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Abstract. We use a mathematical morphology approach to compute
the surface and curve skeletons of a 3D object. We focus on the behaviour
of the surface skeleton, in particular the reversibility for the case when the
skeleton is, and is not anchored to the set of centres of maximal balls. We
elaborate on the difficulties to obtain a reversible surface skeleton that
does not depend on the orientation of the original object with respect to
the grid, and that has no jagged borders.
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1 Introduction

For efficient shape analysis of the foreground set in an image, various shape
representation schemes have been developed, among which skeletonization is
commonly used. Skeletonization is a way to reduce the intrinsic dimension of the
foreground objects, i.e., a surface in 2D is reduced to a curve (the 2D skeleton),
or a volume in 3D is reduced to a curved surface (the 3D surface skeleton)
that might be further reduced to a space curve (the 3D curve skeleton). In
this paper we focus on the behaviour of the surface skeleton. To function as an
efficient representation scheme, the skeleton of the object should fulfil a number
of properties: The skeleton should be a thin subset of the object. To reflect
the main structure of the object, the reduction process should not alter the
topology. The reduced set should be centred within the original object. The
result should be identical under rotation of the original. Finally, the process
should be reversible, meaning that the object can be recovered from the skeleton.
This property is useful if shape analysis related to changes in thickness of the
object is performed. Various approaches to compute the surface skeleton of the
foreground set in a 3D image can be found in literature, [1,2,3,4,5,6]. The interest
of this paper deals with the latter two, [5,6]. In [5], an algorithm based on
conditional erosion of the foreground set was presented. The conditions take care
of the preservation of the topology and contain subsets that preserve surfaces,

I. Nyström et al. (Eds.): DGCI 2003, LNCS 2886, pp. 317–326, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



318 Stina Svensson and Pieter P. Jonker

surface ends, curves, curve ends and single points. When iteratively eroding
the foreground, they take care that surfaces, curves and single points are not
eroded. The resulting skeleton is thin and is centred within the respective object,
however, it is not fully reversible. In [6], a distance transform based algorithm to
compute reversible surface skeletons was presented. The algorithm is based on
topology preserving iterative thinning guided by the distance transform of the
foreground set. During this process, voxels needed for reversibility are preserved
in combination with voxels needed for surface preservation. The resulting surface
skeletons are reversible and centred within the respective objects with respect
to the distance function used. However, the surface preservation condition is
not enough to avoid a certain jaggedness in the border of the resulting surface
skeleton. As far as we know there is to date no reversible surface skeletonization
algorithm without this drawback.

In this paper, we study the possibility of constructing an algorithm to com-
pute reversible surface skeletons without this drawback. We show results from
an algorithm based on the D26 distance, i.e., the 3D equivalence of chess board
distance, based on the combination of the algorithms in [5,6]. Moreover, we
show to what extent the surface skeletons computed by the algorithm in [5] are
reversible and conclude with some remarks on the difficulties in computing re-
versible surface skeletons that are orientation independent and have no jagged
surface borders. See figures 5..8.

2 Notions

Consider a 3D image consisting of foreground X and its complement Xc, the
background. In a 3 × 3 × 3 set of voxels centred on a voxel v, there are three
types of neighbours to v: 6 face neighbours (on Euclidean distance 1 voxel from
v), 12 edge neighbours (

√
2 from v), and 8 vertex neighbours (

√
3 from v). The

different neighbours give three types of neighbourhoods, which will be denoted
N6, N18, and N26. A set A ∈ X is n-connected, n ∈ {6, 18, 26}, if each pair of
voxels v1, vm ∈ A can be joined by a path 〈v1, v2 . . . , vm−i, vm〉 such that each
successive pair 〈vi, vi+1〉 are n-connected to each other, i.e., vi ∈ Nn(vi+1). Most
often, the highest connectivity is used for the foreground set and the lowest for
the background. We adopt this.

