
Introducing Commutative and Associative
Operators in Cryptographic Protocol Analysis�

Ivan Cibario Bertolotti1, Luca Durante1,
Riccardo Sisto2, and Adriano Valenzano1

1 IEIIT – CNR
2 Dipartimento di Automatica e Informatica, Politecnico di Torino,

C.so Duca degli Abruzzi 24, I-10129 Torino, Italy,
{luca.durante,ivan.cibrario,riccardo.sisto,adriano.valenzano}@polito.it

Abstract. Many formal techniques for the verification of cryptographic
protocols rely on the abstract definition of cryptographic primitives, such
as shared, private, and public key encryption. This approach prevents the
analysis of those protocols that explicitly use commutative and associa-
tive algebraic operators to build their messages such as, for example, the
Diffie-Hellman key-exchange protocol. This paper investigates the possi-
bility of handling operators which exhibit special properties by consider-
ing a stand-alone extension to the way most known popular techniques
handle messages exchanged during the protocol sessions. Such an exten-
sion makes the new operators tractable by automatic model checking
techniques. The properties examined in this paper are commutativity
and associativity.

1 Introduction

The formal verification of cryptographic protocols is being extensively studied
by many researchers, in view of the ever increasing importance and popularity
of secure, distributed applications. Most commonly adopted techniques, such as
proof techniques [3, 19, 21] and state exploration [7, 11, 17] rely on abstract con-
cepts of encryption and decryption. For instance, in a shared key cryptosystem,
it is usually not allowed that encryption and decryption keys, computed au-
tonomously by different agents, still represent the same key although they have
different syntactical forms, as is the case of the Diffie-Hellman key exchange pro-
tocol [9]. Similar issues arise when using primitives like xor or exponentiation
modulo different moduli as in the RSA cryptosystem.

Such a limitation has the invaluable advantage that any syntactical difference
between messages implies a semantical difference, i.e. there are not two or more
different representations of the same message, but also hampers the ability to
describe and formally verify any real-world cryptographic protocol that makes
� This work was partially supported by the Italian National Research Council, grant

number CNRC00FE45, and by the Center of Excellence on Multimedia Radiocom-
munications (CERCOM).

H. König, M. Heiner, and A. Wolisz (Eds.): FORTE 2003, LNCS 2767, pp. 224–239, 2003.
c© IFIP International Federation for Information Processing 2003

Commutative and Associative Operators in Cryptographic Protocol Analysis 225

use of more sophisticated operators, as pointed out in [2, 6, 12–14, 18, 20];
moreover, during peer review of this paper, the authors got to know that this
problem was being addressed by other researchers, too [4, 8, 15, 16].

In this paper we present the theoretical framework needed to extend the in-
truder’s knowledge representation strategy presented in [5], to include associative
and commutative operators. As most other researchers do, that method relies on
the perfect encryption assumptions, and on the so-called Dolev-Yao intruder’s
model, inspired by [10]; in addition, it guarantees that:

– encryption and decryption keys are not restricted to be atomic,
– public/private key cryptosystems, and related operators, are fully supported,
– the intruder’s knowledge is always kept in a minimised form.

In particular, we show that the intruder’s knowledge representation, as dis-
cussed in [5], can be updated to take into account the new operators by defining
a canonical form for messages, i.e. any message built by means of the extended
set of operators can always be syntactically transformed into its canonical form,
preserving its semantic properties, so that the intruder’s knowledge represen-
tation can be based only on messages in such a canonical form. In fact the
proposed extension preserves uniqueness, canonicity and minimality of the in-
truder’s knowledge representation.

Section 2 recalls the term algebra of [5], while the formalism and the main
results of [5], concerning the intruder’s knowledge representation, are briefly
summarised in Sect. 3. Section 4 deals with commutative and associative oper-
ators, and the computation of the canonical form of messages containing them,
while Sect. 5 shows how the intruder’s knowledge representation can be made
able to handle these operators. Finally, Sect. 6 discusses the Diffie-Hellman key
exchange protocol [9] in the light of the approach presented in Sections 4 and 5,
and Sect. 7 draws some conclusions.

2 Basic Term Algebra

Many formal methods used to describe cryptographic protocols rely on a term
algebra for the description of messages. In the spi calculus term grammar adopted
in [5], terms can be either atomic elements, i.e. names, including the special name
0 representing the integer constant zero, or compound terms built using the term
composition operators listed in Table 1. Names may represent communication
channels, atomic keys and key pairs, nonces (also called fresh names) and any
other unstructured data. If a term σ occurs as a sub-expression of another term
ρ, then σ is called a sub-term of ρ; moreover, any term σ is a sub-term of itself.

The informal meaning of the composition operators is as follows:

– (σ, ρ) is the pairing of σ and ρ. It is a compound term whose components
are σ and ρ. Pairs can always be freely split into their components.

– suc(σ) is the successor of σ. This operator can also be used, more generally,
as the abstract representation of an invertible function on terms.

226 Ivan Cibrario Bertolotti et al.

Table 1. Basic term syntax

σ, ρ terms H(σ) hashing
a name {σ}ρ shared-key encryption
(σ, ρ) pair σ+, σ− public/private part
0 zero {[σ]}ρ public-key encryption
suc(σ) successor [{σ}]ρ private-key signature
x variable

– H(σ) is the hashing of σ. H(σ) represents a function of σ that cannot be
inverted.

– {σ}ρ is the ciphertext obtained by encrypting σ under key ρ using a shared-
key cryptosystem.

