
A System for Modelling
in Three-Dimensional Discrete Space

Andreas Emmerling, Kristian Hildebrand, Jörg Hoffmann,
Przemyslaw Musialski, and Grit Thürmer

Computer Graphics, Visualization, Man-Machine Communication Group
Faculty of Media, Bauhaus-University Weimar, 99421 Weimar, Germany

{andreas.emmerling,kristian.hildebrand,joerg.hoffmann,
przemyslaw.musialski,grit.thuermer}@medien.uni-weimar.de

Abstract. A system for modelling in three-dimensional discrete space
is presented. Objects can be modelled combining simple shapes by set
operations to obtain large and regular shapes. The system also supports
aspects of free-form modelling to generate organic and more complex
shapes. Techniques known from image processing are applied to trans-
form and to smooth objects. The basic geometric transformations trans-
lation, rotation, scaling, and shearing are provided for discrete objects.

1 Introduction

The growing interest of computer graphics in the three-dimensional discrete
space opens up a new application field of volume data: volume-based interactive
design and sculpting [10,16]. This requires a new modelling approach based on
the discrete space which deals with the generation and manipulation of synthetic
objects. If a solid object is represented in continuous space by its boundary
surfaces, e.g. by a polygon mesh, the manipulation of local geometric properties
may effect the entire surface representation. In contrast, such local manipulations
of objects can be easily performed if the objects are represented in discrete
space. Moreover, objects modelled in discrete space can be directly merged with
measured data, e.g. as obtained from computed tomography. This is frequently
necessary in applications of virtual reality in medicine [17].

A number of systems have been already developed for modelling in discrete
space, which are mainly concerned with special cases either in the way of mod-
elling [2,4] or in the representation of the discrete space [13,5,9]. Rastering geo-
metric descriptions of continuous objects is one approach. For example, object
boundaries are modelled using NURBS [19]. The continuous representation of the
boundaries is voxelized to obtain a set of voxels as discrete representation. Mod-
elling with conventional surface based modellers and representing the resulting
objects in discrete space tries to make advantage of both kinds of representa-
tion [6,19,11].

Less hybrid systems have been developed using Constructive Solid Geometry
(CSG) [15,2,3], whereas CSG is not always related to classical solid geometry.

I. Nyström et al. (Eds.): DGCI 2003, LNCS 2886, pp. 534–543, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

A System for Modelling in Three-Dimensional Discrete Space 535

Instead, simple elementary objects are used to modify a model in the context of
free-form modelling by adding voxels to or subtracting voxels from an object by
set operations. This modelling technique is often called volume sculpting. Free-
form modelling is well-suited to model objects which cannot be easily described
by basic geometric shapes.

Another enhancement of the CSG approach is the idea of sweeping objects. A
volume can be created by sweeping a two- or three-dimensional template along
three-dimensional trajectories [1,18]. Sweeping gives good results if accuracy is
significant since the movement is done along a predefined continuous curve.

There exists another extension of CSG for volume graphics: Constructive
Volume Geometry (CVG) [8,7] in which the objects are represented by their
scalar fields. In case more than one object occupies the same voxel their scalar
values, e.g. colours, are adjusted in this voxel.

We have been developing a system for modelling in three-dimensional discrete
space to experiment with different modelling approaches. In the future, we want
to have a modelling system which relies on the advantages of representing objects
by volumetric data combined with a functionality and an easy handling known
from modelling in continuous space. The system works consistently in discrete
space. We never make use of an immediate continuous representation of the
objects as other systems do, e.g. [19]. The first results of our investigation are
presented in this paper.

The paper is organized as follows: Section 2 outlines the fundamentals of the
modelling system and states our basic assumptions. Section 3 deals with the
properties of objects in the system. Section 4 is concerned with the functionality
provided by the system to generate and manipulate objects. Afterwards, the
implementation and the interface are briefly described in Sect. 5. Finally, Sect. 6
summarizes the paper.

2 Modelling Approach

The n-dimensional discrete space ZZn is constituted by the n-dimensional array
of points with integer coordinates in the Cartesian coordinate system. An object
in discrete space is a subset of ZZn. There exists another approach to define
objects in discrete space based on the assumption that the discrete space is a
tessellation of the continuous space: a point in ZZn is assumed to represent an n-
dimensional unit cube. In ZZ3, such a unit cube is called voxel. If each unit cube
has homogeneous properties, the two representations are basically exchangeable
in volume modelling.

