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Abstract. Digital projections are image intensity sums taken along di-
rected rays that sample whole pixel values at periodic locations along the
ray. For 2D square arrays with sides of prime length, the Discrete Radon
Transform (DRT) is very efficient at reconstructing digital images from
their digital projections. The periodic gaps in digital rays complicate the
use of the DRT for efficient reconstruction of tomographic images from
real projection data, where there are no gaps along the projection direc-
tion. A new approach to bridge this gap problem is to pool DRT digital
projections obtained over a variety of prime sized arrays. The digital
gaps are then partially filled by a staggered overlap of discrete sample
positions to better approximate a continuous projection ray. This paper
identifies primes that have similar and distinct DRT pixel sampling pat-
terns for the rays in digital projections. The projections are effectively
pooled by combining several images, each reconstructed at a fixed scale,
but using projections that are interpolated over different prime sized ar-
rays. The basis for the pooled image reconstruction approach is outlined
and we demonstrate the principle of this mechanism works.

Keywords: Discrete Radon transform, tomographic image reconstruc-
tion.

1 Introduction

The Discrete Radon Transform (DRT) maps discrete image data I(x,y) into
discrete digital projections R(t,m) that closely resemble continuous space inte-
gral Radon transforms [1]. The inherently discrete nature of the sampling and
representation of projections makes the DRT an attractive tool to transform
and interpret digital data [2]. In contrast with the case for continuous space,
the digital projection mechanism requires no data interpolation, as each digital
projection (labelled by index m) sums whole pixel values sampled along its ray
direction. The samples are oriented at integer array displacements of x,, hori-
zontally and y,, vertically on the lattice at each translate position (¢). Arrays of
prime size [3] generate unique pixel sampling patterns for each DRT projection.
This means that digital images can be projected and reconstructed exactly with
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the DRT using only simple (and hence fast) addition operations. Basic properties
of digital projections for the DRT are reviewed in [45].

The prime based DRT has been applied successfully for the reconstruction
of tomographic images from projections based on x-ray transmission [6l7]. In
[7] linear 1D interpolation was used to match each continuous integral ray to
a corresponding discretely sampled digital ray in a DRT with expanded trans-
lates, called k-space, R(k,0). The inverse DRT was then used to reconstruct the
image using the digital projections inferred from the analogue projection data,
after mapping R(k,0) back to R(t,m). The reconstructed image size is a free
variable in such a process. The major disadvantage of this DRT based inversion
of analog projections is that accurate image reconstruction requires a very large
final image size (or, at best, calculation of a sub-sampled result based a large
image). The size of the gaps between samples on digital rays scales as the square
root of the image size [4], so that, in increasingly large images, the finite gaps
have diminishing importance. The computational efficiency of the DRT method
is, however, rapidly overwhelmed by the additional computation required to re-
construct large format digital images.

In this paper, we look at reconstructing images using the same DRT method,
but by applying it over a relatively small range of neighbouring prime array sizes,
to avoid the need to reconstruct large arrays.

Linear interpolation is a poor approximation to match digital and continuous
rays. Direct interpolation from the rays of a sinogram into k-space at each pro-
jection angle is complicated by the jumbled ordering and variable spatial overlap
of the digital rays. A more direct approach to solving this interpolation problem
is developed in [§]. In this paper, the aim is to compensate for the poor approxi-
mation of linear interpolation by pooling the reconstructed images derived from
appropriately resampled digital projections.

Section [2] establishes the link between the prime array size and the pattern
of digital ray sampling for any given digital projection. Section 3 shows that the
pattern of sampling for a projection x,, : y,, repeats for primes p’ = p + Z,,ym
and that this repetition limits the range of image array sizes that can be usefully
pooled. Section @l shows examples of digital projections based on different sized
images. Comparative image reconstruction results using the pooled projection
approach are given in section [, followed by discussion of the limitations of this
technique and conclusions in section

2 Wrap Factors on Prime Arrays

A digital projection with label m samples image pixels on adjacent rows of the
image data that are always m horizontal units apart, so that the pixels located
at (z,y) and (z +m,y + 1) are always part of the same digital projection. We
take (0,0) to be the image origin, with positive displacements in x increasing to
the left with y increasing in the downwards direction. Wherever (x +m) > p,
the displacement is wrapped modulus p to a new displacement on the same row.
Each digital projection m is comprised of a set of parallel segments or digital
rays. These rays link the nearest neighbour pixels of a projection. The samples in
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a ray for projection m are located at regular intervals x,,, units apart horizontally
and y,, units apart vertically on a square image array of size p. The sample gap,
given by d2, = 22, + y2,, is the minimum distance between samples along that
ray direction. The x,, and y,, values must be relatively prime, [9] outlines how
the set of z,,, and y,, values for any p are drawn from the Farey series in number
theory. The perpendicular separation between digital rays is given by p/d,, with
the horizontal offset between wrapped rays being p/ym,.