– σ+ and σ− represent respectively the public and private half of a key pair
σ. σ+ cannot be deduced from σ− and vice versa.

– {[σ]}ρ is the result of the public-key encryption of σ with ρ.
– [{σ}]ρ is the result of the signature (private key encryption) of σ with ρ.

Even though this algebra comes directly from spi calculus [1], it is general
enough to cope with the needs of many formal techniques used to model cryp-
tographic protocols.

3 Basic Intruder’s Knowledge Representation

In this section we recall some notation and results from [5], useful to understand
how the intruder’s knowledge representation can be extended in order to manage
also terms containing operators with special properties; it must be noted that
here we do not take into account public and private key encryption, which is
discussed in depth in [5].

Let A be the set of names, including the integer constant 0, and T the set
of terms that can be built by combining the elements of A by means of the
operators defined in Table 1.

The closure of a set of terms Σ ⊆ T is denoted Σ̂ and is defined as the set
of all terms that can be built by combining the elements of Σ by means of the
operators defined in Table 1 and their inverses. Formally, Σ̂ is the least set of
terms such that, for each σ, σ1 and σ2 ∈ T , the following closure rules hold:

σ ∈ Σ ⇒ σ ∈ Σ̂ (1)

σ ∈ Σ̂ ⇒ suc(σ) ∈ Σ̂ (successor) (2)

σ1 ∈ Σ̂ ∧ σ2 ∈ Σ̂ ⇒ (σ1, σ2) ∈ Σ̂ (pairing) (3)

σ1 ∈ Σ̂ ∧ σ2 ∈ Σ̂ ⇒ {σ1}σ2 ∈ Σ̂ (sh. key encryption) (4)

σ ∈ Σ̂ ⇒ H(σ) ∈ Σ̂ (hashing) (5)

suc(σ) ∈ Σ̂ ⇒ σ ∈ Σ̂ (prec) (6)

(σ1, σ2) ∈ Σ̂ ⇒ σ1 ∈ Σ̂ ∧ σ2 ∈ Σ̂ (projection) (7)

Commutative and Associative Operators in Cryptographic Protocol Analysis 227

{σ1}σ2 ∈ Σ̂ ∧ σ2 ∈ Σ̂ ⇒ σ1 ∈ Σ̂ (sh. key decryption) (8)

In principle, if Σ is the set of messages the intruder has intercepted so far,
Σ̂ is the set of all messages the intruder can generate at a given point. Since
neither A nor T contain variables, the intruder’s knowledge does not contain
variables, too.

We say that a set of terms is finite if it contains a finite number of finite length
elements. Given a finite set of terms Σ, we define the minimal closure seed of
Σ, and denote it as Σ, the subset of Σ̂ that satisfies the following predicates for
each a ∈ A, and for each σ, σ1, σ2 ∈ T :

a ∈ Σ ⇔ a ∈ Σ̂ (9)

{σ1}σ2 ∈ Σ ⇔ σ2 �∈ Σ̂ (10)

H(σ) ∈ Σ ⇔ σ �∈ Σ̂ (11)

suc(σ) �∈ Σ (12)
(σ1, σ2) �∈ Σ (13)

Before discussing the basic properties of Σ, let us preliminarly define r(σ, Σ)
as the boolean value obtained by executing the following algorithm:

boolean r(σ, Σ) {
if σ ∈ Σ then return TRUE;
else if σ = suc(σ1) then return r(σ1, Σ);
else if σ = (σ1, σ2) then return r(σ1, Σ) ∧ r(σ2, Σ);
else if σ = {σ1}σ2 then return r(σ1, Σ) ∧ r(σ2, Σ);
else if σ = H(σ1) then return r(σ1, Σ);
else (σ ∈ A \ Σ) return FALSE;

}

Informally, this algorithm recursively checks whether σ can be deduced from
the set Σ using rules (2)-(5) only, i.e. by using rules that build a new term by
introducing an operator between two or more simpler terms. The basic properties
of Σ are then expressed by the following theorems:

Theorem 1. (Finiteness) For each finite set of terms Σ ⊆ T , Σ is finite.

Theorem 2. (Minimality) Let Σ ⊆ T be a finite set of terms, and σ ∈ Σ. Then̂(Σ \ {σ}) ⊂ Σ̂.

Theorem 3. (Decidability) Let σ ∈ T be any finite term, Σ ⊆ T be a finite set
of terms, and let us assume that Σ is known. Then, determining if σ ∈ Σ̂ is
decidable.

Let us now define a reduction rule as a triple R = 〈ΣI , C, ΣO〉, where ΣI

and ΣO are sets of terms representing respectively premises and conclusions of
closure rule C. Applying a reduction step R to a finite set of terms Σ means
eliminating the premises from and adding the conclusions to Σ. This is written
Σ

R−→ Σ′, where Σ′ = (Σ \ ΣI) ∪ ΣO is the resulting set.