We are interested in modelling of solid objects in discrete space, i.e. an object
in discrete space has homogeneous properties such that each point of the object
has the same properties, e.g. colour. As stated above, an object in discrete space
is assumed as a set of points of ZZn. Especially in three-dimensional discrete
space, an object is a set of voxels. A scene is a set of objects placed in the
discrete space, whereby each point of the space is either empty if belongs to
none object, or it is full, then it belongs to exactly one object.

536 Andreas Emmerling et al.

Fig. 1. Compound object.

root

desk

desk-top monitor
lamp

sheet
pencil

mug

workplace

tools

left
table-leg

right
table-leg

cross-
beam

base

Fig. 2. Object hierarchy.

The system supports two basic modelling approaches: on the one hand, there
are CSG tools to generate and manipulate large regular shapes by set oper-
ations with basic geometric shapes. Such shapes require also basic geometric
transformations, e.g. translation, rotation, scaling, and shearing. On the other
hand, there are tools for free-form modelling to obtain organic and more complex
shapes. These approaches are described in detail in Sect. 4.

Modelling complex objects or scenes containing a rather large number of
objects requires the possibility to compound, decompound and recompound ob-
jects. For this reason, our system supports an object hierarchy which can be
dynamically changed by the user.

Morphological operations are provided to smooth small details of objects and
to identify the hull of objects. How these operations are applied for modelling is
described in the Sect. 4.4.

3 Object Properties

In our modelling system we consider a finite subset V of ZZ3 which we want to
call volume buffer subsequently. More precisely, V is a regular three-dimensional
array of points. As stated in the previous section, an object O in our modelling
system is a subset of ZZ3, which is located in V such that O ⊂ V .

We need some properties of O for the object management and for an effi-
cient processing of O. The set O has a certain size |O| which is expressed by
the number of points of O. There is no requirement on the connectivity of O.
However, connectivity of an object is kept by the transformations. For example,
if an object is a connected set and has no holes before a rotation than the object
must have the same properties after a rotation. For processing, each object O is
associated with a unique identifier which is assigned by the system and is saved
in the volume buffer at the position of the voxels which belong to O. Additional
meta data like name, colour, and density complete the object representation.

Each object has a certain position in the object hierarchy. An object repre-
sented by a leaf in the hierarchy is a simple object which cannot be decompound

A System for Modelling in Three-Dimensional Discrete Space 537

Fig. 3. Views of a Lego block. Fig. 4. Olympic games.

further. In contrast, an object is a compound object if it is the result of grouping
a number of simple or compound objects. Then the object is represented by an
inner knot in the hierarchy. The properties of a compound object like size and
bounding box depend on the simple objects from which the object is composed.
The object hierarchy for the example in Fig. 1 is illustrated in Fig.2. For exam-
ple, the object desk is a compound object and the object desk-top is a simple
object. The root-knot is pre-defined by the system. Any object which is created
in the volume buffer is per default a child-knot of the root, i.e. it is a simple
object which does not belong to any compound object. The hierarchy can be
changed interactively by the user.

4 Generation and Manipulation of Objects

4.1 Generation, Deletion, Set Operations

Simple objects can be generated by rastering basic geometric shapes, e.g. sphere,
cylinder, cone or cuboid, and combinations of them. The second way to obtain
an object is by setting the voxels of this object one-by-one, which is not very
efficient for large objects. A third way is the import of binary data, e.g. from
medical imaging, into our system. This data can be manipulated subsequently
in the same way like synthetic data. Of course, all voxels of an object can be
deleted at once after the object has been selected. Alternatively, each voxel
can be deleted separately. The set operations union, difference and average are
provided by the system to combine single objects as well as compound objects.
An example is presented in Fig. 3 which is the result of combining simple shapes
with set operations.

