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Abstract. One important class of discrete sets where the reconstruc-
tion from two given projections can be solved in polynomial time is the
class of hv-convex 8-connected sets. The worst case complexity of the
fastest algorithm known so far for solving the problem is of O(mn ·
min{m2, n2}) [2]. However, as it is shown, in the case of 8-connected
but not 4-connected sets we can give an algorithm with worst case com-
plexity of O(mn ·min{m, n}) by identifying the so-called S4-components
of the discrete set. Experimental results are also presented in order to
investigate the average execution time of our algorithm.

Keywords: Discrete tomography, reconstruction, convex and connected
discrete set.

1 Introduction

One of the most frequently studied area of discrete tomography [8,9] is the
problems of the reconstruction of 2-dimensional (2D) discrete sets from their row
and column sum vectors. There are reconstruction algorithms for different classes
of discrete sets (e.g., [3,4,6,7,10,11,14]). However, the reconstruction in certain
classes can be NP-hard (see [15]). Since applications require fast algorithms, it is
important to find reconstruction algorithms in those classes of 2D discrete sets
where the reconstruction can be performed in polynomial time.

We always suppose having some a priori information of the set to be recon-
structed. The most frequently used properties are connectedness, directedness
and some kind of discrete versions of the convexity.

One important class where the reconstruction problem from two given projec-
tions can be solved in polynomial time is the class of hv-convex 8-connected sets.
Several algorithms have been developed for solving this problem [5,11], among
them the fastest has worst case complexity of O(mn · min{m2, n2}) [2]. In this
paper we give an algorithm with worst case complexity of O(mn · min{m, n})
for the reconstruction problem in the class of hv-convex 8-connected but not
4-connected sets by examining the features of these sets.

This paper is structured as follows. First, the necessary definitions are in-
troduced in Section 2. In Subsection 3.1 we define S4-components of an 8-
connected but not 4-connected hv-convex set and prove some properties of them,
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then, in Subsection 3.2 we investigate the directedness of these components. S4-
components can be identified from two given projections, as it is shown in Sub-
section 3.3. The reconstruction algorithm is represented in Subsection 3.4, the
experimental results are given in Subsection 3.5.

2 Definitions and Notation

The finite subsets of ZZ2 (the 2D integer lattice) are called discrete sets, its
elements are called points or positions. F denotes the class of discrete sets.

In the followings discrete sets will be represented by binary matrices F =
(fij)m×n, where fij ∈ {0, 1}. Figure 1 shows a discrete set represented by the
binary matrix

F =




0 1 0 0 0 0
0 1 0 0 0 0
1 1 0 0 0 0
0 1 1 0 0 0
0 0 0 1 1 1


 .

For any discrete set F we define its projections by the operations H and V
as follows. H : F −→ INm

0 , H(F ) = H = (h1, . . . , hm), where

hi =
n∑

j=1

fij , i = 1, . . . , m , (1)

and V : F −→ INn
0 , V(F ) = V = (v1, . . . , vn), where

vj =
m∑

i=1

fij , j = 1, . . . , n . (2)

The vectors H and V are called the row and column sum vectors of F , respec-
tively (see Fig. 1). H and V are also called the projections of F .

Not any pair of vectors is the projections of some discrete set. In the followings
we suppose, that H ∈ INm

0 and V ∈ INn
0 are compatible which means that they

satisfy the following two conditions.

(i) hi ≤ n, for 1 ≤ i ≤ m, and vj ≤ m, for 1 ≤ j ≤ n;
(ii)

∑m
i=1 hi =

∑n
j=1 vj , i.e., the two vectors have the same total sums.

The cumulated vectors of H and V are denoted by H̃ = (h̃1, . . . , h̃m) and
Ṽ = (ṽ1, . . . , ṽn), respectively, and defined with the following recursive formulas,

h̃1 = h1, h̃i = h̃i−1 + hi, i = 2, . . . , m , (3)

ṽ1 = v1, ṽj = ṽj−1 + vj , j = 2, . . . , n (4)

(see Fig. 1).
Given a class G of discrete sets, we say that the discrete set F ∈ G is unique

in the class G (w.r.t. the row and column sum vectors) if there is no different
discrete set F ′ ∈ G for which H(F ) = H(F ′) and V(F ) = V(F ′).
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Fig. 1. An hv-convex 8- but not 4-connected discrete set F . The projections of F are
the vectors H and V , the cumulated vectors of H and V are denoted by H̃ and Ṽ .

