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Abstract. In this paper, we present optimal in time algorithms to solve
the reverse Euclidean distance transformation and the reversible me-
dial axis extraction problems for d-dimensional images. In comparison
to previous technics, the proposed Euclidean medial axis may contain
less points than the classical medial axis.
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1 Introduction

In binary images, the distance transformation (DT) and the geometrical skeleton
extraction are classical tools for shape analysis [15,16]. The distance transfor-
mation consists in labelling each pixel of an object with the distance to the
closest pixel of its complement (also called the background). Obviously, a dis-
tance transformation algorithm is deeply linked to the subjacent metric. In the
digital image literature, the problem of approximating the Euclidean distance
or isotropic property of digital object is worth interesting to. Hence, for the DT
problem, we have mask based or chamfer distances [2, 14, 16, 19]; vector displace-
ment based Euclidean distance [5, 12]; Voronoi diagram based Euclidean distance
[4, 8] or Squared distance based Euclidean distance [7,9,17]. In a computational
cost point of view, several of these methods lead to optimal in time algorithms
in order to compute the error-free Euclidean Distance Transform (EDT) for
n-dimensional binary images [4,7, 8].

Skeleton or medial axis is a classical and convenient representation of a shape
for description or recognition purpose [1]. Many definitions exist to define such
an object [10]. A classical one defines the skeleton as the set of center pixels
of maximal disks covering the shapes. A maximal disk is a disk contained in
the shape not exactly covered by another disk contained in the shape. Many
discrete implementations of these models have been proposed either for chamfer
distances [2, 6, 15] or for Euclidean distance [13,18,19].
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In this paper, we investigate the d-dimensional medial axis (MA for short)
extraction upon the error-free Euclidean distance. A first problem prior to the
MA extraction is the reverse Euclidean distance transformation (REDT). For-
mally, given a set of points associated to their Euclidean distance values, how
can we reconstruct the shape resulting from the overlapping of the correspond-
ing balls 7 An optimal in time algorithm is given to solve this problem. Based
on this process, we present an optimal in time algorithm to compute a reduced
medial axis on d-dimensional shapes.

In section 2, we first detail algorithms to solve the EDT problem for d-
dimension in a linear time. Based on these technics, we optimize the REDT
algorithm proposed by Satio and Toriwaki [18] to obtain a linear in time al-
gorithm in the section 3. Then, in section 4, we present an optimal in time
algorithm that extract a reversible subset of the classical medial axis. Finally,
we present possible generalizations of these algorithms to other grids.

2 d-Dimensional Euclidean Distance Transformation

In [17], Saito et al. propose an n-dimensional approach for the EDT problem.
The authors present a simple n—dimensional algorithm that labels image pixels
with the squared distance to the closest background pixel. This process is done
dimension by dimension and allows simple generalization in d-dimension.

We present the algorithm in the 2-D case: we consider a two dimensional
binary image P of size n x n, B denotes the non-empty set of background pixels
and the output of the algorithm is a 2-D image S = {s;;} storing the squared
distance transform. For each point p(i,j) of the image, the squared distance
transform is given by:

sp = ggg{distQ(n 9} (1)
Zq(g)%B{(i—x)zﬂL(j—y)Q} (2)

This formulation of the problem leads to an efficient two pass process for the
squared distance transform (SDT for short) labelling in 2-D:

1. Build from the source image P, an one-dimensional SDT according to the
first dimension (r—axis), denoted by G = {g;;}, where

i = min i—x)?). 3
gy = min {(i~2)?) Q)

2. Then, construct the s;; image with a y—axis process:
Sij = rnyin{giy +(j-y?1<y<n}. (4)

This algorithm provides a direct implementation of d-dimensional EDT al-
gorithm: we only have to compute an one-dimensional SDT for the initialization
step (step 1 of the previous algorithm) and then add, for each greater dimension,
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Fig. 1. Illustration of the Hirata’s optimization: let [1,4,4,9, 4] be a column of G after
step 1, (left) the set of parabolas (j —y)* + giy and (Tight) the bold curve is the lower
envelope. Thus the result of the minimization process is [1, 2,4, 5, 4].