228 Ivan Cibrario Bertolotti et al.

Given a finite set of terms Σ, a reduction of Σ is a finite sequence of appli-
cation of reduction rules Ri to finite sets of terms Σi, denoted:

Σ0
R0−→ Σ1

R1−→ Σ2 · · · Σk−1
Rk−1−→ Σk ,

such that Σ0 = Σ and Ri ∈ R(Σi), where R(Σi) is the set of reduction rules
whose pre-conditions are satisfied by Σi. Below, the notation a → b means that
if the pre-condition a is true, then the reduction rule b can be applied in Σi, that
is, b ∈ R(Σi). The set R(Σi) is the least set such that the following relations
hold:

H(σ) ∈ Σi ∧ r(σ, Σi) → 〈{H(σ)}, (5), ∅〉 (14)
suc(σ) ∈ Σi → 〈{suc(σ)}, (6), {σ}〉 (15)

(σ1, σ2) ∈ Σi → 〈{(σ1, σ2)}, (7), {σ1, σ2}〉 (16)
{σ1}σ2 ∈ Σi ∧ r(σ2, Σi) → 〈{{σ1}σ2}, (8), {σ1}〉 (17)

The definition of reduction allows to claim:

Proposition 1. Given a finite set of terms Σ, there exists a finite reduction of
Σ:

Σ = Σ0
R0−→ Σ1 · · · Σk−1

Rk−1−→ Σk ,

such that Σk = Σ, and Σ̂i = Σ̂ ∀ i ∈ [0, k].

Starting with proposition 1 the following results hold:

Theorem 4. (Closure preservation) For each finite set of terms Σ ⊆ T , Σ̂ = Σ̂.

Theorem 5. (Computability) For each finite set of terms Σ ⊆ T , Σ can be
computed in a finite number of steps.

Since Σ can be computed from Σ, theorem 3 can now be used to check
whether σ ∈ Σ̂.

Theorems 1, 2 and 4 state that the closure seed representation of a finite set
of terms Σ is finite and is the minimal set of terms having the same closure of
Σ, where minimality means that any element cannot be built from the other
ones by means of term composition operators only, i.e. there are no redundant
elements.

Theorems 4 and 5 entail that if a new term ρ is added to a minimal closure
seed Σ, e.g. as a consequence of an output action, the new minimal closure seed
Σ ∪ {ρ} can be incrementally computed by a reduction that starts from Σ∪{ρ}.

Formal proofs of results depicted above are found in [5].

4 The Canonical Term Representation

The introduction of operators with special properties has several subtle implica-
tions in the intruder’s knowledge representation, where the necessary and suffi-
cient condition for the equivalence of two terms simply relies on their syntactic

Commutative and Associative Operators in Cryptographic Protocol Analysis 229

identity. In fact, when a term algebra is extended with commutative and/or as-
sociative operators, two or more syntactic representations of the same term are
allowed. For example, if � is a commutative, binary operator, Σ1 = {σ �ρ} and
Σ2 = {ρ � σ} express exactly the same knowledge and are both minimum and
canonical according to the original definition of Σ presented in [5], but clearly
they are not equal in a syntactical sense.

In order to correctly handle such operators, we introduce the notion of canon-
ical term representation and we assume that all algorithms that act on terms,
such as Σ minimisation and r(·, ·) always act on canonical terms.

The canonical term representation leverages on the concept of term equiva-
lence class induced by the operators’ properties: two terms belong to the same
equivalence class, induced by a given property, iff they can be made equal by
applying that property. For example H(a�b) and H(b�a) are in the same equiv-
alence class if � is a commutative operator, because they can be made equal by
applying the commutative property.

The canonical term representation has the important role of selecting, for
each term equivalence class induced by the operators’ properties, a unique ele-
ment that will represent the class as a whole in all contexts. It can be proved,
with ordinary effort, that this additional requirement is powerful enough to re-
store the uniqueness of Σ for all operators’ properties considered in this paper.

From now on it is assumed that two terms that can be obtained from each-
other by a suitable application of one or more operators’ properties are indis-
tinguishable from the intruder’s point of view. For this reason, any additional
observation the intruder can make on term generation besides the final value,
such as timing or accuracy, is neglected.

4.1 Notational Conventions

Table 2 introduces the main notational conventions adopted in the following.
Note also that:

– When multiple atoms, terms, and operators are needed in the same context,
a unique, numeric subscript is used to distinguish them. For example, a1 and
a2 are two distinct, and possibly different, atoms.

– When appropriate, the arity of the operator is explicitly denoted with a sub-
script, for example: �n is an n-ary operator. When more than one operator
is needed in the same context, the first subscript singles out the operator,
and the second one gives its arity. For example, �1n and �2m are two dis-
tinct, and possibly different operators; the first one has arity n, the second
has arity m.

– This paper uses the infix and prefix operator notation interchangeably, that
is, a � b = �(a, b).

4.2 Total Order Relation on Terms

We assume that there is a total order relation ≤P on the elements of P, as it
is the case when P is finite or is a countable infinity; similarly, we assume that

230 Ivan Cibrario Bertolotti et al.

Table 2. Notational conventions

Symbol Meaning
P is the set of term algebra operators; it contains both the standard term

algebra operators of Table 1, and the additional operators described
in Sections 4, 5 and 6.

T is the set of all terms that can be built by combining the elements of
A with operators of P.

a is a generic, atomic term: a ∈ A.
� is a generic n-ary operator: � ∈ P.
σ is a generic term, either atomic or non-atomic: σ ∈ T .

≤A is a total order relation on A.
≤P is a total order relation on P.
≤T is a total order relation on T .

there is a total order relation ≤A on the elements of A, as it is the case when
the total number of atomic terms ever used in a session of the protocol is finite
or is a countable infinity.

