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Abstract. This paper proposes a set of tools to analyse the geometry
of multidimensional digital surfaces. Our approach is based on several
works of digital topology and discrete geometry: representation of dig-
ital surfaces, bel adjacencies and digital surface tracking, 2D tangent
computation by discrete line recognition, 3D normal estimation from
slice contours. The main idea is to notice that each surface element is
the crossing point of n —1 discrete contours lying on the surface. Each of
them can be seen as a 4-connected 2D contour. We combine the directions
of the tangents extracted on each of these contours to compute the nor-
mal vector at the considered surface element. We then define the surface
area from the normal field. The presented geometric estimators have been
implemented in a framework able to represent subsets of n-dimensional
spaces. As shown by our experiments, this generic implementation is also
efficient.

1 Introduction

Many applications in the image analysis field need to represent and manipulate
regions defined as subsets of n-dimensional images. Moreover, it is often nec-
essary to perform geometric measurements on these regions and on the digital
surfaces that form their boundaries. Classically, geometric estimators are defined
over frontiers in 2D or 3D images. In this paper, we present a set of tools for
the analysis of the geometry of arbitrary dimensional digital surfaces. This work
is based on a concise coding of the cells of n-dimensional finite regular grids
[8]. This coding induces a generic and efficient framework for implementing clas-
sical digital topology data structures and algorithms. We show here that this
framework is also suited to defining the geometry of digital surfaces, namely by
a careful use of digital surface tracking. Note that we do not compare our work
with geometric definitions based on a continuous approximation of digital sets.
Our topological and geometric definitions are purely discrete. Furthermore, they
are much easier to define and compute in arbitrary dimension.

Some authors define arbitrary dimensional digital surfaces as set of spels
(pixels in 2D, voxels in 3D, n-cells in nD) with specific properties [11]. However,
frontiers of regions in images are generally not digital surfaces in this sense.
Moreover, it is not clear how to extend classical 2D and 3D discrete geometry
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estimators to these surfaces. This paper is concerned with digital surfaces that
are defined as subsets of the cellular decomposition of R™ into a regular grid
(pixel edges in 2D, voxel faces or surfels in 3D). This space was introduced in
image analysis by Kovalevsky [6].

There are several approaches to defining discrete geometric estimators on
digitized objects (e.g. see [3] for a recent survey). Our approach for tangent and
normal estimation follows the basic idea of “slice” decomposition proposed by
Lenoir et. al. [I0]. Intuitively, there are n — 1 orthogonal 2D planes containing
the point of interest. The intersection of each of those planes with the digitized
object forms a contour on which a 2D tangent is computed. Lenoir builds the
3D normal as the vector product of the two extracted tangents. Tellier and
Debled—Rennesson proposed a similar technique where the tangent is defined
as a discrete line segment. This paper extends these two works to arbitrary
dimensional digital surfaces. We use the obtained normal estimator to compute
the area of a digital surface. This definition coincides with the one proposed by
Lenoir [9] in 3D.

The paper is organized as follows. First we show how to represent boundaries
of digital objects in arbitrary dimension as a set of surface elements (surfels) with
a topology. This representation allows the definition of n — 1 contours around
each surfel. Secondly we define a discrete tangent at a surfel on each of these
contours and detail its computation algorithm. In the last section we combine
these 2D information to obtain nD estimators (normal vector, elementary area,
surface area). The presented material has been implemented in nD. We show its
efficiency on some experiments. All the necessary information to reimplement it
are provided.

2 Representation and Properties of Digital Surfaces

In this paper, we are interested in computing geometric characteristics of (ori-
ented) digital surfaces that are boundaries of sets of spels. However, all the
presented material is adaptable to any kind of digital surfaces (open or not, ori-
entable or not) with little work. In this section, we assume we are working in a
finite n-dimensional image forming a parallelepiped in Z". We denote by M* the
inclusive upper bound for the i-th coordinate of any spel. All coordinates have
0 as lower bound.

2.1 Cell Coding

There is an isomorphism betwen the cellular decomposition C™ of R™ into a
regular grid and the n-dimensional Khalimisky space K™ [5]. This space is the
cartesian product of n connected ordered topological spaces (COTS). A COTS
can be seen as a set of ordered discrete points, like Z, whose topology alter-
nates closed points and open points. If we define even points of Z as closed and
odd points of Z as open, each point of K" is then identified by its n integer
coordinates, whose parities define its topological properties.
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Consequently, any cell ¢ of C" has exactly one corresponding point in K"
with coordinates (2%, ... .z 1). We propose to code any (unoriented) cell ¢ as

K
one binary word [a|z"~]...|2"[...[2"] called the unsigned code of ¢, as follows:

— The i-th coordinate z% is coded by its binary decomposition after a rightshift
(2% = 2%, div 2). We say that 2’ is the i-th digital coordinate of c.