a mix process (step 2) that merges results of inferior dimensions. In a compu-
tational cost point of view and given a d-dimensional binary shape of size n<,
the first step can be done in a linear time in the number of grid points, i.e.
O(n?). In [17], the authors present an O(Avg.n?) algorithm that computes each
mix step where Avg denotes the average of the Euclidean distance values in
the image (Avg = O(n) without any assumptions on the input image). In [7]
and [9], Hirata and Roerdnik et al. independently present optimal algorithms to
solve the min operation and thus propose an optimal in time algorithm for the
EDT. The idea is to see the min operation as a lower envelope computation of
a set of parabolas. More precisely, let us suppose we have computed the step 1
of the algorithm (z-axis SDT) and let {g;,} (1 <y < n) be a column of G. If
we consider the set of parabolas f.(j) = (j — 4)* + giy, the column {s;,} after
step 2 is exactly the lower envelope of f;/ with 1 < y < n (see figure 1). In [7]
and [9], the authors present an O(n) algorithm to compute such a lower enve-
lope using a parabola elimination process. Finally, for a d-dimensional image,
the dimensional mix processes are computed in O(n?) and thus, the global cost
to compute the EDT based on this approach is O(n?).

3 Reverse Euclidean Distance Transformation

3.1 Definitions

In [18], Saito and Toriwaki present both definitions and algorithms to compute
the d-dimensional REDT. Using their notations and the dimension 2, let us
consider L as a set of I points {(Zsm,, Ym) }1<m<i and fz,,y,, the squared Euclidean
distance value associated to the pixel (2, ym ). The Reverse Euclidean Distance
Transformation of L consists in obtaining the set of points P such that

P={(i,5) | 3m, (i —2w)* + (G~ ym)® < forym (@m,ym) €L}, (5)

In other words, a point (4, j) belongs to P if it belongs to at least one disk whose
center is a point m of L, with radius \/fz,.4,.-

Let F' = {f;;} be a picture of size n x n such that f;; is set to fa,.4,. if (4,7)
belongs to L and 0 otherwise. The authors show that equation (5) is equivalent

to
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P = {(ZJ) | (Trg?‘gF{fwy - ('L - m)g - (] - 9)2} > 0}- (6)

Hence, if we compute the map H = {h;;} such that

hi; = max —(i—2)?—-(G—-y)?}. 7

ij (m’y)eF{fwy ( ) -9} (7)

we obtain P by extracting from H all pixels of positive values. So, to build H
from F', we can decompose the computation into two one-dimensional processes:

1. Build from the image F the picture G = {g;;} such that
gij:mgx{fzj—(i—x)2,1§x§n}. (8)
2. Build from G the picture H such that
hig = max{gi, — (j —y)*, 1 <y < n}. 9)

To prove this decomposition, we can substitute the equation (8) to the equa-
tion (9) and we obtain the equation (7). Finally, we can design similar algorithms
to solve the REDT as those proposed for the EDT labelling; we only have to
replace the minimization steps by the maximization steps and thus to compute
upper envelope of parabolas (see next section). Note that this process can be eas-
ily extended to d-dimensional images, we just have to compute d one-dimensional
maximization steps. In [18], Saito and Toriwaki use their algorithm presented in
[17] to compute the REDT and they obtain a computational cost in O(Avg.n?)
for a d-dimensional image. In the next section, we detail an O(n?) algorithm to
compute the REDT.

3.2 Optimal REDT Algorithm

The basic idea of the optimal REDT algorithm is to use the Hirata’s parabola
elimination process to compute maximization steps. We detail the optimization
of step 1 in the previous algorithm, all other steps can be easily deduced. First
of all, for a given column j of F', we define a function describing a parabola:

Foli) = foj — (i —x)? (10)

and a function that computes the abscissa of the intersection between two
parabolas. Thus, we have to find the point ¢ such that F, (i) > F,(i) with
u < v. Hence, the “separation” between the parabolas is given by

u2 - 1}2 - fuj + fvj
2(u — v) '

Septun) = | (1)

Based on these elementary functions, the algorithm presented in figure 2
computes the upper envelope of the parabolas {F,}. This algorithm is derived
from Meijster et al.’s one [9] (similar to Hirata’s one). The idea is to manipulate
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1: for all j € [0..n — 1] do
2: q:=0; s[0] = 0; t[0] = 0;
3: foru:=1ton—1do 5
4: while (¢ > 0) and (Fq(tle]) < «\
Fu(tl))) do o
5: q:=q—1; L
6: end while al
7 if ¢ < 0 then |
8: q :=0; s[0] := u; L
9: else |
10: w := 1+ Sep(slq], u); ‘
11: if w < n then u
12: q:=q+1; s[q] :== u; tlg] := w;
13: end if -
14: end if k\1,’::::::::::::::“t[q]
15: end for
16: for ©w:=n — 1 downto 0 do F ‘ 0‘ 0‘1 ‘2 ‘4 ‘0‘0 ‘0 ‘
17: Guj = Fsiq(u);
18: if u = t[q] then G [ 3] o]t [3 a3 o] -]
19: q:=q—1;
20: end if REDT [ o [ o [TV T T o [o]
21: end for
22: end for