Then, we are able to define a relation ≤T on the elements of T , by means of
the following implications:

σ1 ∈ A ∧ σ2 ∈ A ∧ σ1≤Aσ2 ⇒ σ1≤T σ2 (18)
σ1 ∈ A ∧ σ2 �∈ A ⇒ σ1≤T σ2 (19)

σ1 = �1n(. . .) ∧ σ2 = �2m(. . .) ∧ n < m ⇒ σ1≤T σ2 (20)
σ1 = �1n(σ11 . . . σ1n) ∧ σ2 = �2n(σ21 . . . σ2n)

∧ ∃j | σ1j �= σ2j ∧ σ1j≤T σ2j ∧ σ1i = σ2i ∀i < j ⇒ σ1≤T σ2 (21)
σ1 = �1n(σ11 . . . σ1n) ∧ σ2 = �2n(σ21 . . . σ2n)

∧ σ1i = σ2i ∀i ∧ �1n ≤P�2n ⇒ σ1≤T σ2 (22)

It is worth noting that implications (21) and (22) assume that the operands
σ11 . . . σ1n and σ21 . . . σ2n of �1n and �2n, respectively, are already in canoni-
cal form. In turn, the algorithm to compute the canonical representation of a
term, given in Sect. 4.3, will make use of ≤T . Correctness and computability are
guaranteed, because:

– The canonical representation algorithm always invokes ≤T on terms that are
already canonical (correctness).

– To compute the canonical representation mentioned above, the canonical
representation algorithm is always invoked recursively on sub-terms that
have one operator less than their parent, and it is trivially computable on
atoms (computability by induction).

Theorem 6. The relation ≤T is a total order relation on T .

The proof of this theorem is based on proving that ≤T is reflexive, antisym-
metric, transitive, and that:

∀σ1, σ2 ∈ T , σ1 �= σ2 σ1≤T σ2 ∨ σ2≤T σ1 .

Commutative and Associative Operators in Cryptographic Protocol Analysis 231

4.3 Term Canonicalisation

Term canonicalisation has the purpose of determining a unique, canonical form
for each σ ∈ T ; the canonical form is used when inserting a term into the
intruder’s knowledge, while checking whether the intruder is able to synthesise
a term from a given knowledge.

Term canonicalisation selects one representative element from each equiv-
alence class induced on T by operator properties according to the following
informal rules:

– The canonical form of an atom is the atom itself (rule 23 below).
– The canonical form of the invocation of an operator without special proper-

ties is the invocation of the same operator on the same operands, put into
canonical form (rule 24).

– The canonical form of the invocation of a commutative operator � on a list
of operands σ1 . . . σn is the invocation of the same operator on the operands
put into canonical form and then sorted according to ≤T , to ensure the
uniqueness of representation (rule 25).

– The canonical form of the invocation of an associative operator � on a list
of operands σ1 . . . σn is the invocation of the same operator on the operands
taken into canonical form. If, after canonicalisation, some operands have the
same operator � as their top-level operator, the hierarchy of invocations of
� is flattened (rule 26).

Formally, the term canonicalisation function is the transitive closure C∗ of
function C : T → T , which can be defined according to the following set of
rewrite rules, where PC is the set of commutative operators, and PA is the set of
associative operators. The intersection of these sets may not be empty because
operators may have multiple properties.

In the following, a rewrite rule like π

σ
C�−→σ′

should be read as: when the pre-

requisite predicate π is true, then term σ can be rewritten as σ′ through a
canonicalisation step. In σ′, the notation C∗(σi) entails the recursive application
of the canonicalisation rewrite rules to sub-term σi.

a ∈ A
a

C�−→ a
(23)

� �∈ (PC ∪ PA)

�(σ1 . . . σn) C�−→ �(C∗(σ1) . . . C∗(σn))
(24)

� ∈ PC ∧ (∃i | σi �= C∗(σi) ∨ ∃i, j | C∗(σi)�≤T C∗(σj)) ∧
∃k1 . . . kn, ki �= kl ∀i, l | C∗(σki)≤T C∗(σki+1), i = 1 . . . n − 1

�(σ1 . . . σn) C�−→ �(C∗(σk1) . . . C∗(σkn
))

(25)

� ∈ PA ∧ ∃i | C∗(σi) = �(σi1 . . . σim)

�(σ1 . . . σn) C�−→ �(C∗(σ1) . . . C∗(σi−1)C∗(σi1) . . . C∗(σim)C∗(σi+1) . . . C∗(σn)
(26)

232 Ivan Cibrario Bertolotti et al.

Moreover, it is assumed that, on each invocation of the C∗ function on term
σ, all rewrite rules whose prerequisite are satisfied on σ are applied in sequence,
until the set of applicable rules is exhausted, or the only applicable rule is either
the atom-preserving rule (23), or the trivial canonicalisation rule (24) for oper-
ators with no special properties. The order of rule application does not matter,
because any order leads to the same canonical term.

Theorem 7. The function C∗ : T → T is computable for any finite-length
σ ∈ T .

The proof is based on the observation that, given a term σ, only a finite
number of rewrite rules in the form (25-26) are applicable to each sub-term of
σ, and no sequence of rule applications on a term can lead to the term itself.
In addition, rules (23-24) can be applied at most once to each atom of σ and
to each sub-term of σ, respectively, but those sub-terms are in finite number
because σ is finite.

5 Extended Intruder’s Knowledge Representation

The intruder’s knowledge closure rules, the predicates defining Σ, the r(·, ·)
algorithm, and the Σ minimisation rules presented in Sect. 3, have to be extended
to take into account the operator’s properties and to ensure that all properties
of Σ still hold: in fact, it can be proved that all properties mentioned in Sect. 3
(including incremental computability) still hold under the extensions proposed
here.

