
Towards Testing SDL Specifications:
Models and Fault Coverage

for Concurrent Timers�

Mariusz A. Fecko1, M. Ümit Uyar2, and Ali Y. Duale3

1 Applied Research Area, Telcordia Technologies, Inc., Piscataway, NJ, USA,
mfecko@research.telcordia.com

2 Electrical Engineering Dept., CCNY, The City University of New York, USA,
uyar@ccny.cuny.edu

3 System Architecture Compliance, IBM Corp., Poughkeepsie, NY, USA,
duale@us.ibm.com

Abstract. A recent model for testing systems with multiple timers is
extended to compute proper input delays and timeout settings, and is
applied to several types of timers required in a testing procedure. In the
model, any transition in the specification can be made conditional on a
set of running timers. Depending on the path taken to reach an edge,
the values of the timer variables may render the traversal of the edge
infeasible. The presented modeling technique, combined with the INcon-
sistencies DEtection and ELimination (INDEEL) algorithms, allows the
generation of feasible test sequences. The model also offers the flexibil-
ity to define timer lengths as variables, and have the INDEEL find the
appropriate timer ranges. An approach to apply this new methodology
to SDL timed extensions (guarding and delaying timers) is presented.

Keywords: conformance testing; timed EFSM; timed extensions; SDL

1 Introduction

Proper handling of timers is of special concern for computer-aided test generation
from formal specifications [4, 8, 12, 13, 19, 22]. Consider sending a message that
requires an acknowledgment, which implies that two timers may be started with
different expiry times. If no acknowledgment is received before the first timer
expires, the message is retransmitted and the timer restarted. When the second
timer expires, the transmission attempts are abandoned. A feasible test sequence
cannot proceed directly to the expiry of the second timer, bypassing that of the
first timer. Such dependencies must be incorporated in the flow graph of the
specification and resolved during test sequence generation [22].
� M.A. Fecko initiated the timed EFSM model [9] at U Delaware. A.Y. Duale co-

designed the indeel [6] at CUNY. They were then funded by the ATIRP Consor-
tium sponsored by U.S. Army Research Lab (ARL) under the FedLab Program,
Cooperative Agreement DAAL01-96-2-0002.

H. König, M. Heiner, and A. Wolisz (Eds.): FORTE 2003, LNCS 2767, pp. 273–288, 2003.
c© IFIP International Federation for Information Processing 2003



274 Mariusz A. Fecko, M. Ümit Uyar, and Ali Y. Duale

To address the above challenge, a new methodology has been introduced for
test generation for timed systems modeled as Extended Finite State Machines
(EFSMs) [14] with time-related variables [9, 10]. The methodology includes a
novel model that uses simple linear expressions of time-related variables to repre-
sent complex timing dependencies. To ensure feasibility of test sequences, Duale
and Uyar [6] designed INconsistencies DEtection and ELimination (indeel) al-
gorithms to resolve inconsistencies among the condition or action variables of an
EFSM. After these algorithms are applied to eliminate any time-related variable
conflicts, all paths of the resulting EFSM are feasible.

This paper generalizes and extends the timing model introduced in Ref. [9],
and shows a range of its capabilities:
• Testing various classes of timers: We illustrate a range of modeling that can
be accomplished with our technique, including general models of various types
of timers required during the testing procedure (i.e., global, guarding, delaying,
and functional timers) (Section 2).
• Fault models: As a formal analysis of timing faults, we show that a test se-
quence, if it covers every feasible edge at least once [10], can detect 1- and n-clock
timing faults [8] and incorrect timer settings (Section 3).
• Application to SDL: We illustrate how the above classes of timers can be
defined and tested in SDL [4, 22]. Once the FSM is extracted [3], the time
extensions for SDL [12] have a natural representation in our model (Section 4).
• Delaying transitions: We present a formal approach to identify transitions that
have to be delayed. A step-by-step test-sequence derivation shows how delays are
algorithmically computed by the augmented indeel (Section 4.3).
• Flexible timeout and transition-execution settings: We show how a tester can
define a timer length as a constant or variable to automatically find proper time-
out settings. This way, a test suite can cover service delivery and controllability
features with multi-timer dependencies (Section 4.4).