Each voxel in an image can be labelled with a distance, according to the
chosen distance function, to its closest voxel in the background. The result can
be stored in a distance image or distance transform (DT). The DT can be com-
puted in two scans of the images using local distance information only. For more
information on how to use and compute DTs, we refer to [7,8,9,10]. We will use a
distance function where the distance between two voxels, v and w, is dependent
on the number of steps in the face (A), edge (B), and vertex (C) directions in a
minimal path between v and w. The distance is given by d(v, w) = max(A, B, C),
i.e., the distance equals the number of steps in a minimal 26-connected path be-
tween v and w. We refer to this distance as D26 and to the corresponding distance
transform as the D26 DT. The D26 DT has the drawback of being unstable un-
der rotation, i.e., it is not a good approximation of the Euclidean DT, [11,12], on
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the other hand, the Euclidean DT has the disadvantage in being more difficult
to use [13,10]. The label of a voxel v in a DT can be interpreted as the radius of
a ball centred on v which is fully enclosed in the foreground (the DTball). The
foreground can be efficiently represented by a subset of its voxels considering the
fact that some of the DTballs are completely covered by other DTballs. A DTball
that is not completely covered by another DTball is called a maximal ball and
the voxel it is centred on a centre of maximal ball (CMB). The foreground can
be recovered from its CMBs by taking the union of the corresponding DTballs.
This process can be efficiently implemented using the reverse distance transfor-
mation [14]. The CMBs can be detected on the DT by simple label comparison
based on the fact that distance information is not propagated by any CMB to
its neighbours. In fact, v, in a D26 DT, is a centre of a maximal ball if it has
no neighbour with larger distance label. Detecting CMBs on the Euclidean DT
is not equally trivial [13]. As far as we know there is to date no publication on
the detection of centres of maximal Euclidean balls (for 3D images). A basic
morphological operation is the hit-or-miss transformation, e.g., [15]. This can
be described as a point-by-point transformation of a set X with the structuring
element S consisting of two sets S1 and S2 and is performed in such a way that
x ∈ X belongs to the transformation Y if and only if S1

x, i.e., S1 centred on x,
is included in X and S2

x, i.e., S2 centred on x, in Xc.

Y ← X ⊗ S ≡ {
x|S1

x ⊂ X, S2
x ⊂ Xc

}

An image is a set of elements (pixels, voxels,. . . ) with underlying vector-
space, with vectors k, that represent the positions of the voxels within the image.
In an image, we have the foreground set of elements (value 1) and the background
set of elements (value 0). The foreground set is constituted by all objects in the
image. For a structuring element S, we can associate with the set S1 foreground
elements and with the set S2 background elements. These are all do care ele-
ments. To use a structuring element of a fixed size and shape, e.g., to operate
upon 3n neighbourhoods Mk, centred around element xk in an nD image X, we
adopt the notion of don’t care elements. The transformation Y ← X ⊗ S can be
implemented with the neighbourhood transformation {∀k : yk ←Mk

∼= S}. The
structuring element S can be used to perform operations like the erosion. The
erosion operation on an image X by a structuring element S, εS(X), is equal to
all voxels x ∈ X such that Sx ∈ X, εS(X) = {x|Sx ⊆ X}. The structuring ele-
ment S can also be used to put constraints upon the erosion, such as in topology
preserving erosion (denoted topological erosion) in which only simple elements
are eroded. A voxel v belonging to the foreground of image X is called simple if
X is homotopic to X\ {v}. Topological erosion is used, e.g., in skeletonization.

3 Shape Primitives

A voxel and its 3 × 3 × 3 neighbourhood comes in four states. It can be part
of a single voxel object, it can be a part of a space curve, it can be a part
of a curved surface, or it can be part of a volume. As such it can be assigned
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Fig. 1. Structuring elements for conditions for Ñ = 0 and Ñ = 3, respectively. Fore-
ground voxels are shown in light grey and background voxels are transparent.

Fig. 2. Curve primitives. Foreground voxels are shown in light grey and background
voxels in dark grey.

an object dimension or intrinsic dimension Ñ with Ñ = 0..3, respectively. For
topological erosion to obtain a surface skeleton, only a volume voxel can be
changed from foreground to background if it is on the object boundary, i.e., it
has a face neighbour to the background. Changing a foreground surface voxel
to background would cause (locally) the creation of a tunnel [16], or, expressed
differently, a foreground surface is “pierced” by a background curve. Changing a
foreground curve voxel to background would cause (locally) the breaking of one
foreground component into two foreground components, or, expressed differently,
a foreground curve is “sliced” into two curve parts by a background surface.
Changing an isolated foreground voxel to background would cause removal of
that foreground component. For Ñ = 0 and Ñ = 3, topological erosion can
be obtained using the structuring elements in Fig. 1 as conditions. To deal with
Ñ = 1 and Ñ = 2, we use the concept of shape primitives. A detailed description
can be found in [5]. Shape primitives for curves, i.e., Ñ = 1, are given by the
voxel v and two of its neighbours u and w. These two neighbours should be
disconnected. Considering that 26-connectedness is used for the foreground and
6-connectedness for the background, we have for a foreground curve primitive
that u, w ∈ N26(v) and u /∈ N26(w) and for a background curve primitive that
u, w ∈ N6(v) and u /∈ N6(w). Curve primitives are shown in Fig. 2 (rotated and
mirrored primitives are not shown). Shape primitives for a surface, i.e., Ñ = 2,
can be generated by encircling the voxel v by a simply connected curve, i.e., each
curve voxel has exactly two neighbours in the curve. For a foreground surface
primitive, the curve is a set of n voxels ui, where n ≥ 4 and ui ∈ N26(ui+1). This,
together with ui 
= v, necessarily gives ui ∈ N18(v), which effectively expresses
that surfaces are locally 18-connected. For a background surface primitive, the
curve is a set of at least n voxels ui, where n ≥ 6 and ui ∈ N6(ui+1). This,
together with ui 
= v, necessarily gives ui ∈ N18(v). Surface primitives are
shown in Fig. 3 (rotated and mirrored primitives are not shown).