5.1 Commutative Operators

Let us assume, without loss of generality, that � is a binary, commutative op-
erator. The ability to synthesise a compound term by means of operator � can
be captured by the following closure rule, to be added to rules (1-8):

σ1 ∈ Σ̂ ∧ σ2 ∈ Σ̂ ∧ σ1≤T σ2 ⇒ σ1 � σ2 ∈ Σ̂ . (27)

Accordingly, the following, additional Σ defining predicate must be added to
(9-11):

σ1 � σ2 ∈ Σ ⇔ (σ1 �∈ Σ̂ ∨ σ2 �∈ Σ̂) ∧ σ1≤T σ2 . (28)

Informally, the predicate σ1 �∈ Σ̂ ∨ σ2 �∈ Σ̂ prevents the presence of com-
pound terms σ1 � σ2 and σ2 � σ1 in Σ if they can be synthesised from their
operands; predicate σ1≤T σ2 is made true by term canonicalisation, performed
before inserting any term in the intruder’s knowledge, and effectively prevents
the presence of both σ1 � σ2 and σ2 � σ1 in Σ, by explicitly selecting which one
has to be preferred.

Similarly, closure rule (27) gives rise to the following additional Σ reduction
rule to be added to (14-17):

σ1 � σ2 ∈ Σi ∧ r(σ1, Σi) ∧ r(σ2, Σi) → 〈{σ1 � σ2}, (27), ∅〉 (29)

Commutative and Associative Operators in Cryptographic Protocol Analysis 233

Rule (29) has a premise term that can be generated using other elements
of Σi, and simply removes its premises. Therefore, it cannot introduce loops,
preserves the closure Σ̂ and ensures that Σi+1 only contains canonic terms if
the same is true for Σi. Closure rule (27) is also the starting point to extend the
function r(·, ·) presented in Sect. 3:

boolean r(σ, Σ) {
...
else if σ = �(σ1, σ2) ∧ � ∈ PC then return r(σ1, Σ) ∧ r(σ2, Σ) ;
...

}

5.2 Associative Operators

Let us assume, without loss of generality, that � ∈ PA is a n-ary, associative
operator, with n ≥ 2. In addition, let us assume that the (degenerate) invocation
of operator � with one operand is the operand itself: �(σ) = σ.

The ability to synthesise a compound term by means of operator �, possibly
leveraging the associative property, is captured by the following closure rule:

� (σ11 . . . σ1m) ∈ Σ̂ ∧ � (σ21 . . . σ2n) ∈ Σ̂ ⇒ �(σ11 . . . σ1m, σ21 . . . σ2n) ∈ Σ̂
(30)

by the additional Σ defining predicate:

� (σ1 . . . σn) ∈ Σ ⇔ ∀i ∈ [1, n − 1] � (σ1 . . . σi) �∈ Σ̂ ∨ � (σi+1 . . . σn) �∈ Σ̂
(31)

by the additional Σ reduction rule:

�(σ1 . . . σn) ∈ Σi

∧ ∃i ∈ [1, n − 1] | r(�(σ1 . . . σi), Σi)
∧ r(�(σi+1 . . . σn), Σi)


 → 〈{�(σ1 . . . σn)}, (30), ∅〉 (32)

and by the following extension to the r(·, ·) function:

boolean r(σ, Σ) {
...
else if σ = �(σ1, . . . σn) ∧ � ∈ PA

then return ∃i ∈ [1, n − 1] | r(�(σ1, . . . σi),Σ) ∧ r(�(σi+1, . . . σn),Σ) ;
...

}

If � is both associative and commutative, the rules outlined above must be
complemented because if the lists: (σ1 . . . σi) and (σi+1 . . . σn) are both sorted ac-
cording to ≤T , this does not imply that their concatenation (σ1 . . . σi, σi+1 . . . σn)
is also sorted according to the same relation.

So, for example, assuming that σ1≤T σ2≤T σ3 it can be �(σ1, σ2, σ3) ∈ Σ̂ even
if σ1 �∈ Σ̂ ∧ � (σ2, σ3) �∈ Σ̂ ∧ � (σ1, σ2) �∈ Σ̂ ∧ σ3 �∈ Σ̂ and closure rule (30)
cannot be applied. In fact, this happens when σ2 ∈ Σ̂ ∧ � (σ1, σ3) ∈ Σ̂.

234 Ivan Cibrario Bertolotti et al.

On the other hand, the same closure rule can introduce non-canonical terms
in Σ̂, for the same reason. The refined closure rule for a commutative and asso-
ciative operator therefore is:

� (σ11 . . . σ1m) ∈ Σ̂ ∧ � (σ21 . . . σ2n) ∈ Σ̂ ⇒
C∗(�(σ11 . . . σ1m, σ21 . . . σ2n)) ∈ Σ̂ , (33)

where the invocation of the canonicalisation operator C∗ avoids non-canonical
terms in Σ̂.