Fig. 2. Pseudo-code of the optimal one-dimensional upper envelope parabola compu-
tation (left); an illustration of the notations and an example in one-dimension (right).

two arrays s and t that simulate a parabola stack. The array s contains the set of
parabola apexes (tops of a parabola) of the upper envelope and ¢ the intersection
abscissa between two consecutive parabolas in s. In lines 3 — 15 we compute the
upper envelope and those arrays s and ¢; and in lines 16 — 21, we construct the
map G using s and ¢t. The computational cost of this upper envelope extraction is
O(n) if n is the size of a row in F. Finally, we can use this algorithm to compute
step 2 and construct P, by thresholding H, in O(n?) if F is a n x n image. More
generally, if we apply it for all one-dimensional maximization steps, we have a
global complexity in O(n?) for a d-dimensional image, which is optimal in time.

4 Euclidean Medial Axis Extraction

4.1 Definitions
First of all, we introduce some definitions.

Definition 1 (Maximal ball). A mazimal ball is a ball contained in the shape
not exactly covered by another ball contained in the shape.

Based on this property, we can define the medial axis:

Definition 2 (Medial axis). The medial axis (MA for short) of a shape is the
set of maximal ball centers contained in the shape.

In [18], Saito and Toriwaki define a geometrical Euclidean skeleton based on
elliptic paraboloids in dimension 2. Such an elliptic paraboloid of center (i, 7)
and height ¢;; is given by the following equation
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0<z<gqj—(z—i)?—(y—3)>. (12)

The intersection between such a domain and the plane z = 0 is a disk of center
(,7) and radius V/@ij- We say that an elliptic paraboloid is contained in a shape
S if the disk of center (4,7) and radius ,/g;; is contained in S. In the following,
we prove that the Saito and Toriwaki’s skeleton is a subset of the medial axis of
a shape.

Definition 3 (Maximal elliptic paraboloid). 4 mazimal elliptic paraboloid
1s an elliptic paraboloid contained in the shape not exvactly covered by another
elliptic paraboloid contained in the shape.

Note that this object can be generalized to d-dimension shapes.

Proposition 1. Let (4, 7) be a point in a continuous shape and ¢;; be a number.
The disk D of center (i,7) and radius \/@;; is mazimal if and only if the elliptic
paraboloid P of center (i,j) and height g;; is mazimal.

Proof. Note that D is the intersection between P and z = 0. We first prove
the left to right implication. If we suppose that P is not maximal, there exists
another elliptic paraboloid P’ such that P’ contains P. Thus the intersection D’
between P’ and the plane z = 0 contains the intersection D between P and the
same plane. Hence, there exists a disk D" contained in the shape that contains
D, and so D is not maximal.

Conversely, we suppose that D is not maximal. Hence, there exists a disk
D" such that D" contains D. We denote by P” the elliptic paraboloid, uniquely
defined, such that D" is the intersection between P” and z = 0. If we suppose
that P” does not contain P, there exists a point p € P such that p ¢ P”. Let us
consider the intersections between P and P” with a plane H perpendicular to
z = 0 that contains p and the center of P”. In the plane H and using the elliptic
paraboloid definition, P (resp. P”) leads to the domain

O§Z<fu7(x7u)2 (resp. 0§Z<fv*($7v)2)v (13)

with w,v, fu, fo € R (see figure 3-(b)). Since H contains the center of P’ and p,
these domains are not empty. Using the notations of figure 3-(b), D" contains D
implies that both m and n belong to D”. Furthermore, since p does not belong to
P, the two parabolas given by equation 13 must have two intersection points a
and b. However, using the equation 13, such parabolas only have one intersection
point if u # v. Since the upper parts of the parabolas are excluded, u = v implies
that the intersection is empty. Hence such a point p does not exist and thus P”
contains P which finally proves that P is not maximal. Note that this proof
can be generalized to other dimensions because we transform the problem into
a 1-dimension parabola intersection. a

Hence, in the continuous plane, maximal balls and maximal elliptic paraboloids
coincide. In [18], the authors use the term “skeleton” to describe a geometric
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10 12 14 16 18 20 22 24
(a) (b

Fig. 3. Skeleton definitions: (a) comparison between maximal balls and maximal el-
liptic paraboloids; (b) notations for the proof of the proposition 1 (left two parabolas)
and differences between the medial axis and Sk (right three parabolas).

object not based on a topological feature preservation. Let Q = {¢;;} be a SDT
of the shape. The skeleton Sk is defined by

Sk={(i.5) | 3w,y). (i — 2)* + (G —v)* < a5,

and max{gu, — (@ — ) = (y —v)*} =g — (@ = )* = (v = 4)°}.
In other words, Sk is the set of elliptic paraboloids that belong to the upper
envelope (in dimension 2) of all elliptic paraboloids whose heights are given by
the squared distance transform. Using proposition 1, we have the corollary:

Corollary 1. In the continuous plane, Sk is a subset of the medial axis. Fur-
thermore, the original figure can be reconstructed by Sk.