— All coordinates are packed as one binary word (from z"~! to 2°). Every
coordinate is allocated a fixed number of bits N; given by N; = logy (M%) +1.

— The parities of all coordinates are also packed as an n-bits word a with
a=Y,(z% mod 2)2°. The word « is called the topology of c.

According to the isomorphism, cells of C™ that are k-dimensional (or k-cells)
have a topology word composed of k 1’s. The coordinate where a surfel ¢ has a
0 in its topology word is called the coordinate orthogonal to the surfel ¢ and is
denoted by L (¢).

The cell topology (dimension, open or closed along a coordinate, adjacent
and incident cells) and geometry (coordinates in Z™, centroid, trivial normal
and tangent vectors) can be computed from the code without any further in-
formation. It has been shown in [7] that most basic operations on cells (e.g.
adjacence, incidence) have an efficient implementation that is independent from
the dimension of space. All specific subsets of C" (e.g., objects, digital surfaces,
cubical complexes) have then an efficient and compact representation.

2.2 Oriented Cells, Boundary Operators, Bels, Boundary
of an Object

To define some geometric characteristics (e.g. normal vector), a digital surface
must be oriented (at least locally). It is thus convenient to associate an orien-
tation to each cell of C™. We therefore define the signed code of an oriented cell
¢ by adding an orientation bit s (0 for positive orientation and 1 for negative
orientation) to its unsigned code as follows: ‘a‘s‘x"‘l ‘ . ‘x" . .‘LUO ‘ The opposite
cell —c of ¢ is the same cell as ¢ but with opposite orientation.

With oriented cells, we can define boundary operators, which represent at
the same time how cells are incident with each others and how orientations are
propagated from one cell to another.

Definition 1. Let ¢ = ‘ik...ij...io‘s‘xnfl‘...‘x”‘...‘:EO‘ be any cell with
topology bits set to 1 on the coordinates iy,...,i5,...,%0, n — 1 > i >

> 45 > -+ > 49 > 0 and the others bits set to 0. The symbol ij
means that the bit i; is set to 0. Let 7 = (=1)*=9). The set A;,c com-
posed of the two oppositely signed cells ‘zk cdy ..iO‘Ts‘as”_l‘. . ‘xlﬂ‘ . .‘1‘0‘ and

‘ik g .io‘—TS‘l‘n_l‘. . ‘w” + 1‘. . .‘xo , is called the lower boundary of the
cell ¢ along coordinate ;. The lower boundary Ac of ¢ is then the set of cells
Ui=o,... k4, c.

The lower boundary of a k-cell ¢ thus corresponds to the set of k — 1-cells
low incident to ¢ with specific orientations (e.g. on Figure [l +¥ is the positively
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oriented 0-cell low incident to the 1-cell b along coordinate x). The upper bound-
ary V of a cell is defined symmetrically (the upper boundary is taken on topology
bits set to 0). It can be shown that this definition of boundary operators induces
that any cubical cell complex is a polyhedral complex.

In the remainder of the paper, the set O is an object of the image I with an
empty intersection with the border of I. Assume that all spels of O are oriented
positively. We merge the sets Ap with p € O with the rule that two identical
cells except for their orientation cancel each other. The resulting set of oriented
surfels is called the boundary of O, denoted by 0O. It is an oriented digital
surface, whose elements are called bels of O. This surface separates the object O
from its complement [[7].

2.3 Followers of Surfel, Bel Adjacency, Digital Surface Tracking

The bel adjacency defines the connectedness relations between bels bounding
an object. It has two nice consequences: (i) the boundary of an object can be
extracted by tracking the bels throughout their bel adjacencies [1; (ii) sets of
surfels can be considered as classical Euclidean surfaces, where one can move on
the surface in different orthogonal directions (2 in 3D). The second property is
thus essential for defining the geometry of digital surfaces. We start by defining
which surfels are potentially adjacent to a given bel with the notion of follower.
We then define two kinds of bel adjacency for each pair of coordinates.