Two points P = (p1, p2) and Q = (q1, q2) in ZZ2 are said to be 4-adjacent if
|p1 − q1| + |p2 − q2| = 1. The points P and Q are said to be 8-adjacent if they
are 4-adjacent or |p1 − q1| = 1 and |p2 − q2| = 1. The sequence of distinct points
(i(0), j(0)), . . . , (i(k), j(k)) is a 4/8-path from point (i(0), j(0)) to point (i(k), j(k))
in a discrete set F if each point of the sequence is in F and (i(l), j(l)) is 4/8-
adjacent, respectively, to (i(l−1), j(l−1)) for each l = 1, . . . , k. Two points are
4/8-connected in the discrete set F if there is a 4/8-path, respectively, in F
between them. A discrete set F is 4/8-connected if any two points in F are
4/8-connected, respectively, in F . The 4-connected set is also called polyomino.
The discrete set F is h-convex/v-convex if its rows/columns are 4-connected,
respectively. The h- and v-convex sets are called hv-convex (see Fig. 1).

We denote the class of hv-convex 8-connected and hv-convex 4-connected
discrete sets by S8 and S4, respectively. Clearly, S8 ⊃ S4 (see, e.g., Fig. 1) and
so S8 \S4 �= ∅. Let S ′

8 = S8 \S4. In this paper we are going to study the problem
of reconstruction in the class of hv-convex 8- but not 4-connected discrete sets

Reconstruction(S ′
8).

Instance: Two compatible vectors H ∈ INm
0 and V ∈ INn

0 .
Task: Construct a discrete set F ∈ S ′

8 such that H(F ) = H and
V(F ) = V .

Note, that components of the row and column sum vectors of an 8-connected
set cannot be zero, therefore in the followings we assume that the input of the
above problem are the vectors H ∈ INm and V ∈ INn.

3 Reconstruction of Sets of S′
8

3.1 S4-Components

Let F ∈ S ′
8. A maximal hv-convex 4-connected subset of F is called an S4-

component of F . Clearly, the S4-components F1, . . . , Fk of F give a uniquely
determined partition of F and the number of S4-components of F is at least 2
(see, e.g., Fig. 1 where there are two S4-components: {(5, 4), (5, 5), (5, 6)} and
{(1, 2), (2, 2), (3, 1), (3, 2), (4, 2), (4, 3)}).
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Since F is hv-convex, the sets of the row/column indices of the elements of
F1, . . . , Fk consist of consecutive integers and they are disjoint. Then it follows
that there is an S4-component of F , say F1 with the smallest containing discrete
rectangle (SCDR) R1 = I1 × J1 such that I1 = {1, . . . , i1} for some i1 ≥ 1.
Similarily, we get that there is another S4-component of F , say F2 with the
SCDR R2 = I2 × J2 such that I2 = {i1 + 1, . . . , i2} for some i2 > i1. And so on.
Generally, there are integers 0 = i0 < i1 < . . . < ik−1 < ik = m (k ≥ 2) such
that Il = {il−1 + 1, . . . , il} contains the row indices of the l-th S4-component of
F for each l (1 ≤ l ≤ k). Among I1, . . . , Ik we define a relation ”<” as follows.
Let I, I ′ ∈ {I1, . . . , Ik}. We say that I < I ′ if each element of I is less than any
element of I ′. Using this relation we can write shortly that

I1 < I2 < . . . < Ik . (5)

We define the same relation among J1, . . . , Jk. In order to give a description
of the relative positions of the S4-components of F consider

Theorem 1. Let F ∈ S ′
8 having S4-components F1, . . . , Fk with the SCDRs

I1 × J1, . . . , Ik × Jk (k ≥ 2) such that (5) is satisfied. Then exactly one of the
following cases is possible.

Case 1. J1 < J2 < . . . < Jk , (6)
Case 2. J1 > J2 > . . . > Jk . (7)

Proof. The proof is quite technical (see [1]). ��
In the followings we say that F ∈ S ′

8 has type 1 if Case 1 of Theorem 1 is
satisfied, otherwise, that is, if Case 2 of Theorem 1 is satisfied, it has type 2. As
an example see Fig. 2.

F F’

Fig. 2. A discrete set F of type 1 and a discrete set F ′ of type 2. The SCDRs are
drawn with bold lines. CF = {(2, 2), (5, 5), (8, 8)}, CF ′ = {(3, 8), (7, 4)}.

