
Interactively Visualizing 18-Connected Object
Boundaries in Huge Data Volumes

Robert E. Loke and Hans du Buf

Vision Laboratory, University of Algarve, 8000-810 Faro, Portugal
{loke,dubuf}@ualg.pt

http://w3.ualg.pt/∼dubuf/vision.html
tel: +351 289 800900 ext. 7761, fax: +351 289 819403

Abstract. We present a multiresolution framework for the visualiza-
tion of structures in very large volumes. Emphasis is given to an in the
framework embedded, new algorithm for triangulating 18-connected ob-
ject boundaries which preserves 6-connectivity details. Such boundaries
cannot be triangulated by standard 6-connectivity algorithms such as
Marching Cubes. Real sonar imaging results show that the framework
allows to visualize global subbottom structure, but also high-resolution
objects, with a reduced CPU time and an improved user interactivity.
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1 Introduction

Visualization facilitates the analysis, modeling and manipulation of scalar data
volumes. Visualization can be done by direct volume rendering (DVR) and sur-
face rendering [1, 2]. In surface rendering, object boundaries are visualized by
first extracting a geometric model of the volume (iso)surfaces and then by ren-
dering the model. Advantages are that it is fast and that memory requirements
are low if compared to DVR, because the geometric model has to be extracted
only once and rotations etc. deal with the model only, and are not again af-
fected by the entire data volume, like in DVR. Furthermore, realtime shading
algorithms and hardware support are available for surface graphics.

In this paper we describe our visualization framework which has in part al-
ready been published before, see e.g. [3]. However, here we accurately define and
extend the embedded boundary triangulation. Below, we describe the framework
and triangulation algorithm used to build surfaces for detected object bound-
aries (Sections 2 and 3), apply them to a real sonar dataset (Section 4) and give
conclusions and directions for future work (Section 5).

2 Interactive Visualization

Similar to other approaches [4, 5], we render surfaces in an octree, aiming at
quick (multiresolution) processing and fast user interactivity. Octrees are repre-
sentations of volumes in which different spatial resolution levels are computed
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Fig. 1. Visualization at different resolution levels in the octree spatial data structure.

by sampling or filtering data in blocks of 2×2×2 [6]. They are hierarchical data
structures with explicitly defined parent-child relationships: a parent represents
2×2×2 voxels at the lower level and 22×22×22 voxels at the next lower level
etc. We use an octree in which low resolution data at the higher tree levels are
determined by spatially smoothing the available data at the lower tree levels.
Voxel values at a higher level are the average of all values of non-empty data
voxels in non-overlapping blocks of size 2×2×2 at the lower level. This simple
processing results in a fast tree construction and facilitates quick data visualiza-
tions at low resolutions, because in the tree both the signal noise and the size
of gaps decrease, even for huge volumes with a large number of gaps or volumes
reconstructed from very noisy data. The loss in spatial resolution at the higher
tree levels is compensated using adequate down-projection techniques. In par-
ticular, once the data have been classified at a high tree level, the boundaries
of the segmented regions are refined by filtering the available data at the lower
levels [7].

After first selecting a region of interest (ROI), and registering the selected
data to a regular 3D grid, we do all critical processing in an octree. Because the
tree construction and the processing at the highest tree levels is very fast, initial
coarse visualizations are quickly obtained, such that the ROI can be immediately
adjusted. The initial coarse visualizations already give much insight in the struc-
tures which are being studied and are only refined, i.e. the data at the lower tree
levels are only processed, if the ROI has been correctly set. A first, coarse visu-
alization at the lowest resolution is obtained by interpolating data around gaps,
segmenting the volume into regions, and constructing shaded, colored and/or
transparent surfaces for all region boundaries. See Fig. 1 (pings are specific un-
derwater acoustic signals which represent vertical columns in the volume). Next
visualizations at higher resolutions are obtained by down-projecting and inter-
polating the available data into gaps, and refining the segmented structures and
the constructed surfaces. Importantly, once the data have been visualized, the
processing can be stopped at any moment in order to select a new ROI. The
processing proceeds only if, according to the user, the ROI has been correctly
set. If not, the processing is stopped and a tree is built for another ROI.