4.2 Templates

Another way of generating an object is to define a three-dimensional template
T ⊂ ZZ3, which can be viewed as three-dimensional pencil that is moved in

538 Andreas Emmerling et al.

(d)(a)

A

(b)

A-1

(c)

Fig. 5. Rotation by −π/4: (a) original object O (grey squares), (b) result after rotating
each point of O (dots) and O′ (grey square) after nearest neighbour rounding, (c)
original object O (grey squares) and relevant points of the output image after inverse
transformation (dots), and (d) O′ (grey squares).

space. The voxels which are hit by moving T belong to the object. A template T
can also be used like an eraser. Then the voxels which are hit by moving T are
set to empty. Any simple object can be used as template. In this way the user is
able to define his own tools by connecting dynamically an object with one of the
operations fill or erase. This is a very natural way of modelling and is well suited
for free-form modelling. Figure 4 shows an example for free-form modelling. The
poles and the slate in this Figure are modelled by shifting a template.

4.3 Geometric Transformations

Geometric transformations are important for placing and manipulating objects.
At the current state, our system provides the affine transformations translation,
scaling (and with it also reflection), rotation, and shearing. Applying the corre-
sponding transformation matrix A to each point of an object O works well for
the translation. The other transformations cannot be done in this way since holes
may appear in the transformed object. This problem is illustrated in Fig. 5 by
an example in two-dimensional space: the object O is rotated by −π/4 around
the center of the lower left point of O. Denote the result with O′. In Fig. 5(a) the
points of original object O (grey squares) and with their actual representation in
ZZ3 (little dots) are shown. Figure 5(b) illustrates the result after rotating each
point of O separately. The grey squares in (b) show O′ after nearest neighbour
rounding. There arises a hole in O′ which does not exist in the original object.

To solve the problem of holes, we use a common approach of image processing
which has been adapted to volumetric image processing [12]. The basic idea is to
successively fill in new values at each position of the output image. For this, we
have to reverse the transformation by inverting the transformation matrix and
apply this matrix A−1 to each point of the output image and round the result
to their nearest neighbours of ZZ3. This is illustrated in Fig. 5(c) and (d) for our
example. For simplification only the points of the output image which hit O are
illustrated by dots. Figure 5(d) shows O′ (grey squares). Note that in O′ arises
no hole. We have adapted this approach for our purpose keeping in mind that
we want to compute these transformations for separate objects only and not for
the entire volume buffer.

A System for Modelling in Three-Dimensional Discrete Space 539

A-1
OB

(b)(a)

OB’

S(B’)O

Fig. 6. Rotation by −π/4: (a) original object O (grey squares) and the points of
S(B′

O) after the inverse transformation (dots and crosses), (b) points of S(B′
O) (dots

and crosses) and O′ (grey squares).

To determine O′, one could apply A−1 to each point of V . In general, this
would be very inefficient. Therefore, the remaining problem is to identify the
subset of V , in which the transformed object O′ is located. Assume O ⊂ V and
O′ ⊂ V . In Sect. 3, it was stated that O is associated with its bounding box BO

which fully includes O. In fact, a bounding box can be viewed as a continuous
cuboid. This is illustrated in Fig. 6 for an example in two-dimensional space:
again, the object O is rotated by −π/4 around the center of the lower left point
of O and the result is denoted with O′. In Fig. 6(a) the points of O (grey squares)
and its bounding box (thicker lines) are illustrated. Apparently, O′ will be also
enclosed by the cuboid which represents its bounding box after this cuboid is
transformed. Let us denote this transformed cuboid with B′

O. We only have to
transform the corner points of BO with A to obtain B′

O. Then we determine
the points of V which belong to the supercover of B′

O including the interior
points. These points of the example in Fig. 6(b) are surrounded by a thick line.
Denote this set of points S(B′

O) and assume S(B′
O) ⊂ V . Finally, we calculate

the inverse transformation of each point q ⊂ S(B′
O). If the nearest neighbour of

qA−1 is in O then q ⊂ O′. In Fig. 6, the points of S(B′
O) which belong to O′ are

marked with crosses.
This basic approach for transforming an object in ZZ3 can be applied when-

ever the inverse transformation is known. One should keep in mind, that this is
not always the most efficient way, like for the translation. The examples shown
in Fig. 7 and Fig. 8 are modelled with simple geometric shapes which were
transformed by rotation, shearing, scaling, and translation.

4.4 Morphological Operations

Our system provides a smoothing function to reduce tiny details of objects. We
apply morphological filtering well-known from image processing for this pur-
pose [14]. A morphological transformation is given by the relation of the set of
points in question with another (smaller) set of points called structuring element.
Morphological filtering in digital image processing is done by the two elementary
functions: erosion, dilation, and combinations of them. Erosion shrinks objects
by smoothing away the boundaries of an object. Dilation expands objects, fills
small holes and connects disjoint parts of an object. Combinations of these func-
tions are used to smooth objects. These combinations are opening and closing.