2 Timing Model

The timed EFSM model for testing protocols with timers was introduced and
formally described in Refs. [9, 10]. The model uses exclusively the paradigm of
EFSM, which makes it easily applicable to the languages such as SDL [4, 22],
VHDL [6], and Estelle [5], and thus enables testing timed systems with the
numerous (E)FSM-based test generation methodologies [6, 14, 22].

To model concurrent timers, the original system along with its time-related
behavior can be represented by an EFSM consisting of an FSM (the untimed
model of the system) and a set of time-related variables. These variables repre-
sent features such as (1) a timer being on or off, (2) the amount of time elapsed
since the last timeout, (3) the amount of time remaining until the next timeout,
(4) the set of timers that must be on or off for a given transition to execute.

There are several classes of timers used in test sequences [12]:
• global timers to assure that the execution of a test case stops even if it is

blocked due to unexpected behavior of the SUT;



Towards Testing SDL Specifications 275

• guarding timers to check constraints on the SUT response time;
• delaying timers to delay the sending of messages to the SUT in order to allow

the SUT to get into a desired state.
The delaying timers help the SUT reach a state where it can receive the next

signal when a tester is too fast. They also help check the reaction of the SUT
if a signal is delayed too long to test invalid behavior, e.g., to check that the
SUT does not send any signal for a given amount of time [12]. We also consider
another type of delaying timers, whose purpose is to help the SUT reach certain
states that otherwise would become unreachable (Sections 4.3 and 4.4).

Let us refer to these classes of timers, which focus on an SUT’s behavior
during testing, as test-execution timers. In addition, a protocol’s specification
may contain functional timers, such as retransmission and acknowledgement
timers. The timed EFSM model [9] is capable of modeling each type of timers.

2.1 Model Overview

For an FSM represented by graph G(V, E), consider a set of timers K = {tm1,
. . . , tm|K|} that may be arbitrarily started and stopped. Each tmj is associated
with a boolean Tj whose value is true if tmj is running, and false otherwise.
Each transition can be guarded by φ—a time formula obtained from variables
T1, . . . , Tk by using logical operands ∧, ∨, and ¬. We further define the following
parameters [9, 10]:
• Tj ∈ {0, 1}—Tj = 1 if tmj is running; Tj = 0 otherwise;
• Dj ∈ R+—tmj ’s timeout value (i.e., timer length);
• fj ∈ R+—time-keeping variable denoting the current time of tmj ;
• ci ∈ R+—time needed to traverse transition ei ∈ E, which is obtained from

ei’s definition in the specification or assessed by a domain expert;
• time condition for ei: 〈φi〉—ei can trigger only if its φi is satisfied;
• action list for ei: {ϕi,1, ϕi,2, . . .}—each one updates a variable’s value;
• cs

p ∈ R+—time needed to traverse a self-loop of node vp ∈ V ;
Based on the time-related variables described above, the model first defines a

set of conditions and actions for four different types of transitions. The original G
is then augmented as G′, to which the indeel algorithms [6, 7] are applied. The
algorithms, by analyzing the conflicts in a class of EFSMs, prevent inclusion
of two or more conflicting edges in the same path in a test sequence. In the
case of timed EFSMs, the time variables are treated as context variables. The
conflicts are resolved by splitting the graph edges and nodes such that each
conflicting pair of edges is placed in a different sub-graph. The resulting EFSM
graph (represented by G′′) does not contain any infeasible paths, and hence
can be used as an input to the FSM-based test generation methods [14]. The
algorithms avoid unnecessary state explosion during the conflict resolution by
creating the new sub-graphs only when needed.

By augmenting the original indeel, we significantly reduce the number of
tests, while preserving all feasible transitions of G in G′ after the indeel ap-
plied to eliminate inconsistencies (converting G′ to G′′). As a result, our method
achieves the goal to cover every state transition at least once [10].