The octree provides a computational framework in which the following tech-
niques can be employed: (A) the construction of a quadtree that allows to fill
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empty voxel columns [8], (B) a first but coarse visualization at a high tree level
in order to rapidly adjust the ROI, and (C) a very efficient triangulation (mesh
reduction) that allows for a fast interactivity even at the highest detail level.
By using one single octree all this processing can be combined because (1) gaps
can be filled by interpolation because they are smaller at higher tree levels, (2)
connected components can be projected down the tree and refined using the
data available there and (3) triangulations at higher tree levels can be used to
steer those at lower levels to fill efficiently large and smooth surface areas. After
the segmentation (and possibly a connected-component labeling) in the visual-
ization framework, the object boundaries are visualized using surface rendering.
Software libraries such as OpenGL (Open Graphics Library) or VRML (Vir-
tual Reality Modeling Language) provide interfaces which enable an interactive
analysis of structures by “flying” through and around the structures of interest.
Thus, apart from using an octree, we use two extra techniques for improving
interactivity: the selection of a ROI and the use of VRML/OpenGL.

3 Triangulation

The well-known Marching Cubes (MC) algorithm, as well as topology improved
[9] and efficiency enhanced – in terms of a reduced triangle count – versions
are all based on locally triangulating cuberille (2×2×2 voxel) configurations.
Other surface construction algorithms decompose the cuberilles into voxels or
tetrahedra, use boxes instead of cuberilles, use polyhedra or polygonal volume
primitives instead of triangles, use rules instead of a look-up table for cuber-
ille configurations, use heterogeneous grids to guarantee topologically coherent
(closed, oriented) surfaces, or optimize the search of relevant cuberilles. In con-
trast to all these algorithms we:

1. Triangulate object boundaries by mapping complete 3×3×3 neighborhoods
to polygons. This allows to optimize the polygons locally.

2. Interpolate between the coordinates of boundary voxels. This improves the
smoothness of the built surfaces.

3. Allow 18 connectivity for objects (like in [9]; unlike 6 connectivity in MC)1.
This allows to construct surfaces for boundaries which are not connected
according to a 6-connectivity model, e.g. an object boundary which is tilted
and thinned, see Fig. 2 (left).

Our algorithm is based on a property of non-intersecting surfaces, excluding the
edges: for such surfaces, each point on the surface has exactly four neighboring
1 Here we note that two voxels are n-connected (n = 6, 18, 26) if there exists a path

between the voxels such that all subsequent voxels on the path are maximally n-
adjacent one to another. Two voxels are n-adjacent if they are n-neighbors. The 6-
neighborhood (respectively, 18-, 26-neighborhood) of a voxel at (x, y, z) is comprised
by these voxels for which |x − a| + |y − b| + |z − c| = 1 (2, 3), with (a, b, c) arbitrary
voxel coordinates. Thus, 6-connected voxels are also 18-connected and 26-connected,
but 18-connected ones not 6, and 26-connected ones not 18 nor 6.
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Fig. 2. Two examples of 3×3×3 voxel neighborhoods. Boundary voxels are grey. On
the left, the boundary is 6-connected in z (into the paper), and 18-connected in the
(x, y)-plane. On the right, it is 6-connected in the (x, y)-plane or, put differently, 18-
connected with 6-connected shortcuts. The 2nd and 3rd layer have been shifted to the
right in order to show their contents.

points which are also located on the surface. In discrete terms, this means that
between a boundary voxel a and another boundary voxel in its neighborhood,
say b, two other adjacent boundary voxels c and d are needed to form a surface
patch a − c − b − d. Below, we will distinguish between two types of voxels:
face voxels and non-face voxels. Figure 3 (a) shows the definition of face voxels
in the 3×3×3 neighborhood N of a boundary voxel B. Since we assume up to
18-connectivity for objects, a boundary voxel in N is a face if it is 6-connected
to B, but also if it is 18-connected to B and no other boundary voxel can be
found which 6-connects the voxel and B. If a boundary voxel in N is not a face,
we call it a non-face. Furthermore, we will model the boundary topology using a
very small set of configurations with, in each configuration, varying connectivity
paths between a and b. In these configurations, a boundary voxel is 18-connected
and sometimes 6-connected to each other boundary voxel in its 26-neighborhood.
Then, by defining a surface patch for each configuration, object boundaries can
be mapped to surfaces. Finally, we will extend the set of configurations in order
to correctly model and map non-thin boundaries, i.e. boundaries with additional
6-connectivity paths between a and b.