Definition 2. We say that an oriented r-cell q is a direct follower of an oriented
r-cell p, p # +q, if Ap and Aq have a common r — 1-cell, called the direct link
from p to q, such that this cell is positively oriented in Ap and negatively oriented
in Aq. The cell p is then an indirect follower of q.

It is easy to check that any surfel has 3 direct followers and 3 indirect followers
along all coordinates except the one orthogonal to the surfel. We order the
followers consistently for digital surface tracking (see Figure [h).

Definition 3. Let b be an oriented n — 1-cell with Vb = {+p,—q}. Let j be
a coordinate with j #1 (b). The three direct followers of b along j are ordered
as follows: (1) the first direct follower belongs to A; + p, (2) the second direct
follower belongs to V ; —b" with +b" direct link in A;b, (3) the third direct follower
belongs to A; — q.

Intuitively, when tracking a digital surface, you have 3 different possibilities
for a move along a given coordinate. This is true for arbitrary dimension. The
following definition shows which one to choose at each step. It is in agreement
with the definitions of bel adjacencies proposed by Udupa [14], but easier to
implement in our framework.

Definition 4. Let b be a bel of DO, such that Vb = {+p, —q} (thus p € O and
q & O). For any coordinate j #1 (b), the bel b has one interior direct adjacent
bel (resp. exterior direct adjacent bel) which is the first (resp. last) of the three
ordered direct followers of b along coordinate j that is a bel of 0O. The bel
adjacency is the symmetric closure of the direct bel adjacency.
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Fig. 1. (a) Direct followers of a surfel b along coordinate x. (b) The two direct contours
crossing at a given surfel in 3D.

In 3D, the interior (resp. exterior) bel adjacency along all coordinates induces
the classical (6,18) bel-adjacency (resp. (18,6) bel-adjacency). Interior and exte-
rior bel adjacencies can be mixed for different coordinate pairs. This might be
useful in an application where the image data are not isotropic (e.g., some CT
scan images, confocal microscopy).

2.4 Contours over Digital Surfaces

The following definition is consistent since a direct follower ¢ of a surfel b along
a coordinate j #.L (b) satisfies L (¢) € {L(b),5}.

Definition 5. Let S be a set of oriented surfels and ¢, j two distinct coordinates.
A sequence of distinct surfels py, ..., px in S is called a direct {3, j }-contour over
Siff: ())V0 <1<k, L(p) € {i,j}, and (i) VO <1 < k, pi41 is a direct follower
of pi along the coordinate i or j different from L (p;).

The next propositions state that contours can be defined over boundaries
of objects for any pair of coordinates and that these contours can be seen as 4-
connected paths of pixels in the 2-dimensional plane that “contains” the contour
(see Figure[b for a 3D illustration). Proofs can be found in [7].

Proposition 1. Let b be any bel in 0O and j any coordinate different from
L (b). The sequence (py)o<i<k of direct interior adjacent bels starting from b and
going along either j or L (b) is a direct { L (b), j}-contour over 0. Note that po
is the direct interior adjacent bel of py.

Proposition 2. Given a direct {i,j}-contour C over a set of oriented surfels S
with C' = (p1)o<i<k, then the sequence D = (q;)o<i<k of direct links from p; to
pi+1 has the following properties:

(1) the n — 2-cells q; are closed along coordinates i and j,
(2.i) for any coordinate d & {i,j}, the d-th coordinates of q; and of qi+1 are
equal,
(2.ii) either the i-th coordinates of q; and of qi+1 are equal and their j-th co-
ordinates differ of £1, or the j-th coordinates of q; and of q+1 are equal
and their i-th coordinates differ of £1.

As a corollary, D can be seen as a 4-connected contour in Z? if we forget all the
coordinates different from ¢ and j in the cells of D.
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3 Discrete 2D Tangent over a 4-Connected Contour

From the last proposition, we can trace from any bel b n — 1 contours C;(b),
Jj #L(b), on the boundary dO. Each of these contours is a 4-connected contour
composed of edges and points in the 2D plane it spans. Bels are then contour
edges and links are contour points. For each contour C;(b), we define a discrete
2D tangent (3;(b), a; (b)) at b using a discrete line segment recognition algorithm.

3.1 Recognition of a 4-Connected Discrete Line Segment

An incremental algorithm was proposed for recognizing 8-connected line seg-
ments by Debled-Rennesson and Reveilles [4]. Tt was adapted for the recognition
of 8 or 4-connected discrete tangent lines by Vialard and by Tellier and
Debled-Rennesson [13]. We recall here the principle of this line recognition algo-
rithm in the case of 4-connected contours.