276 Mariusz A. Fecko, M. Ümit Uyar, and Ali Y. Duale

Eqs. 1 and 2 show the conditions (enclosed in angled brackets 〈〉) and actions
(enclosed in curly braces {}) for transitions of Types 1 and 2. To reduce the test
sequence length, additional two types of transitions merge non-timeout self-loops
of vp sharing the same time condition 〈φp,l〉. An in-depth interpretation of these
transition types is presented in Refs. [9, 10].

Type 1 timeout transition ej
i = (vp, vq), defined for each timer tmj (ej

i may be
a self-loop, i.e., p = q)

〈Tj ∧ (Dj − fj < Dk − fk)〉 (1)
{Tj = 0; fk = fk + max(0, ci + Dj − fj); fj = −∞}

Type 2 non-timeout transition ei = (vp, vq), which may be a self-loop that
starts/stops a timer or a non-self-loop

〈fk < Dk〉{fk = fk + ci} (2)

3 Fault Analysis

In our analysis, several well known assumptions [8, 14] on the specification and
the IUT are valid: (1) the specification is strongly-connected, reduced, and de-
terministic; (2) the IUT has the same input alphabet as the specification; and
(3) the faults do not increase the number of states in the IUT. The detection of
transfer/output faults [16] depends on the state verification method [1, 15, 18],
and is not part of the timing-fault analysis. If a timing fault results in a trans-
fer/output fault, we assume that it is detected with high probability.

This paper utilizes the classification of timing faults from Refs. [8, 13]. We
prove that under the above assumptions, all single 1-clock and n-clock timing
faults [8] are detected when applicable. We also prove that certain faults due
to incorrect settings for timer lengths are covered. Fault coverage for multiple
simultaneous timing faults is an open problem regardless of the testing model.

At the testing of ei: (ai/oi), output oi is expected no later than θ after
applying ai. This behavior is controlled by a special-purpose timer in a test
harness (outside the IUT), with the length θ: 0 < θ < ci + ε for a non-timeout
ei, and max(0, Dj − fj) < θ < ci + max(0, Dj − fj) + ε for a timeout ei

j .

3.1 1-Clock, Interval Fault

• Timing requirement: For transitions ei = (vp, vq; ai/oi) and hk, transition ei

can trigger only after applying ai within time boundaries [b1, b2] measured
from the execution of hk.

• Timing fault I: ai is applied at bai
�∈ [b1, b2]; oi is observed and vq verified in

less than bai
+ θ.

• Timing fault II: ai is applied at bai ∈ [b1, b2]; oi is not observed or vq not
verified in less than bai + θ.



Towards Testing SDL Specifications 277

vk
1 vk

2hk

<1> {T1=1;T2=1;f1=0; f2=0}

ck b1

b2

θ θ
ai oi observed;

     fault Ι
no output;
fault  ΙΙ

ai

Fig. 1. Modeling 1-clock interval timing fault.

The 1-clock, interval timing requirement can be modeled as shown in Fig. 1.
First, tm1 (with D1 = b1) and tm2 (with D2 = b2) are started in hk: 〈1〉{T1 =
1; f1 = 0;T2 = 1; f2 = 0}. As a result of the timing requirement, ei triggers after
tm1 and before tm2 expire, and in its actions stops tm2 with output oi, i.e., ei:
〈¬T1 ∧ T2〉{T2 = 0}.

Let us consider the state and transition spaces (UG, RG), defined for V and
variables V = {T1, f1, . . . , T|K|, f|K|}.

UG = {(vp, T1, f1, . . . , T|K|, f|K|) : vp ∈ V, Tk, fk ∈ V} (3)

Let the sets of transitions between states in UG and U ′
G be denoted as RG

and R′
G, respectively. Let each ui ∈ UG be represented by (vi, T1, f1, T2, f2).

Transition ei is represented in RG by gi = (up, uq), where up = (vp, 0, −∞, 1, f2 ∈
[b1, b2]) and uq = (vq, 0, −∞, 0, −∞). The time condition of ei and the definition
of up indicate that gi is included (and can trigger) in a conflict-free graph only
at a point in time f2 within the boundaries of [b1, b2]. Transition ei will not be
included in a test sequence as originating from any up with f2 �∈ [b1, b2].