3.1 Boundary Definition

In order to triangulate the boundaries in a volume, we first must determine all
boundary voxels. Here, we define a voxel at (x, y, z) to be part of a component’s
boundary if at least one of the values of the voxels at (x + 1, y, z), (x − 1, y, z),
(x, y + 1, z), (x, y − 1, z), (x, y, z + 1) and (x, y, z − 1) differs from its own value.
However, the triangulation is not restricted by this definition, i.e. other bound-
ary definitions may be used, employing for example 18- and 26-neighborhoods.
Obviously, the resulting boundaries are not necessarily smooth, e.g. they may
contain sharp corners/edges: in neighborhoods, boundaries may be both 6- and
18-connected, see Fig. 2 (right). Thinning can be used to remove boundary vox-
els which do not contribute to the connectivity of the boundary. This normally
decreases the triangle counts of the resulting surfaces. However, in some applica-
tions this leads to undesired information loss or deformations. We note that for
a correct application of our algorithm, thinning may be done but is not required.
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Fig. 3. Triangulation look-up table for boundary configurations with varying connec-
tivity between voxel pair a = (0, 0, 0) and b = (1, 1, 0/1), or triplet a, c = (0, 1, 1)
and d = (1, 0, 1). Only some configurations for one octant in the 3×3×3 neighborhood
around a boundary voxel are shown; the other configurations for the same octant and
those for the other octants are obtained by mirroring. Boundary voxels are either black
or grey; background voxels white. Grey spheres denote face voxels. Corners on the
cubes without spheres are positions which do not affect the connectivity.

3.2 Boundary Matching

We triangulate the volumetric boundaries locally, in the 3×3×3 neighborhood
N around each boundary voxel B. We independently map the boundary in each
of the eight octants in N to multiple vertex lists, such that in each list the
coordinates and the order of the vertices of a matched boundary configuration are
defined. This decomposition into octants allows to: (A) reduce the total number
of configurations, and (B) correctly map neighborhoods at edges of boundaries.

Figure 3 (b), (c) and (d) show configurations for the octant in N with positive
x, y and z coordinates, together with the triangles which are to be applied. The
configurations for the other octants are obtained by mirroring about the planes
x = 0, y = 0 and z = 0, about the x, y and z axes, or about B. The total number
of configurations has been reduced using mirroring about the diagonal planes
x = y, x = z and y = z. We2 obtained the configurations by: (A) determining the
set of all valid (i.e., 6- and/or 18-connected) a−c−b−d boundary voxel patterns
in N (yielding Fig. 3 (b) and (c)); (B) extending the resulting set by increasing
2 Similar configurations have also been obtained from a theoretical approach [10],

providing a topological validation of the object surfaces built by our algorithm.
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the boundary connectivity in all patterns (yielding Fig. 3 (d)). There are totally
12 configurations which are divided into three different types: (1) Configurations
with four boundary voxels in which the non-face is 6- and/or 18-connected to B
using exactly two faces. (2) A special configuration with three boundary voxels in
which the non-face is (assumed to be) located outside N , which is 18-connected,
again using exactly two faces. This configuration corresponds to the case in
which the position of the center is (x, y, z), and two faces exist at (x+1, y, z +1)
and (x, y + 1, z + 1). Then the voxel which is adjacent to both faces may be
positioned outside N , at (x + 1, y + 1, z + 2). (3) Configurations with more than
four boundary voxels, in which the 18-connected voxels in (1) are now also 6-
connected. The latter configurations we call shortcuts, because they add an extra
6-connectivity to an already existing 18-connectivity.

For each configuration a vertex list is defined, which specifies the coordinates
and the order of the vertices which are to be applied in the triangulation. Ver-
tex coordinates are determined for each boundary voxel in N (apart from B,
whose voxel and vertex coordinates are (0,0,0)) in one of two ways, dependent
on whether it is a face of B or not. The vertex position computed for each face
is the average of the voxel coordinates of B and the face. The vertex position
of each non-face is the average of the neighboring four voxel coordinates, except
for the one in the special non-face configuration, for which the coordinates are
(0.33, 0.33, 0.67), and the additional non-faces in the shortcut configurations. All
vertex coordinates can be derived from Fig. 3, e.g., for the second shortcut (col-
umn 1, row 2) the vertex list is {(0.5, 0, 0), (0.5, 0.5, 0.5), (0, 0.5, 0.5), (0, 0.5, 0)}.

We match each octant in N with all (mirrored) configurations. If a configura-
tion matches an octant, the (mirrored) vertex list of the configuration is stored.
By using “don’t care” voxels, i.e. voxels which may belong to either the bound-
ary or the background, multiple configurations can match the same octant. This
allows to correctly map “sharp” boundaries to surfaces. We note that this even
allows to map intersecting boundaries, but that for intersections the linking al-
gorithm [11] is not trivial. The neighborhood matching results in a number of
vertex lists, which must be stored for all positive matches, in each of the eight
octants. The order of the vertices in each list is implicitly defined in Fig. 3. After
the matching, the order of the vertex lists is determined by linking all vertex
lists, and the final patch can be triangulated and optimized [11]. Also, a normal
vector is attributed to the patch for surface shading.