We are interested in 0 < m < p, as m = 0 and m = p are defined respectively
as row and column projections. The integer variable ¢, 0 < ¢ < p, defines the
horizontal translation of a digital projection. For square lattice arrays, with
Tm < Ym, there are four symmetric digital projections, mg, mi, mo and ms,
corresponding to T, : Yms Ym : Tmy, —Tm : Ym and —y., : T, with projection
angles 60,,, 90—0,,, 90+ 6,, and 180 —#6,,,. It can be shown that m3 = p—mg and
mg = p — my as these projections form complementary angles. The symmetric
projections for each x,, : ¥y, are important as they share symmetric patterns
of pixel sampling. The values x,, and vy, are solutions of the digital linear
projection equations [4], hence

MoYm = QP + Ty (

M1y = 1P + Ym (

MoTry, = Q2D — Ym (1c
(

Mm3Ym = X3P — Tm,

where the four constants a; are positive integers indicating how many times the
translation wraps around the array of size p to get to the nearest ray sample
location. For example, (a) means that to project from the sample at (0,0) to
the nearest digital ray sample at (2, ym) in y,, horizontal steps of myg, requires
ap wraps around the right edge of the image of size p.

Figure [[ shows an example where z,, = 2, y,, = 13 for m = 422 on a 457 by
457 array. The rays wrap 12 times for the samples to be nearest neighbours.

The points sampled by the digital projection x,, : y,, are characterised com-
pletely by some mg for a particular p, that is (2, ym) < (mo, p). Whilst there
are many possible ways to have oy wraps on an array of size p, the set {«;}
described by ([@al — [Odl) defines a particular and distinct pattern of sampling of
the digital rays across the image space to form that projection. Combining ([[al

ag+ a3 = Ym (23)
oy +ag = 24, (2b)

we see that each {a;} characterises an z,, and y,, pixel sample pattern inde-
pendently of p. For the 2:13 ray, {a;} = {12,1,1,1}.

The values taken by the {a;} in (2a] - BL) are further restricted, as o and
o cannot be factors of z,,, and, similarly, oy and as cannot be factors of y,,. To
prove this, assume, for example, that z,, = ja;. Then equation (Ih) implies that
« is also factor of y,,. For the gap d,, to be a minimum distance, however, .,
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Fig. 1. Pixel locations (white dots) in a 457 by 457 image array that are sampled by
the digital projection 2:13 (mo = 422), for translate ¢ = 200. Digital rays follow the
lines joining nearest neighbour pixels with ag = 12.

and y,, must be relatively prime, so the assumption must be false. For similar
reasons, equation (2H]) implies a; and s must be relatively prime, as must be ag
and ag. Then, like the ordered set of x,, /y,, fractions, {1/, Tm /Ym, aa/as}
also form a Farey-like sequence of relatively prime ratios [9], with z,, and y,,
being mediants of the wrap factors.

3 Primes with Common Wrap Factors

Each allowed {«;} defines a distinct pattern of sampling for the digital rays that
comprise the projection x,, : y,, of an image with size p. An array of size p’
that has the same {«;} will have the same relative pixel sampling pattern for
the projection @, : ym, but with the separation of digital rays scaled by p’/p.
Let the image array size change from p to p’, with p and p’ having the same
{a;} for projection x,, : yn,. Then equation becomes muyy, = aop’ + Tp,.
Defining Amg = m{ — mgy and Ap = p’ — p, then Amg and Ap are related by

Amoym = agAp, (3a)
and similarly,

Amix, = a1 Ap. (3b)

Equation requires that Ap = ny,, for some integer n = Amg/ap, as
Amy is always an integer and «q is not a factor of y. Equation ([BH) requires
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Fig. 2. Pooled pixel locations (white dots) for three array sizes, 457 - 26 (mo = 398),
457 (mo = 422) and 457 + 26 (mo = 150), sampled by the digital projection 2:13,
each with ¢ = 200. The array shown is a 431 by 100 image subset, with common origin
(0,0). The digital rays for the three array sizes have the same sampling pattern scaled
to the width of each array.

that Ap = n'x,, for some integer n’. Taken together, these constraints mean
that the lowest possible value of Ap for p and p’ to have the same {o;} is then
Ap = Y. Hence
p/ =Pt TmYm (4)
defines the array size nearest to p that has the same {a; } for the digital projection
Ton ¢ Ym. I T, and g, are odd, then, since p is odd, the nearest prime p’ with
the same wrap factors is at least p’ = p + 22,y The value of p’ given by (H)
may not be a prime number.
Figure 2 shows that the 2:13 digital rays for the three arrays sizes, 457,457 +
26, each with the same {a; }, have the same pixel sampling pattern, in proportion
to the array width.

