β+1. In
other words, it is the number of pixels of P belonging to the L-shaped Hookα,β

determined by (α, β) (see Figure 3).
Replacing (α, β) by (α + 1, β + 1) in the above algorithms and substracting

gives corresponding algorithms for the computation of hook-lengths.

Computation of Higher Order Moments. Our approach for the computa-
tion of higher order moments is equivalent to the one given by Yang and Albreg-
sten in [11, 12] and differ because we use Stirling instead of Bernoulli numbers.
For sake of completeness, we provide it in our framework. Consider two integers
m, n ≥ 0 and a point (a, b) ∈ Z × Z. By definition, the (m, n)-moment of a
polyomino P relative to the point (a, b) is given by the following integrals

∫ ∫
P

(x− a)m(y − b)n dx dy =
∫ ∫

P

xmyn dx dy,

286 Srečko Brlek, Gilbert Labelle, and Annie Lacasse

where the second is obtained by a simple translation. In this case,

W (x, y) =
∫ ∫

P

xmyn dx dy =
(x + 1)m+1 − (x)m+1

m + 1
.
(y + 1)n+1 − (y)n+1

n + 1

=
1

(m + 1)(n + 1)
∆xxm+1∆yyn+1.

Now, it is well-known (see [4]) that tk =
∑k

v=0 Sk
v t(v), where Sk

v denotes the
Stirling numbers of the second kind and t(v) = t(t − 1) . . . (t − v + 1). Since
∆tt

(v) = vt(v−1), it is easily seen that,

W (x, y) =
∑

0≤i≤m,0≤j≤n

wi,jx
(i)y(j), wi,j =

(i + 1)(j + 1)
(m + 1)(n + 1)

Sm+1
i+1 Sn+1

j+1 .

To find solutions (U, V) = (Φu, Φr) of the difference equation (1), let

U(x, y) =
∑

ui,jx
(i)y(j), V (x, y) =

∑
vi,jx

(i)y(j).

Then,
∆xU −∆xV =

∑
((i + 1)ui+1,j − (j + 1)vi,j+1)x(i)y(j),

and the problem is reduced to solve the linear system

(i + 1)ui+1,j − (j + 1)vi,j+1 = wi,j , i, j ≥ 0.

Of course, many choices are possible for the ui,j ’s, vi,j ’s and the same kind of
approach can be used for other wi,j ’s.

4 Conclusion

The Discrete Green Theorem provides a general framework allowing the discov-
ery and development of new algorithms for the computation of many statistics
on polyominoes. Let us also mention, the simultaneous computation of vertical
projections of a polyomino P : setting Φr(x, y) = 0, Φu(x, y) = qx, where q is a
formal variable, the coefficients of

∑
α∈Z

vα(P)qα = − output(P)
1−q are the vertical

projections (horizontal or oblique projections are obtained in a similar way).
This might be of some help for the study of families of polyominoes defined by
their projections (see [1, 6]). Computations on integer partitions are obtained
along the same lines since partitions are special cases of polyominoes which are
encoded by words of the type ω = riθdj , where θ is a word on {u, l} containing
i times the letter l and j times the letter u.

Note also that their complexity is (time and space) linear in the boundary size
of a polyomino: indeed the Freeman chain code of a polyomino is its perimeter,
whose size determines the number of iterations in the incremental algorithms.
The careful reader has certainly noticed that the algorithms carried out can be
straightforwardly adapted to more general objects: for a polyomino with holes

Incremental Algorithms Based on Discrete Green Theorem 287

it suffices to substract the holes; needless to say that it also extends to objects
coded by a closed curve. The lack of space permits to show only a small part of
the results of this method. For the detailed proofs, discussion, as well as other
features not presented here, the reader is referred to the research report [3] that
can be obtained from the authors on special request.

Acknowledgements

The authors wish to thank the anonymous referees for the valuable comments
that improved greatly the paper readability.

References

1. Barcucci, E., Del Lungo, A., Nivat, M., Pinzani, R.: Reconstructing convex poly-
ominoes from their vertical and horizontal projections, Theoret. Comput. Sci., 155
(1996) 321–347

2. Bousquet-Mélou, M.: New enumerative results on two-dimensional directed ani-
mals, Discrete Math. 180 (1-3) (1998) 73–106

3. Brlek, S., Labelle, G., Lacasse, A.: Incremental Algorithms for Polyominoes Coded
by their Contour, Research Report, Lacim (Un. Quebec à Montréal) (2003)

4. Clarke, A. L.: Isometrical polyominoes. J. Recreational Math. 13 (1980) 18–25
5. Comtet, L.: Advanced Combinatorics. Reidel (1974)
6. Delest, M. P., Gouyou-Beauchamps, D., Vauquelin, B.: Enumeration of parallelo-

gram polyominoes with given bound and site perimeter, Graphs Comb. 3 (1987)
325–339

7. Del Lungo, A.: Polyominoes defined by two vectors. Theoret. Comput. Sci. 127
(1) (1994) 187–198

8. Freeman, H.: On the Encoding of Arbitrary Geometric Configurations, IRE Trans.
Electronic Computer 10 (1961) 260–268

9. Freeman, H.: Boundary encoding and processing, in Picture Processing and Psy-
chopictorics, B.S. Lipkin and A. Rosenfeld, Editors. Academic Press: New York.
(1970) 241-266.

10. Golomb, S. W.: Polyominoes: Puzzles, Patterns, Problems, and Packings. Princeton
University Press (1996)

11. Philips, W.: A new fast algorithm for moment computation: Pattern Recognition.
26(11), (1993) 1619–1621

12. Tang, G.Y., Lien, B.: Region Filling With The Use Of The Discrete Green Theo-
rem. Proc. CVGIP(42) (1988) 297–305

13. Viennot, X. G.: A survey of polyomino enumeration, Proc. Séries formelles et com-
binatoire algébrique, Montréal, Juin 1992. Publications de LACIM 11, Université
du Québec à Montréal (1996)

14. Yang, L., Albregtsen, F.: Fast computation of invariant geometric moments. A new
method giving correct results. In Proceeding of the International Conference on
Pattern Recognition (ICPR’94) (1994) A:201–204

15. Yang, L., Albregtsen, F.: Fast and exact computation of Cartesian geometric mo-
ments using discrete Green’s theorem. Pattern Recognition. bf 29 No. 7 (1996)
1061–1073

	1 Introduction
	2 Green's Theorem and Incremental Algorithms
	3 Additive Incremental Algorithms
	4 Conclusion
	References