4 Surface Skeletonization

The shape primitives described in the previous section can be used to find the
structuring elements (or, simply, masks) for the conditional erosion to be used
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Fig. 3. Surface primitives. Foreground voxels are shown in light grey and background
voxels in dark grey.

during skeletonization. To generate the needed masks, curve and surface prim-
itives are suitably intersected. In fact, all possible combinations of intersection
of foreground surface primitives and background curve primitives as well as
all possible intersections of foreground curve primitives and background surface
primitives should be investigated. The masks that will actually be used are those
for which a foreground surface is prevented from being penetrated by a back-
ground curve (thus, avoiding the creation of a tunnel) and those for which a
foreground curve is prevented from being sliced by a background surface (thus,
avoiding breaking a foreground component into two components). The masks
can be viewed in Fig. 4. For their details, see [5].

Fig. 4. Mask set for topological erosion with respect to surfaces, left, and curves, right.
Foreground voxels are shown in light grey, background voxels in dark grey, and don’t
care voxels transparent.

Using iterated conditional erosion on the foreground (with the generated
masks) is not enough to guarantee a topology preserving removal of voxels. For
example, two-voxel thick parts of the foreground can not be properly detected
using a 3 × 3 × 3 neighbourhood. This can be solved based on the use of sub-
iterations, where the foreground is eroded from one direction only in each sub-
iteration; or a subfield sequential method, where the image is examined in a
directional and sequential fashion [4]. Yet another approach is to use a recursive
neighbourhood [17]. In this case, masks are applied both simultaneously and
sequentially, and each structuring element is matched both in the input and in
the output image, where only voxels from the current iteration are considered.
The recursive neighbourhood method is the fastest procedure [17].
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The shape primitives are also used to generate surface and curve end con-
ditions [5]. A curve extends from a voxel v in two directions. The curve end
conditions are found by setting one of the two neighbours of v to background.
A surface extends from a voxel v in four directions. Systematically one and two
directions can be set to background, yielding half and quarter surfaces.

Fig. 5. From left to right: Object, non-reversible surface skeleton, centres of maximal
D26 balls, and D26 surface skeleton.

The first step in the skeletonization algorithm is to compute the D26 DT,
from which the CMBs are extracted. Anchoring the surface skeleton onto the
CMBs will give a reversible skeletonization. For the actual skeletonization, the
process is the same as in [5], except for two details. We use distance guided
erosion, meaning that for each erosion iteration, we only consider voxels with
a distance label equal to the iteration number. CMBs are never removed. We
denote this skeleton the D26 surface skeleton. For details on the implementation,
we refer to [18]. In Fig. 5, we show the surface skeletons for two objects as well as
the set of CMBs and the surface skeleton obtained when anchoring to the CMBs
is omitted. The latter is denoted non-reversible surface skeleton. The examples
are “dog” and “pot plant”.