4 Coincident Projection Segments

Suppose the translate of one ray of a digital projection at x,, : y,, in an image
of size p is aligned with the translate of one ray at ,, : ¥, in the size p’ image.
If p and p’ have the same {«;}, then all of the samples along the aligned rays
match exactly within the array of size p, as shown in Figure[2

The perpendicular separation between digital rays is p/d,, and the horizontal
separation of the rays is p/y,,. The digital rays immediately adjacent to the
aligned ray for array sizes of p and p’ = p + 2y, will have a perpendicular
difference in separation, d, given by d = (p’ — p)/dm, so that

d — "I:’HI/:Z/’"L . (5)
VT, Ty,

The integer horizontal displacement of the rays beside the coincident ray is
=+ x,,. These displaced rays form part of a new projection translated by x,, away
from the ray with the gaps we are trying to fill, so that blending arrays with
p' = p £ 2,y will not fill the gaps. However all of the primes between p and p’
will have a perpendicular offset less than that given by (&) and will have pixels
that sample the space between the original ray samples and those of the bounding
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Fig. 3. Pooled digital rays for the projection 2:13, aligned at ¢ = 200, for the nine
prime image array sizes 431 < p < 483, shown as a 431 by 100 array subset, with (0,0)
as common origin.

rays for p + x,,ym. As the array sizes are chosen to be prime, the sample locations
for each blended digital ray will be unique. For those parallel digital rays further
away from the aligned ray, the separation between rays belonging to p and those
belonging to p’ become progressively more and more out of alignment (the n'®
parallel ray from the aligned set has a horizontal spread of + nx,,).

Figure [3] shows, as an example, the pattern of pixels sampled by the nine
prime array sizes between 431 through 483, for the projection 2:13, each drawn
with a common translate, ¢ = 200. The image shown is a 431 by 100 subset of
the nine image arrays, with (0,0) as a common origin. Here z,,y,, = 26, so the
array sizes are chosen to lie inside the range 457 + 26. The samples for the ray
through ¢ = 200 match exactly for all these primes. The size of the gap between
sample points along the ray direction is d,, = /173 ~ 13.15. The adjacent rays
immediately either side of the aligned ray at t = 200 have 9 sample points inside
=+ d, where here d =~ 1.98 pixel units (the horizontal separation is x,, = 2 pixel
units). The nine sample locations are distinct and randomly spread inside the
area of size 2dd,,. In this example, the nine pooled projections fill about 1/5 of
the area bounded by the gap distance between digital ray pixel samples and the
limiting rays set by p + ZmYm-

Asp' =p + x,,y,, sets limits for those primes with digital rays that would
at least partially fill the gap between digital samples for p, it matters how many
primes fall between p — x,,y,, and p+ x,,¥,,. Each of those primes is guaranteed
to have a different {c;} to that for p. When more primes lie within this range, the
gap is filled by more pixels. This results in a better approximation by the pooled
digital rays to an integral projection passing through the same image space. As
the number of primes lying within Ap will vary with p, not all possible {«;}
values will necessarily occur. For the projection 2:13, only 3 of the 12 possible
distinct {a;} sets do not occur between 431 and 483. Some reconstructed image
arrays will pad out gaps in given projections better than others, simply because
more primes fall inside the same Ap interval.

5 Reconstruction of Images

The pooling of digital rays as shown in Figure B] enables the sum of these rays
to be more correctly identified with the continuous space rays in real projection
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data at the corresponding angle and translation. Figure [l makes it clear why
linear interpolation works so poorly with the DRT method when reconstructing
a single image using a small array size.

Projections can be pooled in image space rather than in k-space or t-space. If
images are reconstructed at a constant scale, but from data sourced over arrays
of different prime size, then the same process of staggered ray sampling occurs,
but we see the effects in the reconstructed image rather than in the interpolated
projections.

If the original real data sinogram is first padded with zeros and then recon-
structed using the method described in [7], the result is an image at the same
physical scale as the unpadded data, but in a larger frame. Adding several recon-
structed images that are appropriately padded, cropped and registered, emulates
the pooling of digital rays in reducing the effects of the ray gaps. The method
to achieve the appropriate image scaling is described next.