540 Andreas Emmerling et al.

Fig. 7. Stadium. Fig. 8. Starship.

Fig. 9. Smoothed scene. Fig. 10. Hollowed cylinder.

Opening is defined as erosion followed by dilation and closing as dilation followed
by erosion. We applied a discrete sphere as structuring element, i.e. a voxelized
sphere with a user-defined diameter. However, other structuring elements, e.g.
cubes, could be used as well. Figure 9 shows an example for the result of a
morphological closing. The lower left side of the image shows the scene before
smoothing and the upper right side shows the result after the closing.

Furthermore, we use the result of the erosion to hollow out objects, i.e. to
delete the interior of an object. As said above, erosion removes the boundary
of an object, i.e. some kind of shell is subtracted from the original object O.
The thickness of the shell depends on the structuring element which is applied
for the erosion. To hollow out O, the result of the erosion is subtracted from O
such that the shell of O is kept. The example of a hollowed cylinder with bases
removed is shown in Fig. 10. The left side of the image shows the shell after
hollowing the entire cylinder and the right side shows the result after hollowing
the shell with a smaller structuring element.

The morphological operations as described above turned out to be a valu-
able tool for modelling. The smoothing is particularly important for free-from
modelling and hollowing out objects is frequently useful for modelling regular
shapes.

A System for Modelling in Three-Dimensional Discrete Space 541

5 Implementation and Interface

For the implementation of our modelling system, we decided to rely on a common
PC with the ordinary input devices mouse and keyboard. We give a brief outline
of the implementation below. Basically, the system is subdivided into four parts:

– The volume buffer and the data management are responsible for the entire
data handling including the organization of the data flow and the memory
management for a session.

– The interface is implemented using QT 3.0. It enables to model interac-
tively via menu and icon-based control. Sessions and scenes can be stored
on external storage units. The main parts of the interface are illustrated
in Fig. 11.
We tried to compensate the disadvantages of the input devices to interact
with a three-dimensional scene by an interface which enables a straightfor-
ward navigation in and manipulation of the volume buffer. The user is able
to move three slices through the volume buffer that are parallel to the three
coordinate planes. Objects can be interactively selected and placed in this
slices. The slice-based interaction is a first and easy way to model in discrete
space. However, it is not always sufficient. Therefore a numerical manipula-
tion of objects is also supported: a command line interface is provided and
parameters, e.g. for the transformations, can be set numerically.
A real-time OpenGL-based visualization unit gives the user visual feedback.
Like in the examples shown throughout the paper, the objects are visualized
by their cuberille representation. We have preferred this representation for
the modelling process since the results can be well judged on the voxel level.

– The interaction pool keeps track of all provided interactions between the user
and the volume buffer, and does their execution. The result of an interaction
is mapped directly into the volume buffer.

– The object pool manages the object hierarchy and the meta-data associated
with each object and organizes the data flow between the volume buffer and
the interactions.

6 Summary

We have presented a system for modelling in three-dimensional discrete space.
Our system is intended as experimental environment for volume modelling. It
enables different modelling approaches and works consistently in discrete space.
The combination of simple shapes is suitable to generate large and regular
shapes. Free-form modelling is supported by defining templates and moving
them interactively in the volume buffer. The management of complex objects
is facilitated by an object hierarchy. The geometric transformations translation,
rotation, scaling, and shearing are provided for objects in discrete space. Morpho-
logical operations to smooth and hollow out objects turned out to be a powerful
tool for any modelling approach. At the current state, the functionality provided

542 Andreas Emmerling et al.

Fig. 11. Interface.

by the system already supports the modelling of a wide variety of objects. This
is illustrated by the examples shown throughout the paper.

The development of our modelling system is in progress. In a next step we
are concerned with deformations. At the current state, the interface is not com-
fortable for an unexperienced user. It will also be a matter of future work to
investigate in the development of a more intuitive interface with an improved
visualization unit.

Acknowledgement

We would like to thank all people who have contributed to the development and
the implementation of the modelling system. In particular, thanks are given to
Sebastian Derkau and Marcel Schlönvoigt. Thanks also go to Christoph Lincke
and Marko Meister for helpful discussions and comments on the paper.