Timing fault I is detected in three steps: (1) verifying state vp, (2) observing
oi, and (3) verifying state vq. These steps correspond to the execution of infea-
sible transition gi, which is present in neither a conflict-free graph nor a test
sequence. Timing fault II is detected in two steps: (1) verifying state vp, and
(2) observing ok �=oi or verifying state vk �=vq. These steps are not expected as a
result of executing transition gi, which is included in a conflict-free graph and a
test sequence. Therefore, all single 1-clock interval faults are detected.

The above analysis can be easily extended for two interval faults such as time-
constraint restriction and time-constraint widening faults, which occur when the
IUT changes either the upper or lower bound of a time constraint [8].

3.2 n-Clock Fault

• Timing requirement: For transitions ei = (vp, vq; ai/oi) and h1, . . . , hn, tran-
sition ei can trigger after applying input ai only when, for any k < n, hk was
executed before hk+1.

• Timing fault III: ai is applied, oi is observed and vq verified in less than bai +θ
time when, for at least one k: 2 ≤ k ≤ n, hk is executed before hk−1.
For the n-clock timing requirement, timers tm1, . . . , tmn with the infinite

lengths are introduced (Fig. 2). Transition h1 starts tm1, i.e., h1: 〈1〉{T1 =
1; f1 = 0}. Each hk (2 ≤ k ≤ n) is split into h1

k and h2
k: the former triggers



278 Mariusz A. Fecko, M. Ümit Uyar, and Ali Y. Duale

vk1 vk1
hk vk1 vk2

hk1

hk2

v12

vk1 vk-11

vk-12

hk-11
hk-12

v11

h1

vk2

hk1 hk2

vp

vq

ei

vn1

vn2
hn1

hn2

Fig. 2. Modeling n-clock timing fault. Transitions executed when the fault occurs ap-
pear in bold.

before tmk−1 expires, and starts tmk, i.e., hk: 〈Tk−1〉{Tk = 1; fk = 0}; the
latter triggers when tmk−1 is not running, and in its actions stops tmk, i.e., hk:
〈¬Tk−1〉{Tk = 0}. Finally, ei triggers only when tmn is running.

The indeel allow only feasible test sequences to be generated. Consider two
such sequences:
• (h1

1, . . ., h2
k, h1

k−1, h2
k+1, . . ., h2

n, hn+1 �= ei), with the outputs of (oh1 , . . ., ohk
,

ohk−1 , ohk+1 , . . ., ohn
, ohn+1), where ohn+1 �= oi or vq �= tail(hn+1). Since hk

precedes hk−1, h1
k’s condition of 〈Tk−1〉 cannot be satisfied because only h1

k−1
can start tmk−1. Transition ei: 〈Tn〉 is infeasible, since h2

n does not start tmn;
• (h1

1, . . ., h1
k−1, h1

k, . . ., h1
n, ei), with the outputs of (oh1 , . . ., ohk−1 , ohk

, . . .,
ohn , oi).
The outputs observed when the timing fault III occurs are as follows: (oh1 ,

. . ., ohk
, ohk−1 , ohk+1 , . . ., ohn

, oi). The above multi-clock fault is detected by
the first valid test sequence, either by observing oi �=ohn+1 , or by verifying state
vq �= tail(hn+1) when ohn+1=oi. Therefore, all single n-clock faults are detected.

3.3 Incorrect Timer-Setting Fault

• Timing requirement: For timer tmj of length Dj , timeout transition ej
i =

(vp, vq, −/oj
i ) will trigger exactly in Dj time units after tmj is started in

transition hk.
• Timing fault IV: After hk triggers, oj

i is observed and vq verified in less than
Dj time.

• Timing fault V: After hk triggers, oj
i is observed and vq verified in more than

Dj + ci time.
There are several ways in which this type of timing faults can be detected.