Corollary 1. Let F ∈ S ′
8. Then there are uniquely determined row indices 0 =

i0 < i1 < . . . < ik = m and column indices 0 = j0 < j1 < . . . < jk = n such that
Il × Jl is the SCDR of the S4-component Fl of F for each l = 1, . . . , k (k ≥ 2),
where Il = {il−1 + 1, . . . , il} and

Jl =
{{jl−1 + 1, . . . , jl}, if F has type 1,

{jk−l + 1, . . . , jk−l+1}, if F has type 2 .
(8)
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3.2 Directed Discrete Sets

An 8-path in a discrete set F is an NE-path from point (i(0), j(0)) to point
(i(t), j(t)) if each point (i(l), j(l)) of the path is in north or east or northeast
to (i(l−1), j(l−1)) for each l = 1, . . . , t. SW -, SE-, NW -paths can be defined
similarily. The discrete set F is NE-directed if there is a particular point of F ,
called source (which is necessarily the point (m, 1)), such that there is an NE-
path in F from the source to any other point of F . Similar definitions can be
given for SW -, SE- and NW -directedness. The discrete set F in Fig. 1 is NW -
directed with source (5, 6). On the base of the following lemma, it is easy to
check the directedness of discrete sets in the class S4.

Lemma 1. Let G ∈ S4 and R = {i′+1, . . . , i′′}×{j′+1, . . . , j′′} (i′ < i′′, j′ < j′′)
be its SCDR.

(i) G is SE-directed if and only if gi′+1,j′+1 = 1;
(ii) G is NW -directed if and only if gi′′,j′′ = 1;
(iii) G is SW -directed if and only if gi′+1,j′′ = 1;
(iv) G is NE-directed if and only if gi′′,j′+1 = 1.

Proof. It follows from the definitions directly. (As an example see Fig. 2). ��

Theorem 2. Let F ∈ S ′
8 having S4-components F1, . . . , Fk (k ≥ 2). If F has

type 1 then F1, . . . , Fk−1 are NW -directed and F2, . . . , Fk are SE-directed. If F
has type 2 then F1, . . . , Fk−1 are NE-directed and F2, . . . , Fk are SW -directed.

Proof. The proof is based on Corollary 1 and Lemma 1 (see [1]). ��

Depending on the type of F let us define

CF =
{{(il, jl) | l = 1, . . . , k − 1}, if F has type 1,

{(il, jk−l + 1) | l = 1, . . . , k − 1}, if F has type 2 ,
(9)

where i1, . . . , ik−1 and j1, . . . , jk−1 denote the uniquely determined indices men-
tioned in Corollary 1. That is, CF consists of the sources of the NW -/NE-
directed S4-components F1, . . . , Fk−1 if F has type 1/2, respectively (see Fig. 2).

The knowledge of any element of CF is useful in the reconstruction of an F ∈
S ′

8, as we can see on the base of the following theorem.

Theorem 3. Any F ∈ S ′
8 is uniquely determined by its projections, its type and

an arbitrary element of CF .

Proof. The proof is based on Theorem 3 in [12] and Theorem 2 (see [1]). ��

Corollary 2. If F, F ′ ∈ S ′
8 are different solutions of the same reconstruction

problem and they have the same type then CF ∩ CF ′ = ∅.
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3.3 Equality Positions

Let H̃ and Ṽ be the cumulated vectors of the projections of F ∈ S ′
8. We say

that (i, j) ∈ {1, . . . , m} × {1, . . . , n} is an equality position of type 1 if h̃i = ṽj .
(m, n) is a trivial equality position of type 1 and in the followings we omit it.
We say that (i, j) ∈ {1, . . . , m} × {2, . . . , n + 1} is an equality position of type
2 if h̃i = ṽn − ṽj−1. Not every equality position is in CF but they are useful to
find the elements of CF (see Fig. 3).

V

H

~

~

1 2

1

4 6 9

4

6

8

9

F

Fig. 3. A discrete set F with cumulated vectors H̃ and Ṽ . (1, 1), (2, 3) and (3, 4) are
equality positions of type 1. However, only (2, 3) is in CF . (4, 2) is the only equality
position of type 2 but it is not in CF since F has type 1.

Lemma 2. Let F ∈ S ′
8 and CF be defined by (9). Then the elements of CF are

all equality positions of the same type as of F .

Proof. See [1]. ��

3.4 The Reconstruction Algorithm

Our algorithm is called Algorithm REC8’ and works as follows. We first assume
that the set F ∈ S ′

8 to be reconstructed has type 1. On the base of Theorem 3
it is sufficient to find an arbitrary element of CF to reconstruct F from its
projections uniquely. The elements of CF are equality positions of type 1 on the
base of Lemma 2. So, in order to find all solutions of the reconstruction problem,
we start to check every equality position of type 1 whether it is an element of
CF and if it is then we find a solution. The set L1 of equality positions of type
1 can be found by the comparison of the cumulated row and column sums. This
algorithm is called Algorithm L 1 and it is similar to the procedure used for
reconstructing the spine of hv-convex polyominoes [12]. An analogous algorithm
can be given to find all equality positions of type 2 (Algorithm L 2).