On the other hand, when defining the Σ reduction rules on terms in the form
�(σ1 . . . σn), all possible partitions of S = {σ1 . . . σn} into two subsets must be
considered:

�(σ1 . . . σn) ∈ Σi

∧ ∃S1, S2 | S1 �= ∅ ∧ S2 �= ∅ ∧ S1 ∩ S2 = ∅
∧ S1 ∪ S1 = {σ1 . . . σn} ∧ r(�(S1), Σi)
∧ r(�(S2), Σi)


 → 〈{�(σ1 . . . σn)}, (33), ∅〉

(34)
In the above rule, with a little abuse of notation, we let �(S) = �(σ1 . . . σn),

where S = {σ1 . . . σn} is a set. In the same manner, the extension to the r(·, ·)
function must be:

boolean r(σ, Σ) {
...
else if σ = �(σ1, . . . σn) ∧ � ∈ PA ∩ PC

then return ∃ S1, S2 | S1 �= ∅ ∧ S2 �= ∅ ∧ S1 ∩ S2 = ∅ ∧
S1 ∪ S2 = {σ1, . . . σn} ∧ r(�(S1), Σ) ∧ r(�(S2), Σ) ;

...
}

6 Diffie-Hellman Key Exchange Protocol

In the Diffie-Hellman protocol [9], depicted in Fig. 1, two numbers G and N
are publicly agreed on by the communicating principals A and B. A chooses
X = Gn1 mod N for some random n1 and sends the result to B as message (1).
B chooses Y = Gn2 mod N for some random n2 and sends the result to A as
message (2). A computes k = Y n1 mod N and B computes k = Xn2 mod N .
The result of these two calculations is the same and is equal to the new session
key k. This provides a means for exchanging keys but gives no guarantees of
authenticity.

The last step (3) does not belong to the key-exchange protocol itself, but
shows how the new key shared among agents can be used: A sends a message
M encrypted by means of k = (Gn2 mod N)n1 mod N to B which in turn can
decrypt it by means of the same key k = (Gn1 mod N)n2 mod N .

Commutative and Associative Operators in Cryptographic Protocol Analysis 235

(1) A → B : X = Gn1 mod N
(2) B → A : Y = Gn2 mod N
(3) A → B : {M}Y n1 mod N

Fig. 1. The Diffie-Hellman key exchange protocol

6.1 Representation of the Diffie-Hellman Operator

Here we define a new operator which allows to model computations made in the
Diffie-Hellman key exchange protocol. Let us define:

� σ�σ1...σn

N = σσ1...σn mod N . (35)

The new operator has the following properties:

� σ�σ1...σn

N = � σ�Π(σ1...σn)
N , (36)

where Π(σ1 . . . σn) is a permutation, which captures the commutative property
of the exponent product, and:

� � σ�σ11...σ1n

N �σ21...σ2m

N = � σ�σ11...σ1nσ21...σ2m

N , (37)

which reflects the ability to associate nested invocations of the operator in base
position.

The generic term canonicalisation rewrite rules outlined in Sect. 4.3 can be
specialised for the Diffie-Hellman operator, taking into account its well-known
operator’s algebraic properties recalled in (35-37). The specialised rewrite rules
are:

(∃i | σi �= C∗(σi) ∨ ∃i, j | C∗(σi)�≤T C∗(σj)) ∧
∃k1 . . . kn, ki �= kl ∀i, l | C∗(σki)≤T C∗(σki+1), i = 1 . . . n − 1

� σ�σ1,...σn

N
C�−→ � σ�C∗(σk1),...C∗(σkn)

N

(38)

σ = � σ′�σ11,...σ1n

N

� σ�σ21,...σ2m

N
C�−→ � σ′�σ11,...σ1n,σ21...σ2m

N

(39)

The intruder’s ability to compute the Diffie-Hellman operator can be ex-
pressed by the following closure rules:

σ′ ∈ Σ̂ ∧ σ1, . . . σn ∈ Σ̂ ∧ σi≤T σi+1 ∀i ∈ [1, n − 1] ⇒ � σ′�σ1,...σn

N ∈ Σ̂
(40)

� σ′�σ11,...σ1n

N ∈ Σ̂ ∧ σ21, . . . σ2m ∈ Σ̂ ⇒ C∗(� σ′�σ11,...σ1n,σ21,...σ2m

N) ∈ Σ̂
(41)

Rule (40) captures the commutative property of the Diffie-Hellman opera-
tor with respect to σ1, . . . σn; similarly, rule (41) captures the ability to flatten
nested invocations of the Diffie-Hellman operator in base position by grouping
exponents σ11, . . . σ1n and σ21, . . . σ2m together.

236 Ivan Cibrario Bertolotti et al.

In rule (41), the invocation of the canonicalisation operator C∗ avoids the
introduction of non-canonical terms in Σ̂; in rule (40), canonicalisation is un-
necessary, because the rule’s prerequisites implicitly ensure that the right-hand
term is canonic.

According to the Σ̂ closure rules above, we can introduce the following addi-
tional Σ defining predicates; below, S1 and S2 represent all possible partitions
of S = {σ1, . . . σn} and, with a little abuse of notation, we let � σ�S1

N =
� σ�σ11,...σ1k

N

� σ�σ1,...σn

N ∈ Σ ⇔ (σ �∈ Σ̂ ∨ ∃i | σi �∈ Σ̂) ∧ σj≤T σj+1 ∀j ∈ [1, n−1] (42)

� σ�σ1,...σn

N ∈ Σ ⇔ ∀S1, S2 |




S1 = {σ11, . . . σ1k}, S2 = {σ21, . . . σ2l},
S1 �= ∅ ∧ S2 �= ∅ ∧ S1 ∩ S2 = ∅ ∧
S1 ∪ S2 = {σ1, . . . σn} ∧
(� σ�S1

N �∈ Σ̂ ∨ ∃i | σ2i �∈ Σ̂)
(43)

Last, closure rules (40) and (41) induce the following Σ reduction rules:

� σ�σ1,...σn

N ∈ Σi ∧ r(σ, Σi) ∧ r(σj , Σi) ∀j ∈ [1, n] →
〈{� σ�σ1,...σn

N }, (40), ∅〉 (44)

� σ�σ1,...σn

N ∈ Σi ∧ ∃S1, S2 | S1 = {σ11, . . . σ1k},
S2 = {σ21, . . . σ2l}, S1 �= ∅ ∧ S2 �= ∅ ∧ S1 ∩ S2 = ∅
∧ S1 ∪ S2 = {σ1, . . . σn} ∧ r(� σ�S1

N , Σi) ∧ r(σ2j , Σi) ∀j ∈ [1, l]


 →

〈{� σ�σ1,...σn

N }, (41), ∅〉 (45)

and the following extension to the r(·, ·) function:

boolean r(σ, Σ) {
...
else if σ = � σ′�σ1,...σn

N

then return (r(σ′, Σ) ∧ r(σj, Σ) ∀j) ∨
(∃S1 = {σ11, . . . σ1n}, S2 = {σ21, . . . σ2m} | S1 �= ∅ ∧ S2 �= ∅ ∧
S1 ∩ S2 = ∅ ∧ S1 ∪ S2 = {σ1, . . . σn} ∧
r(� σ′�S1

N , Σ) ∧ r(σ2j, Σ) ∀j);
...

}

6.2 Example of Intruder’s Knowledge Management

Table 3 shows how the intruder’s knowledge grows up when the intruder inter-
cepts the messages exchanged between A and B of Fig. 1: Σ is the minimised
intruder’s knowledge, ρ is the eavesdropped message, and column C contains the
number of the canonicalisation rules needed to put ρ in canonical form.

Commutative and Associative Operators in Cryptographic Protocol Analysis 237

Table 3. An example of canonicalisation

Σ ρ C
{c, G, N} � G�n1

N

{c, G, N, � G�n1
N } � G�n2

N

{c, G, N, � G�n1
N , � G�n2

N } {M}��G�n2
N

�n1
N

(39)
{M}�G�n2n1

N
(38)

{M}�G�n1n2
N

{c, G, N, � G�n1
N , � G�n2

N , {M}�G�n1n2
N

}

The first and second message of Fig. 1 are already in canonical form, thus
no canonicalisation is needed. Moreover, they cannot be split into simpler sub-
messages, thus the new minimal intruder’s knowledge is obtained simply by
adding these messages to the initial one.

The last message of Fig. 1 has been encrypted by a nested invocation of
the new operator thus, by rule (39), the associative property is exploited and
{M}�G�n2n1

N
is obtained. Last, rule (38) gives the canonical form {M}�G�n1n2

N

where each exponent precedes the next with respect to the total order relation
among terms (we assume n1≤T n2). Table 4 shows what happens to the intruder’s
knowledge when n1 belongs to the initial Σ, too. Since the canonicalisation
details have already been analysed in the previous example, here we assume
that each message the intruder intercepts is already in canonical form (C∗(ρ)),
and we focus on the intruder’s knowledge minimisation steps, induced by the
presence of n1 in the initial Σ.

At each protocol step Σ (obtained from the previous step) and the intercepted
message C∗(ρ) are listed in a row. Below, the sequence of reduction steps follows,

Table 4. An example of reductions

Σ = {c, G, N, n1} C∗(ρ) = � G�n1
N

i Σi R ΣI ΣO

0 {c, G, N, n1, � G�n1
N } (44) {� G�n1

N } ∅
1 {c, G, N, n1}

Σ = {c, G, N, n1} C∗(ρ) = � G�n2
N

i Σi R ΣI ΣO

0 {c, G, N, n1, � G�n2
N }

Σ = {c, G, N, n1, � G�n2
N } C∗(ρ) = {M}�G�n1n2

N

i Σi R ΣI ΣO

0 {c, G, N, n1, � G�n2
N , {M}�G�n1n2

N
} (17) {{M}�G�n1n2

N
} {M}

1 {c, G, N, n1, � G�n2
N , M}

Σ = {c, G, N, n1, � G�n2
N , M}

238 Ivan Cibrario Bertolotti et al.

starting from Σ0 = Σ ∪ {C∗(ρ)} and ending when a new minimised Σi has been
obtained. For each step, the reduction rule used (R) and the corresponding ΣI

and ΣO sets are shown.
Starting from Σ = {c, G, N, n1}, the intruder captures the first message

� G�n1
N sent from A to B, thus Σ0 = {c, G, N, n1,� G�n1

N } is obtained.
� G�n1

N can be synthesised starting from G and n1 (N is embedded into the
operator itself, but this is correct since N and G are publicly agreed between A
and B), in fact rule (44) allows to remove it from Σ0.

The next intercepted message is � G�n2
N ; it is added to Σ without any

reduction, since it can neither be synthesised from simpler messages, nor it allows
to decode some message already in Σ. In fact, premises of both rules (44) and
(45) fail.

The last intercepted message is {M}�G�n1n2
N

. Since r(Σ0,� G�n1n2
N) is

true, then rule (17) allows to remove {M}�G�n1n2
N

from, and add M to the
intruder’s knowledge. In fact r(� G�n1n2

N , Σ0) corresponds to the last extension
to r(·, ·) made before the examples. By defining S1 = {n2} and S2 = {n1}, we
have that both r(� G�S1

N , Σ0) and r(n1, Σ0) are true.