5 Reversibility and Surface Preservation

The reversible surface skeletons, using the anchoring to the CMBs, are reversible
with respect to the D26 distance: the object can be fully recovered from the skele-
ton, e.g., by applying the reverse D26 DT. If the anchoring in CMBs is omitted,
the resulting surface skeleton will not be reversible. The surface skeletonization
algorithm described in [5], from which this distance guided algorithm originates,
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Fig. 6. Recovered objects when anchoring is omitted, left. Difference with respect to
the original objects, right.

aims to compute a surface skeleton that is centred within the object with respect
to the Euclidean distance, i.e., to give a surface skeleton which is stable under ro-
tation. If we assign distance labels from the Euclidean DT to the surface skeleton
and then apply the reverse Euclidean DT (here computed in a brute-force way
by, for each skeletal voxel v, adding a Euclidean ball centred on v with radius
equal to the distance label of v), the objects in Fig. 6 are obtained. Comparing
to the original objects, we have recovered 16903 of the 17229 voxels for the “dog”
and 8413 of the 8871 for the “pot plant”. If we consider a more brick-like object,
the situation is slightly worse, see Fig. 7. Compared to the original objects, we
have recovered 259475 of the 283604 voxels for the “pyramid” and 260658 of the
288040 for the “rotated pyramid”. Observe that the surface skeletons differ in
shape for different rotations. This is due to the problem of perfect alignment
of objects made of square voxels in a square tessellated grid. Possibly, special
surface-end preservation conditions can be made that detect the situations in
which the object is perfectly aligned to the grid, and hence could make the top
row of Fig. 7 similar to the bottom row. However, for this probably a larger
support of the surface end-preservation conditions is necessary, e.g., 53, but such
a patch may also have as drawback that it preserves voxels in non-aligned cases,
where this is not preferable. This needs further research. In conclusion, anchor-
ing to the CMBs should be used to ensure reversibility, however, this does not
ensure that the obtained skeleton is independent of the rotation of the original.

Using anchoring to CMBs also does not guarantee that a surface skeleton
without jagged borders is obtained. Fig. 8 shows that the anchoring in CMBs
gives dashed lines from the top of the cone to the ground plane. The skeletoniza-
tion algorithm produces a correct result, however, it anchors to single points in
space and not to surface patches: the cone is eroded surface by surface and the
CMBs emerge on the gradually eroded surface of the cone leading to single voxel
skeleton branches. Hence, the Christmas tree pattern is correct, although it does
not look nice. If we also want to preserve jagged surface borders, we can add
additional conditions, e.g., as shown in Fig. 9. (They have the same effect as
the surface preservation condition in [6]). Note, however, that these masks only
preserve battlements where there is only a single background voxel between each
pair of foreground voxels. Its effect is a form of surface border closing with a
support of one. If there is a distance of two background voxels between each pair
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Fig. 7. From left to right: Object, non-reversible surface skeleton, recovered object,
difference with respect to the original object, and D26 surface skeleton. (The pyramid
in the bottom row is a rotated version (45◦ around y) of the pyramid in the top row.)

Fig. 8. From left to right: Object, centres of maximal D26 balls, D26 surface skeleton,
and improved D26 surface skeleton.

Fig. 9. Additional masks intended for surface shape preservation. Foreground voxels are
shown in light grey, background voxels in dark grey, and don’t care voxels transparent.

of foreground voxels, larger support, e.g., 53 needs to be taken. But this leads
to a scale problem; how large should the support be? The actual cause is in the
fact that we want to obtain a certain surface boundary property (that involves
a direction), but we anchor to points (that have no direction). Further research
has to be done on, e.g., using the centres of maximum ellipses, which give an-
chors that are line-pieces. This probably will lead to smooth surface skeleton
borders, as then the surface end-conditions will match on them, in contrast with
the current situation, where only the curve end-conditions match on the anchor
points.
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6 Conclusion

In this paper, we have pointed out the difficulties in finding an algorithm for
computing a reversible surface skeleton of a 3D object which results in a sur-
face skeleton that is also independent of the orientation of the original object
with respect to the grid and has no jagged surface borders. We showed that
surface skeletons resulting from the algorithm described in [5] are fairly stable
under rotation and that the original object could be largely recovered. For full
reversibility, anchoring to centres of maximal balls is needed. We have shown
the results both for a distance guided algorithm derived from [5] and based on
the D26 DT, leading to the conclusion that we can make fully reversible sur-
face skeletons that are centred within the original object with respect to a D26

distance. But also that even if we combine [5] with anchoring on centres of max-
imal Euclidean balls, the problems with orientation and jagged surface borders
remain. To better preserve jagged surface borders, conditions that perform a
closing operation on the skeleton border in addition to the topology preserva-
tion conditions, can be used to improve the result. However, the orientation
problem due to perfect alignment of objects and masks, made of square voxels
on a square tessellated grid, remains. In real applications the orientation de-
pendence and the jagged surface skeleton border are minor problems. From a
theoretical point, however, it would be interesting to develop an algorithm, for
which the skeletal properties of orientation independence and smooth surface
skeleton boundaries are guaranteed.
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