Since the knowledge of any element of CF is sufficient, again on the base
of Theorem 3, without losing any solution, we can assume that if an investi-
gated equality position (i, j) of type 1 is in CF then it is the source of the first
S4-component F1, i.e., the one with the SCDR {1, . . . , i1} × {1, . . . , j1}, i.e.,
(i, j) = (i1, j1). On the base of Theorem 2, this S4-component is NW -directed.
Now, in order to decide if (i, j) is the source of F1 we try to reconstruct an hv-
convex NW -directed polyomino with source (i, j). This can be done using Algo-
rithm RecNW which is a simple modification of the algorithm for reconstructing
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directed discrete sets given in [12]. Algorithm RecNW tries to reconstruct an
m × n binary matrix G from the input data H, V and (i, j) such that the 1’s
of G constitute an hv-convex NW -directed polyomino having source (i, j) and
the row and column sums of G in the non-zero rows and columns are equal to
the corresponding elements of H and V , respectively. If RecNW can reconstruct
such a G then it returns also the upper left position (i′, j′) of the SCDR of G.
If RecNW fails, there is no such a binary matrix G. Now, there are two cases:

(1) RecNW fails. Clearly, in this case (i, j) cannot be the source of F1. We
continue with the investigation of the next equality position from L1.

(2) RecNW gives a (unique) solution, i.e., it is possible to reconstruct an hv-
convex NW -directed polyomino G with source (i, j) and with the SCDR
{i′, . . . , i}×{j′, . . . , j}, where 1 ≤ i′ ≤ i = i1 and 1 ≤ j′ ≤ j = j1. If (i′, j′) �=
(1, 1) then, clearly G cannot be the first S4-component of F , i.e., F1 �= G
and we continue with the investigation of the next equality position from L1.
Otherwise, i.e., when (i′, j′) = (1, 1), we can assume that F1 = G and we try
to reconstruct the 2nd, 3rd, ... S4-components iteratively. Reconstruction of
the SE-directed k-th component Fk (k = 2, . . .) can be done using Algorithm
RecSE. Algorithm RecSE tries to reconstruct an m×n binary matrix G from
the input data H, V and (i, j) such that the 1’s of G constitute an hv-convex
SE-directed polyomino having source (i, j) and the row and column sums of
G in the non-zero rows and columns are equal to the corresponding elements
of H and V , respectively. If RecSE can reconstruct such a G then it returns
also the lower right position (i′, j′) of the SCDR of G. If RecSE fails, there
is no such binary matrix G. On the base of Theorem 2, Fk must be SE-
directed with source (ik−1 + 1, jk−1 + 1). We call RecSE to reconstruct such
a polyomino. Again, there are two cases:

(2.1) RecSE fails. Clearly, in this case (ik−1 +1, jk−1 +1) cannot be the source
of Fk which contradicts the assumption that (i, j) is the source of F1. We
continue with the investigation of the next equality position from L1.

(2.2) RecSE gives a (unique) solution, i.e., it is possible to reconstruct an hv-
convex SE-directed polyomino G with source (ik−1+1, jk−1+1) and with
the SCDR {ik−1 +1, . . . , i′}×{jk−1 +1, . . . , j′}, where ik−1 +1 ≤ i′ ≤ m
and jk−1 + 1 ≤ j′ ≤ n. Depending on the properties of G we have two
cases, again:

(2.2.1) If (i′, j′) �= (m, n) then Fk cannot be the last component. Then, on
the base of Theorem 2, Fk is NW -directed and therefore fik,jk

=
1 (on the base of Lemma 1). If gi′,j′ �= 1 then, clearly, Fk �= G
which contradicts the assumption that (i, j) is the source of F1. We
continue with the investigation of the next equality position from
L1. Otherwise, that is, when gi′,j′ = 1, we can assume that Fk = G.
On the base of Corollary 2, G cannot be the first component of any
other solution of the same type therefore (i′, j′) can be deleted from
L1 and we continue with the next iteration.

(2.2.2) If (i′, j′) = (m, n) then Fk = G and F = F1 ∪ . . . ∪ Fk. We found a
solution and we continue with the investigation of the next equality
position from L1 in order to find another solutions.
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Fig. 4. Reconstructing sets of S ′
8 of type 1 having projections H = (1, 2, 2, 2) and

V = (1, 2, 2, 2). L1 = {(1, 1), (2, 2), (3, 3)}. 1st row: trying to build a solution from
position (1, 1) by filling a row or a column in each step the algorithm fails because of
no place for filling the last row. After this step L1 = {(2, 2)} since position (3, 3) can be
deleted from L1 (see Case (2.2.1) of the algorithm). 2nd row: testing the only position
(2, 2) from L1 whether it is the source of F1, the only solution of type 1 is found.