References

1. Ayasse, J., and Müller, H. Interactive manipulation of voxel volumes with
free-formed voxel tools. In Vision, Modeling, and Visualization 2001, T. Ertl,
B. Girod, G. Greiner, H. Niemann, and H.-P. Seidel, Eds. IOS Press - infix, 2001,
pp. 359–366.

A System for Modelling in Three-Dimensional Discrete Space 543

2. Bærentzen, A. Octree–based volume sculpting. In LBHT Proceedings of IEEE
Visualization ’98 (October 1998), C. M. Wittenbrink and A. Varshney, Eds.

3. Bærentzen, A., and Christensen, N. J. A technique for volumetric CSG based
on morphology. In Volume Graphics 2001, K. Mueller and A. Kaufman, Eds.
Springer–Verlag, 2001, pp. 117–130.

4. Bærentzen, J. A., and Christensen, N. J. Volume sculpting using the level-set
method. Shape Modeling International, 2002. Proceedings (2002), 175–182.

5. Bönning, R., and Müller, H. Interactive sculpturing and visualization of un-
bounded voxel volumes. In Proceedings 7th ACM Symposium on Solid Modeling
and Applications (2002), pp. 212–219.

6. Chen, H., and Fang, S. A volumetric approach to interactive CSG modeling and
rendering. In Proceedings 5th ACM Symposium on Solid Modeling and Applications
(1999), pp. 318–319.

7. Chen, M., and Tucker, J. V. Constructive volume geometry. Computer Graphics
Forum 19, 4 (2000), 281–293.

8. Chen, M., Tucker, V., and Leu, A. Constructive representations of volumetric
environments. In Volume Graphics, M. Chen, A. E. Kaufman, and R. Yagel, Eds.
Springer–Verlag, 2000, pp. 97–117.

9. Chen, M., Winter, A. S., Rodgman, D., and Treavett, S. M. F. Enriching
volume modelling with scalar fields. In Data Visualization: The State of The Art,
F. Post, G.-P. Bonneau, and G.Nielso, Eds. Kluwer Academic Press, 2002.

10. Kaufman, A., Yagel, R., and Cohen, D. Modeling in volume graphics. In
Modeling in Computer Graphics - Methods and Applications, B. Falcidieno and
T. L. Kunii, Eds. Springer–Verlag, 1993, pp. 441–454.

11. Liao, D., and Fang, S. Fast volumetric CSG modeling using standard graphics
system. In Proceedings 7th ACM Symposium on Solid Modeling and Applications
(2002), pp. 204–211.

12. Lohmann, G. Volumetric Image Analysis. Wiley–Teubner, 1998.
13. Savchenko, V. V., Pasko, A. A., Sourin, A. I., and Kunii, T. L. Volume mod-

elling: Representations and advanced operations. In Proc. of Computer Graphics
International ’98 (1998), IEEE Computer Society Press, pp. 616–625.

14. Sonka, M., Hlavac, V., and Boyle, R. Image processing, analysis, and machine
vision. PWS Publishing, 1999.

15. Wang, S., and Kaufman, A. Volume sculpting. In Symposium on Interactive3D
Graphics (1995), ACM Siggraph, pp. 151–156.

16. Wang, S. W., and Kaufman, A. E. Volume-sampled 3D modeling. IEEE Com-
puter Graphics and Applications 14, 5 (1994), 26–32.

17. Westwood, J., Hoffman, H., Mogel, G., Phillips, R., Robb, R., and Stred-

ney, D., Eds. Medicine Meets Virtual Reality 11. IOS Press, 2003.
18. Winter, A. S., and Chen, M. Image-swept volumes. Computer Graphics Forum

(Proc. Eurographics’02) 21, 3 (2002), 441–450.
19. Wu, Z., Seah, H. S., and Lin, F. NURBS volume for modelling complex objects.

In Volume Graphics, M. Chen, A. E. Kaufman, and R. Yagel, Eds. Springer–Verlag,
2000, pp. 159–167.

	1 Introduction
	2 Modelling Approach
	3 Object Properties
	4 Generation and Manipulation of Objects
	4.1 Generation, Deletion, Set Operations
	4.2 Templates
	4.3 Geometric Transformations
	4.4 Morphological Operations

	5 Implementation and Interface
	6 Summary
	References