A sinogram comprised of N rays at M angles is first reconstructed to an
image of size p by p. The same sinogram, padded symmetrically left and right
by Np'/(2p) zeros (where p’ > p), can be used to reconstruct an image of size
p’ by p’ but will retain the image data at the same physical scale as for the p
by p image. Averaging these two images after registration (shifting the origin by
(p' —p)/2 in x and y) will be equivalent to blending the digital rays as sampled
over p and p’. To fill as much of the gap in the digital rays as possible, the
reconstructed images from all primes between p — ¥y and p + Y would
be averaged.

This process should be applied individually for each projection x,, : y,,. To
avoid cycling through all p projections, we choose p’ = p+x s yp where zps @ yas
is the largest product for the projections reconstructing at size p. This ensures
the largest gap lengths are pooled sufficiently (but will also “over” average for
the smaller gap lengths). Figure Bh shows a 601 by 601 image, reconstructed
using the prime-based DRT, from an x-ray transmission sinogram of 511 entries
at 180 uniformly spaced angles. For p = 601, x,, : y,, ranges from 1:24 to 17:18
so that xpypy = 306. Figure @b shows the corresponding reconstructed image
result for the average of 10 images reconstructed using 10 prime array sizes from
601 to 653. Figure Bt shows the average of 40 reconstructed images using the 40
prime array sizes from 601 to 863. Figure[dd shows the same image reconstructed
once but for a large array size (p = 4091). The projections were subsampled by
8:1 to produce a 512 by 512 final result. Figure @H is very similar to the result
obtained using standard back-projection methods [7].

The reconstruction artefacts evident in Figure Hh arise from mismatching
digital and analog projection rays and show the effect of the digital ray gaps.
These artefacts are reduced in Figures @b and k as the pooling of digital projec-
tions produces on average a better interpolation result for each projection. The
artefacts produced at each different prime image size are effectively random and
cancel in the summed result.

The quality of the images in Figures @b — c is still well below that obtained by
more conventional reconstruction, such as Figure BHd. The errors arise not only
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(2) (b)

(c) (d)

Fig. 4. a) Prime DRT image reconstructed for p = 601, from 511 x-ray projections at
each of 180 equally spaced angles. b) Average of 10 constant scale images reconstructed
using the pooled DRT projection method, for primes from 601 to 653. ¢) Average of
40 constant scale images reconstructed using the pooled DRT projection method, for
primes from 601 to 863. d) DRT reconstruction for a single large final image format
(p = 4091), sub-sampled by 1:8 to produce a 521 by 5 12 image.

because the digital ray gaps are only partially filled, but also from the limitations
of the image scaling method used to pool the digital rays. Pooling projections in
the spatial or image domain requires that the image scaling and registration be
as precise as possible for each prime array size to avoid blurring image details.
The padding of the sinogram data was done to the nearest integral number of
bins to avoid the effects of redistributing the original x-ray projection data. The
pooling of digital rays should also be optimised for each x,, : vy, projection
value rather than over-averaging the rays with small gaps. This produces no



Intertwined Digital Rays in Discrete Radon Projections 493

additional benefit for the small gap projections but makes them very sensitive to
the scale and registration problems outlined above. There was also no efficiency
gain in applying the pooled image approach, as the combined time to scale and
compute multiple reconstructed images, such as Figure Hk, was greater than
the time required to produce a single, higher quality result from a large prime
reconstructed image (such as that in Figure[id). See [7] for relative reconstruction
times as a function of image size.

6 Conclusions

We have shown that digital rays from digital projections that are sampled over
different prime array sizes can be pooled to better approximate integral pro-
jection rays. A distinct sampling pattern for the digital rays at each digital
projection angle was associated with the uniqueness of each set of array wrap
factors, {c;}. The limit on the range of array sizes that can be usefully pooled
was established and estimates were given for the degree of gap filling by the
staggered ray samples.

The pooling of digital rays through the indirect method of spatial averaging
of scaled images gave some improvement in image reconstruction quality for the
prime-based DRT method. However this was only enough to make this approach
interesting, rather than providing a practical alternative to the “large image”
DRT approximation to reduce the ray gap problem. Solving the inverse problem
of direct distribution of the content of an integral projection ray amongst the
component digital rays in k-space for any prime p, is considered further in [§].
Nevertheless, the relative improvement in image quality seen here offers a proof
of principal that the approach of pooling digital rays does work.
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