A J-connected discrete line of characteristics (a, b, ) € Z* can be defined as
the following set of discrete points [12]: {(z,y) € Z*, u < ax —by < p+ |a|+b[}.
The slope of the line is given by § while u decribes its location in the 2D plane.
The real lines of equations ax — by = p and ax — by = p+ |a| + |b| — 1 are called
the upper and lower leaning lines. A point belonging to the upper (resp. lower)
leaning line is called an upper (resp. lower) leaning point.

Let us now consider a discrete line segment. We denote by U (resp. U’) the
upper leaning point of minimum (resp. maximum) abscissa of this segment. In
the same way, we denote by L (resp. L’) the lower leaning point of minimum
(resp. maximum) abscissa of this segment.

Given a starting point on the contour, we orient the z-axis in the direction
of the following point. The initial characteristics of the line segment are (0,1, 0)
and U = L = (0,0) and U’ = L' = (1,0). Now assume that the characteristics
of the line segment are (a, b, 1) after adding m successive contour points. When
adding the next contour point (z,y), we update the characteristics of the line
according to the value r = ax — by with the rules defined in the following table.
In the three first cases the point (z,y) extends the segment without changing
its characteristics (a, b, ). The new point may just become a leaning point of
maximum abscissa. In cases (4) and (5) the segment plus the point (z,y) is still
a line segment. In case (4) (resp. (5)) the slope of the extended line segment is
greater (resp. lower) than the slope of the initial line segment. These two last
cases are illustrated in Figure @ Any other value of r indicates that the current
line segment completed by point (z,y) is no longer a line segment.

‘r:ax—by ‘U‘ (oK L‘ L’ ‘ a ‘ b ‘ o
1) p<r
<pu+lal+ b -1

(2) r=p (z,9)

(3) r=p+la[+ o[ —1 (z,y)

(4) r=p—-1 (z,y) |’ Yo — Yo |ryr — xu| axy — byy

(5) r=p+lal + 0] U (w,y)|yr —yr | —xp| axp — by
—la| — b + 1
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Fig. 2. Recognition of a 4-connected line. (a) Slope increase - (b) Slope decrease.

g

Fig. 3. Tangent line computation. (a) Initialization. (b-e¢) Growth of the tangent line
segment. (f) The contour piece is no more a discrete hne segment. The tangent line is
thus the discrete line segment obtained at the previous step.

3.2 Discrete Tangent Computation

The tangent line segment at a contour edge e can be defined as the longest line
segment corresponding to the contour and centered on e. This definition is a
slight adaptation of the one given in [2]: here the discrete tangent is centered on
a contour edge instead of a contour point. Computing the discrete tangent at
e is performed by adding successively pairs of points, one of negative abscissa
and one of positive abscissa, to a discrete segment. The preceding line segment
recognition algorithm is therefore slightly adapted so that points are added al-
ternatively to the front and to the back of the segment. The rules for adding a
point to the back are very similar to the ones presented in the previous table.
Figure @ illustrates the tangent computation algorithm.

Definition 6. Given a bel b and a coordinate j #1 (b), the 2D tangent vector
is defined as (8;(b), (b)) = (b,a) where (a,b,p) are the characteristics of the
tangent line segment computed over the contour C;(b).

4 Geometric Measures

In this section, we define the normal vector to and the area of a bel from its n—1
2D tangent vectors. We assume that (eg,...,e,—1) is the trivial orthonormal
basis of R™.
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4.1 Tangent Vectors and Plane at a Bel; Normal Vector at a Bel

The orientations of the tangent vectors in the following definitions come from the
definition of boundary operators (see computation of 7 in Definition [I]) and from
the fact that contours are implicitly oriented by the sequence of direct links.

Definition 7. Let b be a bel of 00. Let i =1 (b) and j a coordinate dif-
ferent from i. The j-th tangent vector ¢; (b) at b is the n-dimensional vector
(=) B(b)ej + (1) ey (b)e;.

Those n — 1 tangent vectors at b span an n — 1-dimensional plane since they
are linearly independent. We define the tangent plane at b as the affine plane
parallel to these vectors and containing the centroid of b. It is now easy to define
the normal vector at b.