Fig. 5. Four hv-convex 8-connected but not 4-connected discrete sets with the same
row and column sums: H = (1, 2, 2, 2, 2, 1), V = (1, 2, 2, 2, 2, 1).

The first part of our algorithm (searching for solutions of type 1) is illustrated
in Fig. 4. The second part of the algorithm, i.e., when it is assumed that F has
type 2, is similar to the first part but we investigate equality positions of type 2
instead of type 1 and try to build NE- and SW -directed components from the
corresponding sources (using the algorithms RecNE and RecSW).

If no solutions are found after investigating all equality positions of both
types then the assumption that F ∈ S ′

8 is not met, i.e., there is no discrete set
with the given projections which is hv-convex, 8-connected but not 4-connected.
However, in some cases there can be more than one solution (see Fig. 5).

Theorem 4. The worst case computational complexity of Algorithm REC8’ is of
O(mn ·min{m, n}). The algorithm finds all sets of S ′

8 with the given projections.

Proof. Every row and column index can be in an equality position of both type
at most once. This means that we have at most min{m, n} equality positions of
type 1 and at most min{m, n} equality positions of type 2. Moreover, equality
positions can be found in time O(m + n) by Algorithms L 1 and L 2. Building
the S4-components of F assuming that an equality position (i, j) is in CF takes
O(mn) time. We have to examine every equality position if it is in CF , so we
get the execution time O(mn · min{m, n}) in the worst case.
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Table 1. Average execution times in seconds of Algorithm REC8’ and Algorithm C
depending on the size of the matrix. Each set of test data consists of 1000 hv-convex
8-connected but not 4-connected discrete sets.

Size n × n Algorithm REC8’ Algorithm C

20 × 20 0.000272 0.011511
40 × 40 0.001064 0.032524
60 × 60 0.002597 0.065897
80 × 80 0.004746 0.116505

100 × 100 0.007831 0.178633

On the base of Theorems 2 and 3 the sets reconstructed by Algorithm REC8’
are hv-convex, 8-connected and have the given projections H and V .

On the base of Theorem 3 any element of CF together with the projections
and the knowledge of the type of F is sufficient to reconstruct F uniquely.
Elements of CF are equality positions, too, on the base of Lemma 2. Since
Algorithm REC8’ examines every equality position whether it is in CF , the
second part of the theorem follows. ��

3.5 Experimental Results

In 2001 E. Balogh et al. presented an algorithm having worst case complexity
of O(mn · min{m2, n2}), which has so far the best average time complexity for
reconstructing hv-convex 8-connected discrete sets (Algorithm C in [2]). In order
to compare the average execution times of our Algorithm REC8’ and Algorithm
C we need to generate sets of S ′

8 at random with uniform distribution. In [2] an
algorithm is also given to generate hv-convex 8-connected discrete sets having
fixed row and column numbers with uniform distribution. The method is also
suitable to generate sets od S ′

8 with uniform distribution (we check whether the
generated set is 4-connected and if so, then we simply omit it).

We have generated discrete sets of S ′
8 with different sizes. Then, we have

reconstructed them with both algorithms. We used a PC with AMD Athlon
processor of 1.4 GHz and 1.5 GB RAM under Red Hat Linux release 7.3. The
programs were written in C++. The average execution times in seconds for
obtaining all the solutions of different test sets are presented in Table 1. The
results show that not only the worst case complexity of our algorithm is better
(see Theorem 4) but also its average execution time was much better using any
of the five test sets.

4 Conclusions

We have introduced a subclass of hv-convex 8-connected discrete sets, the class
of hv-convex 8- but not 4-connected sets, and investigated the reconstruction
problem in this class. We have shown that sets belonging to this class can be
decomposed into so-called S4-components which can be uniquely reconstructed.
We also introduced the concept of equality positions in order to determine these
components.
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A reconstruction algorithm has been given with worst case complexity of
O(mn · min{m, n}) and compared to a previous (more general) one given in
[2]. It is quite surprising that the assumption on a set being 8-connected but
not 4-connected makes so much improving in the reconstruction complexity (c.f.
[13]).

These results give us a better understanding of the reconstruction problems
and hopefully lead us towards designing reconstruction algorithms in broader
classes of discrete sets.
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