Figure 4 shows surface patches obtained by triangulating the boundaries of a
cube of size 16×16×16 and a sphere of radius 14, without any patch optimization.

4 Visualization Results

We obtained several 3D datasets by maneuvring vessels mounted with bottom-
penetrating sonar in shallow water areas. Dataset sizes may range up to several
GBs per seabed, and this will further grow due to increasing demands on sam-
pling rate and trace size. Obviously, it is impossible to conduct a vessel such that
an entire site is scanned, which implies that a lot of 3D data are missing. Com-
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Fig. 4. Wireframes of 1/8th part of a cube and a sphere (top left), and shaded and
optimized surfaces of detected subbottom structures in the large ROI at octree level 2
(top right) and 1 (bottom). Note the improvement in detail when refining structures
from level 2 to 1.
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monly, sonar operators need to explore data at different scales. They may want
to visualize a large area of a seabed, but also a small part, for example when they
look for objects. The analyses which are required demand for different sampling
rates. Here, we will show volumetric reconstructions of a seabed at two different
scales, in two different ROIs: a large region in which the size of the voxels equals
3.8×4.5×0.6 m3 and a small region with a voxel size of 0.5×0.5×0.08 m3.

Figure 4 shows shaded surfaces with wireframes for boundaries of the struc-
tures found in the large ROI. The images were obtained by mapping all data
from one site to a regular grid of size 32×128×128. Thereafter, 29% of the vol-
ume was filled. The octree consisted of 4 levels. For these images, we did not
apply any interpolation. We directly constructed the tree and projected the seg-
mented boundaries from the highest tree level to the lower levels using a robust
planar filtering on the boundary data [7]. CPU times on an SGI Origin 200QC
server, using all 4 processors and including disk IO, were 1.6, 1.3, 4.4 and 19.7s at
octree level 3, 2, 1 and 0. We note that the Origin has MIPS R10000 processors
at 180 MHz, and that a normal Pentium III computer at 733 MHz is faster than
one Origin processor by a factor of 2.2. Using the latest GHz processors, the
total time, about 27s, can be reduced to less than 4s. Hence, our visualization
framework can be applied in realtime for routine inspection and interpretation.

Ideally, octrees can be used for visualizing large structures in huge data vol-
umes at high tree levels and small ones at low levels. Here we have preferred to
select another, much smaller ROI, and to reconstruct another volume (of size
384×64×700) at a much higher spatial resolution. The vertical spatial resolution
in depth was increased by averaging and sampling each underwater acoustic sig-
nal with a mask of size 2 (for the large ROI a mask of size 40 was used). In order
to automatically detect and visualize the sewage pipes which appear at this level
of detail, and to cope with the increased data sparseness (this volume was filled
for only 9%), we performed additional inter-slice interpolations. In these inter-
polations, we match/correlate voxel columns in order to correctly obtain single
surface reflections and to avoid artificial double/multiple reflections [8]. Here-
after, an octree of three levels was built in order to interpolate remaining gaps,
automatically detect the pipes and triangulate their boundaries. The CPU time
was 228s for the inter-slice interpolation and 28, 127 and 241s for the octree pro-
cessing at level 2, 1 and 0. These times are much bigger than those for the large
ROI. However, again, using the latest GHz processors, the octree times can be
reduced to less than 4, 19 and 35s, and the time for the extra interpolations can
be reduced to less than 33s. The optimized time needed for a complete processing
at the highest tree level, 37s, enables application of the framework for routine
inspection and interpretation work, in near realtime. Figure 5 shows the seafloor
and some semi-buried pipeline segments as well as a zoom-in of one segment,
seen from different viewpoints. It is even possible to “look through” the pipe.
Although a correct reconstruction of the seabottom is a very difficult task, due
to the sparseness of and the noise in the data, these volumetric reconstructions
allow for a detailed exploration and analysis of the seabed.
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Fig. 5. Optimized and shaded seabottom surfaces in the small ROI at octree level
2, 1 and 0, and a sewage pipe seen from three viewpoints at octree level 1. These
surfaces can be extracted from an incomplete volume of very noisy sonar data, sized
384×64×700, in near realtime.
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5 Conclusions

We use multiresolution octrees for interactively visualizing large data volumes
in (near) realtime. Application to volumes reconstructed from a very large sonar
dataset showed that octree visualizations facilitate a fast seabottom analysis
and/or a fast searching for objects in the subbottom, even for volumes recon-
structed from very noisy data and for volumes with a large number of unknown
voxel values. In the future we will look for further applications, aiming at further
finetuning and optimization of the embedded techniques, in order to enable a
fast processing of huge datasets, thereby focussing on a fast user interactivity.
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