Definition 8. The normal vector n(b) at bel b on 0O is the unit vector orthog-
onal to any vector of the tangent plane at b and pointing outside the object O. It

is easy to find that n(b) = % with Vj #L (b),u(b) - e; = (—1)"J gjgsg, and

fori=1(b), u(b)-e; = (—1)""¢"1

4.2 Elementary Area of a Bel; Area of a Boundary

As the boundary of an object is made of bels, each bel has a given contribution
to the area of the whole boundary.

Definition 9. The elementary area do(b) of a bel b is defined as do(b) =
1/(22;& In(b)-eq|). The area of the boundary of O is then the sum ), 50 do(b).

The following theorem justifies the previous definition by examining the ele-
mentary area of each bel of a 3D plane.

Theorem 1. Let U = (bc,0,0),V = (0,ac,0), W = (0,0, ab) be three points of
R3 with a,b, ¢ positive integer numbers. The continuous plane P containing the
triangle UVW follows the equation ax + by + cz = abc and its normal vector n
18 thus ﬁ(a, b,c). The digital plane Q, digitized version of P, follows the
equation abc < ax + by + cz < abc 4+ a + b + ¢, and forms the vertices of a set
of bels in C3. Then the elementary contribution to the area of each bel of Q is
1/(n-eg+mn-e+n-ey).

Proof. Each bel of () can be projected onto the plane parallel to it and going
through the origin. We restrict @ to the bels included in the positive octant.
The number of bels m of @ is therefore obtained by counting the projected bels
on each of the three planes of projection. There are acab/2 bels projected on
x =0, bcab/2 bels on y = 0 and beac/2 bels on z = 0 so that m = %< (a+b+c).
Now this subset of @) corresponds exactly to the triangle UVW. The elementary
area of each bel of @ is equal to the total area of the triangle UVW divided
by the number of bels of @) that are part of the digitization of UVW. The area
of UVW is given by the identity UV AUW = abe(a, b, ¢) = 2area(UVW)n. A
short computation concludes the proof. a
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Table 1. Comparison between discrete geometric estimators and expected geometric
measures. The object under consideration is a ball of increasing radius. For each bel b,
we measure the positive angle ¢ in degree between the expected normal vector to the
sphere and the discrete normal n(b). Mean value and standard deviation of ¢ from 0
are listed for 2D, 3D and 4D balls of increasing radii. The estimated area of the discrete
balls, their number of surfels, and the computation time of the normal vector fields are
also listed (tests made on a Celeron 400Mhz with 128Mbytes of memory).

Object 2D ball 3D ball 4D ball
r=50/r=1250/ r=20| r=50 r=100 r=10] r=30
nb surfels 404| 10004|| 7542]47070(188502|/33352|904648
normal computation time (ms) 0 380|| 170 1230/ 6210|| 1070| 29960
mean value of ¢ 2.24° 0.22°)13.82°| 2.19°| 1.51°|| 6.75°| 3.98°
std. dev. of ¢ from 0 6.47°| 1.30°||5.76°| 3.46°| 2.34°|| 8.09°| 5.15°
area / expected area 1.011| 1.000{[0.994| 0.997| 0.998|| 1.042| 1.042

(a) (b)

Fig. 4. 3D exemples of normal vector computations. Surfaces are rendered with flat
shading. (a) Sphere of radius 30 with trivial normals of bels. (b) Same object but with
discrete normals. (c) Cube minus sphere with discrete normals.

This theorem can be extended to arbitrary dimension using the n-dimensional
external product, since it also provides an area mesurement of n — 1-dimensional
parallelograms. The preceding exposition is sufficient to understand the link
between normal vector and elementary area of a bel without too cumbersome
notations.

A corollary to this theorem is that if the discrete object of interest is the dig-
itization of a continuous object with good properties (boundary C!), then the
area of the discrete object tends toward the area of the continuous object as the
discretization resolution increases. Our experiments have confirmed this theoret-
ical result. Table [Tl shows that the proposed discrete estimators of normal and
area are consistent with expected values. Figure Hlillustrates the computation of
normal vector field for two different objects.

5 Conclusion

We have defined several geometric measures (tangent plane, normal vector, ele-
mentary area, surface area) for boundaries of n-dimensional objects and we have
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shown how to compute them efficiently. An immediate extension of this work is
the definition and computation of the mean curvature field of n — 1-dimensional
digital surfaces. Our main motivation is the development of a multidimensional
discrete deformable model for image segmentation. Local area and curvature
measurements are used so as to maintain a regular and smooth shape during the
evolution of the model towards boundaries of image components.
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