7 Conclusions

A compact and efficient intruder’s knowledge representation is a key point for
all formal techniques that use model checking to verify cryptographic proto-
cols. Current techniques rely on specification languages and intruder’s knowledge
models that allow to deal only with abstract term composition operators, with-
out any mathematical property. This prevents to model protocols that heavily
use commutative and associative operators to build their messages. In this paper
we have shown how to overcome such a limitation by enabling an existing in-
truder’s knowledge representation technique to successfully handle also messages
built by means of associative and commutative operators. Then, theoretical re-
sults have been applied to build the set of rules needed to handle the knowledge
of a Dolev-Yao intruder that eavesdrops on a session of the Diffie-Hellman key
exchange protocol.

As a further enhancement, we plan to extend this technique in order to
enable it to manage operators with operand self-cancellation properties, such as
the exclusive-or.

References

1. Mart́ın Abadi and Andrew D. Gordon. A calculus for cryptographic protocols.
The spi calculus. Information and Computation, 148(1):1–70, January 1999.

2. Michele Boreale and Maria Grazia Buscemi. A framework for the analysis of
security protocols. In Proceedings of CONCUR’01. Springer-Verlag, 2002.

3. Michele Boreale, Rocco De Nicola, and Rosario Pugliese. Proof techniques for
cryptographic processes. In Proceedings of 14th IEEE LICS, pages 157–166. IEEE
Computer Society Press, 1999.

Commutative and Associative Operators in Cryptographic Protocol Analysis 239

4. Yannick Chevalier, Ralf Küsters, Michaël Rusinowitch, and Mathieu Turuani. An
NP decision procedure for protocol insecurity with XOR, 2003. To appear in Proc.
of 18th IEEE LICS’2003.

5. Ivan Cibrario Bertolotti, Luca Durante, Riccardo Sisto, and Adriano Valenzano.
A new knowledge representation strategy for cryptographic protocol analysis. In
Proceedings of TACAS’03, volume 2619 of Lecture Notes in Computer Science,
pages 284–298. Springer-Verlag, April 2003.

6. E. M. Clarke, S. Jha, and W. Marrero. Using state space exploration and a
natural deduction style message derivation engine to verify security protocols. In
Proceedings of IFIP PROCOMET, pages 87–106, London, 1998. Chapman & Hall.

7. E. M. Clarke, S. Jha, and W. Marrero. Verifying security protocols with Bru-
tus. ACM Transactions on Software Engineering and Methodology, 9(4):443–487,
October 2000.

8. H. Comon-Lundh and V. Shmatikov. Constraint solving and insecurity decision in
presence of exclusive or, June 2003. To appear in Proc. of 18th IEEE LICS’2003.

9. W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22(6):644–654, November 1976.

10. D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions
on Information Theory, 29(2):198–208, 1983.

11. Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key protocol
using FDR. In T. Margaria and B. Steffen, editors, Proceedings of TACAS’96,
volume 1055 of Lecture Notes in Computer Science, pages 147–166. Springer-
Verlag, 1996.

12. Gavin Lowe. Casper: a compiler for the analysis of security protocols. In Pro-
ceedings of 10th IEEE CSFW, pages 18–30. IEEE Computer Society Press, June
1997.

13. Gavin Lowe. Towards a completeness result for model checking security protocols.
Journal of Computer Security, 7(2–3):89–146, 1999.

14. W. Marrero, E. M. Clarke, and S. Jha. A model checker for authentication pro-
tocols. In DIMACS Workshop on Design and Formal Verification of Security
Protocols, 1997.

15. Catherine Meadows and Paliath Narendran. A unification algorithm for the group
Diffie-Hellman protocol. In Proceedings of WITS’02, 2002.

16. Jonathan Millen and Vitaly Shmatikov. Symbolic protocol analysis with products
and Diffie-Hellman exponentiation, June 2003. To appear in Proc. of 16th IEEE
CSFW.

17. Jonathan K. Millen, S. C. Clark, and S. B. Freedman. The Interrogator: Protocol
security analysis. IEEE Transactions on Software Engineering, 13(2):274–288,
February 1987.

18. David Monniaux. Abstracting cryptographic protocols with tree automata. In
Sixth International Static Analysis Symposium (SAS’99), number 1694 in Lecture
Notes in Computer Science, pages 149–163. Springer Verlag, 1999.

19. Lawrence C. Paulson. The inductive approach to verifying cryptographic proto-
cols. Journal of Computer Security, 6:85–128, 1998.

20. Michaël Rusinowitch and Mathieu Turuani. Protocol insecurity with finite number
of sessions is NP-complete. In Proceedings of 14th IEEE CSFW, pages 174–187.
IEEE Computer Society Press, June 2001.

21. Steve Schneider. Verifying authentication protocols in CSP. IEEE Transactions
on Software Engineering, 24(9):741–758, September 1998.

	Introducing Commutative and Associative Operators in Cryptographic Protocol Analysis
	1 Introduction
	2 Basic Term Algebra
	3 Basic Intruder's Knowledge Representation
	4 The Canonical Term Representation
	4.1 Notational Conventions
	4.2 Total Order Relation on Terms
	4.3 Term Canonicalisation

	5 Extended Intruder's Knowledge Representation
	5.1 Commutative Operators
	5.2 Associative Operators

	6 Diffie-Hellman Key Exchange Protocol
	6.1 Representation of the Diffie-Hellman Operator
	6.2 Example of Intruder's Knowledge Management

	7 Conclusions
	References