Proof. First of all, all elliptic paraboloids that belong to the upper envelope are
maximal by definition of such an envelope. Since maximal elliptic paraboloids
and maximal balls coincide, points in Sk belong to the medial axis. Some max-
imal elliptic paraboloids may not belong to Sk as illustrated in figure 3-(b) in
the 1-D case: the parabolas {A, B, C} belong to the medial axis whereas only
the parabolas A and C belong to Sk (B is covered by the union of A and C).
To prove the second statement, we remark that the definition of Sk strictly co-
incides with the reverse distance transformation equations of section 3. Once
Sk is computed, if we threshold the height values of the upper envelope elliptic
paraboloids by 0, we obtain the original shape [18]. O

If we consider a binary shape in dimension d, Saito and Toriwaki [18] use the
O(Avg.n?) REDT process to extract the skeleton Sk. The idea is to mark upper
envelope elliptic paraboloids. If we use the optimal REDT algorithm proposed
in the previous section, we obtain an algorithm to compute Sk in O(n?) which
is optimal for the problem.

4.2 Reduced Medial Axis Extraction

In the previous section, we prove that the skeleton Sk is a subset of the medial
axis in the continuous case. As illustrated in dimension 2 in figure 4-(left), this
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property does not hold in the discrete case. In the following we present a filtering
process to transform Sk points into maximal ball centers in the discrete case.
In the 2D case, let us consider a binary shape and its skeleton Sk. We denote
by {F.(i)}i=o0..n the sequence of parabolas given by the intersection between
the Sk elliptic paraboloids and the column j of the image. Hence, each parabola
is such that F, (i) = f,; — (i — 2). In this one-dimension case, the differences
between Sk and the discrete medial axis are illustrated in figure 4-(left): {D, E'}
belong to Sk whereas only D belongs to the medial axis.

We denote by D, the disk associated to F, (i) (i.e. a segment in the one-
dimensional case). Furthermore, we consider the discrete disk D, associated
to D, as the set of discrete points contained in D,. To only consider discrete
maximal disk in Sk, we have to remove all points = such that D, is not max-
imal. Given two parabolas of centers x and 2/, we have a simple test, denoted
Incl(x,x’), to decide if D, contains D,s (we just compare segment extremi-
ties). Let us denote by [l,,r,] the interval given by a disk D,. We consider the
list £ of parabolas sorted according to the left extremity of the segments. If some
parabolas have got the same left extremity coordinate, we sort such parabolas
according to the right extremity position (see figure 4-(right)). If n denotes the
size of the column j in the image, the list £ can be computed in O(n) (we store
the extremities in two arrays of size n during the scan of the parabolas). If two
segments are identical, we remove one of them and we label the other one with
a flag “double” (see definition 4). Using £, we have a simple algorithm presented
in figure 4-(b) to remove from the set {F, (i)} all points that do not belong to
the discrete medial axis. In this algorithm, we scan the parabolas according to
the £ order and we test the inclusion of two consecutive parabolas in a greedy
process. Hence, the computational cost of this filtering algorithm is O(n). The
resulting set of parabolas is stored in the array s and the correctness of this
algorithm is given by the proposition:

Proposition 2. The associated disk of a parabola is mazximal if and only if the
parabola belongs to s at the end of the filtering process.