The first way is to take advantage of the special-purpose timer with the length
of θ. Suppose that transition ej

i triggers after D′
j < Dj (timing fault IV). If

Dj <= fj , then θ > 0 and the fault is not detected through the special-purpose
timer. (It may, however, be detected by observing incorrect outputs.) If Dj > fj ,
then θ > Dj − fj , and the fault is detected by observing oj

i in less than θ time.
Suppose that transition ej

i triggers after D′′
j > Dj (timing fault V). If Dj <= fj ,



Towards Testing SDL Specifications 279

then θ < ci + ε and the fault is detected for D′′
j − Dj > θ by observing oj

i in
more than θ time.

When the fault cannot be detected by using the special-purpose timer, in
many cases it may be detected by observing expected outputs from other transi-
tions affected by the fault. Suppose that, for the timing fault IV, the specification
allows the following test sequence: (. . ., hk, . . ., hn, . . ., ej

i , . . .). Consider two
cases of timing fault IV: (1) tmj expires in ej

i before the implementation is able
to execute hn, and (2) the implementation executes the above test sequence in
order. In the first case, ej

i triggers instead of hn. This error is detected by ob-
serving oj

i �=ohn
or verifying vq �=tail(hn). In the second case, whether the fault

is detected depends on the state of the running timers at the time of error oc-
currence. If there are no running timers after tmj expires prematurely, timing
fault IV is not detected other than by the special-purpose timer.

Figure 3 shows a different case where there are running timers when the fault
occurs. Timer tma with output oa is started by hk (which also starts tmj), and
timer tmb with output ob �= oa is started by ej

i . The outputs in a test sequence
for this case are as follows: (. . . , ok, . . . , on, . . . , oj

i , . . . , oa, ob, . . .). When timing
fault IV occurs and D′

j > Da − ci − Db (Case 2.1), the order of outputs in the
test sequence is preserved by the implementation, and the discrepancy between
D′

j and Dj is not large enough to be detected in this way. If D′
j < Da − ci − Db

(Case 2.2), the difference Dj − D′
j is large enough to cause ob appear before oa,

which is detected by the above test sequence. The analysis for the timing fault V
is analogous. Therefore, many single incorrect timer setting faults are detected.
Example 1 (Fault detection) Let us consider a system where 3 timeouts are
required to occur in a specific order: timeouts for tm1 followed by tm2 and tm3.
A violation of this requirement results in a 3-clock timing fault. Our method
can detect this 3-clock fault, which can occur due to several faulty timers as
follows: (1) tm3 expires then tm1 then tm2, (2) tm2 expires then tm1 then tm3,
or (3) tm2 expires then tm3 then tm1, etc. In this example, the timer lengths
are correct, but they are started incorrectly (too early or too late). Otherwise,
the errors correspond to incorrect timer-setting faults. As proven in this section,
any single n-clock faults are detected by our method.

We do not guarantee detection of all multiple n-clock or multiple incorrect
timer-setting faults (or their combination). Consider the above error case tm3
expires followed by tm1 and then tm2. Suppose also that there are incorrect timer
settings: tm1 and tm2 are set to much shorter lengths than specified. In this case,
the timers will all expire incorrectly (i.e., too early), but in the correct order.

Fig. 3. Incorrect timer-setting fault IV: not detected (2.1); detected (2.2).



280 Mariusz A. Fecko, M. Ümit Uyar, and Ali Y. Duale

Such multiple faults cannot be detected in our model unless special external
timers are present in the test harness to monitor timers’ expiration times.

4 Application to SDL

The timer mechanism in SDL is used to express timing behavior of a system with
only one variable (Timer) and three operations (Set, Stop and Expire) [12]. The
passage of time is implicit and various background procedures handle timer set,
stop, and expiry. As a result, by inspecting an SDL specification, one cannot
tell whether or not a timer will expire after the SUT arrives at a certain state.
Therefore, infeasible test sequences can easily be generated unless time passage
is being completely described by the timer variables. However, in our model,
these three operations are represented by actions, with a major distinction that
the passage of time is described by explicitly changing the variables’ values. This
important feature allows detection and elimination of infeasible tests.

Given an SDL specification, there are several steps involved in building a
model from which a timed test sequence can be derived:
• extracting partial behavior of an SDL system as an FSM, which is represented

by graph G(V, E) (Section 4.1);
• extending thus obtained FSM with time-related variables T1, f1, . . . , T|K|,

f|K|, L1, . . . , L|V |, ts1,1, . . . , ts|V |,M|V |
. The resulting timed EFSM models the

original system along with its time-related behavior, and is represented by
graph G′(V ′, E′);

• augmenting G′ algorithmically with the time conditions and actions.

4.1 FSM Derivation from SDL Specification

Extracting an FSM that represents partial behavior of an SDL system is be-
yond the scope of this paper. Instead, we adopt the techniques reported in the
literature [3, 22]. One such technique [22] uses a special procedure to construct
a single-entry multiple-exit graph for an EFSM modeling an SDL process. In
the second stage, the extracted EFSM is converted to an FSM, which can be
accomplished by using one of several known approaches [6, 14].

One can also use an FSM extractor called the FEX tool [3]. In general,
transitions’ predicates in an SDL specification depend on both internal (con-
text) variables and input parameters. The approach behind FEX is to extract
an FSM by the partial unfolding of variables of enumerated types, while using
the predicates as part of the corresponding FSM inputs. The behavior of the
SDL specification is thus approximated by an FSM (called an approximating
machine), where the FSM’s input is defined as a pair <input signal, predicate>,
and most states correspond to the control states of the SDL specification. The
FEX tool constructs such an approximating machine from a given SDL specifi-
cation with the help of a normalization algorithm. The procedure is especially
effective for the specifications with relatively simple predicates, which is the case
for most protocols.



Towards Testing SDL Specifications 281

Assuming an efficient procedure for the FSM extraction (like the ones de-
scribed above), we will now illustrate test derivation for SDL specifications,
where guarding (Section 4.2) and delaying (Section 4.3) timers are taken into
account. Test derivation for the functional timers appears in Ref. [11].

4.2 Guarding Timers

Let us consider the benchmark time-constraint specification in Fig. 4, given
in TTCN-3 notation (taken from Ref. [12]), which uses two guarding timers.
The SUT has two Points of Control and Observation (PCOs), called A and
B, through which a tester entity can send and receive messages to and from the
SUT. A tester handling PCO A sends input a to the SUT, and sets two guarding
timers, T Guard Min and T Guard Max, to 2 and 5 seconds, respectively. The
expected behavior of the SUT is to wait for T Guard Min timeout (line 5), and
then receive the output d before T Guard Max timeout (lines 13 and 14). If the
SUT’s reply d is too quick (i.e., before T Guard Min timeout in lines 6-10) or
too slow (i.e., after T Guard Max in lines 15-19), the SUT fails the test.

The above functional requirement of the system can be formulated as a spe-
cial case of the 1-clock, interval timing requirement [8]. Let us use the fault
analysis from Section 3.1 as the basis for modeling the violation of the timing
requirement. First, transition h is introduced as h = (vp, vq, a/d) with the exe-
cution time of ch (vp is the initial state). Next, h is split into h1 = (vp, vq′) with
execution time of ch and h2 = (vq′ , vq) with execution time of 0, as shown in

1 timer T Guard Min; timer T Guard Max;
2 A.send (a);
3 T Guard Min.start (2); T Guard Max.start (5);
4 alt {
5 [ ] T Guard Min.timeout;
6 [ ] A.receive (d);
7 {
8 verdict.set (fail);
9 MyComponent.stop;
10 }
11 }
12 alt {
13 [ ] A.receive (d);
14 { T Guard Max.stop; }
15 [ ] T Guard max.timeout;
16 {
17 verdict.set (fail);
18 MyComponent.stop;
19 }
20 }

Fig. 4. Example SDL spec with two guarding timers (in TTCN-3 format).