Proof. First of all, if the list £ is reduced to one parabola, the associated disk
is maximal and it belongs to s. We prove the proposition by induction. Let us
consider the step k& (k > 1) in the algorithm 4-(b). We suppose that, at this point,
s contains the maximal disk of the parabolas in {£(i) }o<;<x and we consider the
disk [u,v] of the parabola L(k + 1). Note that the order of parabola in s is the
same as the order of parabola in £. We denote by [m, n] the segment associated
to s[g] (last inserted parabola in s). If the test Incl(s[q],L(k + 1)) is true, the
segment [m,n] contains the segment [u,v], and so L£(k + 1) is not maximal and
this parabola is not inserted in s. If we suppose that the inclusion test fails,
L(k+1) is inserted in s. First of all, the segment [u, v] cannot contain a segment
in s. Indeed, by definition of £, if a parabola x is before the parabola z’ in L,
then the segment associated to ' cannot contain the segment associated to x.
Hence L(k + 1) does not change the maximal property of the segments in s.
To complete the proof, we show that if the test fails, no segment in s contains
the segment [u,v]. Let us consider a segment [a, b] in s such that [a, b] contains
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[u, v] and such that the segment [a, b] is not associated to s[q]. So, we have b > v
and a < w. If the inclusion test fails between [u,v] and [m,n], then v > n (we
have u > m by construction of £). Hence, we have b > v. This leads to the
contradiction that [a, b] contains [m,n] because the segments in s are supposed
to be maximal. Finally, it is sufficient to consider the inclusion test between
L(k + 1) and the last inserted parabola in s to construct the set of maximal
disks from the set {£() }o<i<k+1- O

In higher dimensions, we apply this filtering process in each dimension and we
define the reduced medial axis as follows:

Definition 4 (Reduced Medial Axis). Let P be a binary shape in dimension
d and Q the SDT of P. We consider Sk the Satio and Toriwaki’s skeleton of
P. The reduced medial axis (RMA for short) is the set of points (i,7) such that
there exists at least one row in one of the d dimensions in which the parabola
associated to (i,7,q:;) is preserved and not labeled “double” during the one-
dimensional filtering process.

Theorem 1. Let P be a binary shape in dimension d, the RMA is a subset of
the discrete medial axis of the shape, it has the reversibility property and the
RMA extraction is in O(n?).

Proof. According to the corollary 1, Sk is a subset of the continuous medial axis
of the shape. Let us consider a discrete ball B, we prove that if B is preserved
at the end of the filtering process, then B belongs to the discrete medial axis.
If we suppose that B is not maximal in the discrete case, there exists another
ball B’ such that B’ contains B. During the filtering process, in each dimension,
the segments associated to B will either be removed or labeled “double” because
they are contained in B’ segments. Hence, the ball B will be removed from Sk.
Finally, all resulting balls are maximal in the discrete plane. Furthermore, since
the parabola removal process between two parabolas maintains the reversibility
property, the final result allows us to reconstruct the shape. Concerning the
computational cost, the Sk computation is done in O(n?) and for each row in
each dimension, the one-dimensional filtering process computational cost is linear
in the number of parabolas in the row. Hence the global cost of the filtering is
linear in the number of points in P, which is optimal for the problem. a

4.3 Results and Generalizations

In this section we present some results of both the REDT and skeleton extraction
algorithms in dimension 2 and 3. The figure 5 presents results on several 2-D
and 3-D shapes. Note that the EDT of images is computed using the Hirata’s
algorithm [7].

Due to the one-dimensional decomposition process of the REDT and skeleton
extraction algorithms, several generalizations that have been proposed for EDT
algorithm can be done. For example, the same algorithms can be used for d-
dimensional elongated grids (different scale factors between axis). We just have
to insert those scale factors in the process without changing the algorithms [18].
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20

q = 0; 5[0] = 0;
for k:=1to N do
if not Incl(s[q], £(k)) then
q:=q+1; s[q] := L(k);
end if
end for

— o
14 16
E—— .

) /

Fig. 4. An illustration of the difference between the skeleton Sk and the discrete me-
dial axis (left): dashed segments indicate Euclidean balls {D,} and plain segments
the discrete balls {Dg}. Right: Pseudo-code for the filtering process of Sk points and
illustration of the algorithm (arrows indicate the order in £ or in s).

oan
Y=

Fig. 5. Results of skeleton extraction on 2-D and 3-D images: first row the input binary
shapes, second row the Sk skeleton extraction and last row RMA extraction results.

5 Conclusion

In this article, we first have optimized the REDT computation algorithm and
have obtained a computation cost in O(n?) for a d-dimensional image which is
optimal in time (n? is the total number of grid points). Then, we have presented
a d-dimensional reversible RMA extraction algorithm in O(n?). We have shown
that the proposed RMA is a subset of the classical medial axis of the shape. In
future works, we expect further optimizations of the RMA extraction process to
reduce again the number of points. The final goal of this optimization should
be to compute the optimal reversible skeleton of a shape (in the sense of having
minimal number of points, see [3, 11] for related papers). Furthermore, we would
like to illustrate the d-dimensional algorithms on real data in higher dimensions.
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