282 Mariusz A. Fecko, M. Ümit Uyar, and Ali Y. Duale

vpvp vq
h: (a/d) vq�

h2: (ε/d)h1: (a/ε)

vt
eon eoff

eb: (b/c) eb: (b/c)

vq
e1

e2
e1

e2
e1

e2

Fig. 5. Modeling 1-clock timing faults.

Figure 5. Then, the timing requirement can be reformulated as follows (ε denotes
a null input or output):
• Timing requirement: For transitions h1 = (vp, vq′ ; a/ε) and h2 = (vq′ , vq, ε/d),

transition h2 can trigger only within time boundaries [b1, b2] measured from
the execution of h1.

• Timing fault I: d is observed in less than b1 seconds after application of a.
• Timing fault II: d is observed in more than b2 seconds after application of a.
• Timing fault III: d is not observed at all after application of a.

These timing faults can be modeled as transfer/output faults [16] for the
graph in Figure 5. First, timers tm1 and tm2 are introduced with the lengths of
D1=b1 and D2=b2, respectively. The timers are started in h1: 〈¬T1 ∧ ¬T2〉{T1 =
1; f1 = 0;T2 = 1; f2 = 0}. Because of the timing requirement, h2 can trigger only
after tm1 and before tm2 expire, i.e., h2: 〈¬T1 ∧ T2〉{}. The timeout transitions
for tm1 and tm2 are e1: 〈T1〉{. . .} and e2: 〈T2〉{. . .}, respectively. An expiry of
tm1 and tm2 generates outputs o1 (tm1’s timeout) and o2 (tm2’s timeout).

State vt is introduced as the initialization state, where a test sequence origi-
nates and terminates. A test sequence starts in state vt with edge eon: 〈1〉 {T1 =
0; T2 = 0; f1 = −∞; f2 = −∞}, which initializes all timers. It terminates when
traversing edge eoff : 〈¬T1 ∧ ¬T2〉{}, bringing the IUT from v0 back to state vt.
The time condition of eoff ensures that at this point all timers are inactive.

The above transitions also have the following appended conditions and ac-
tions [9]. For simplicity, we only show the appended conditions and actions for
transitions h1 and h2:

h1 : 〈f1 < 2 ∧ f2 < 5 ∧ ¬T1 ∧ ¬T2〉{f1 = f1 + ch;
f2 = f2 + ch; T1 = 1; f1 = 0;T2 = 1; f2 = 0} (4)

h2 : 〈f1 < 2 ∧ f2 < 5 ∧ ¬T1 ∧ T2〉{} (5)

Once G′ is built, the infeasible transitions are removed from it by the in-
deel [6], which produces a conflict-free EFSM. Then, any FSM test-generation
method [14] can be applied to obtain an efficient test sequence.

Consider a feasible test sequence and the associated I/O pairs:

(eon, h1, e1, h2, e2, eb, eoff) (6)
(oon, a/ε, ε/o1, ε/d, ε/o2, b/c, ooff) (7)

Note that, while the presented framework does not distinguish input/output
sequences (a/ε, ε/o1) and (a/o1), no timing fault is undetected due to this prop-



Towards Testing SDL Specifications 283

erty. On the other hand, when timing fault I occurs, the SUT traverses an in-
feasible path (eon, . . . , h1, h2, . . .), with the corresponding sequence of I/O pairs
(oon, . . . , a/ε, ε/d, . . .). Similarly, the SUT traverses infeasible path (eon, . . . , h1,
. . . , h2, . . .), with the corresponding sequence of I/O pairs (oon, . . . , a/ε, . . . , ε/o2,
ε/d, . . .), when timing fault II occurs. In the case of timing fault III, the SUT tra-
verses another infeasible path (eon, . . . , h1, e1, e2, . . . , eoff), with the I/O pairs of
(. . . , a/ε, ε/o1, ε/o2, . . . , ooff). All these infeasible paths are eliminated by the in-
deel from a conflict-free graph and valid test sequences. An observation of the
infeasible I/O pairs is thus detected by test sequence (6) by comparing them
with outputs in (7).

Specifically, observing d after applying a detects timing fault I; observing
o2 after applying a detects timing fault II; and observing a pair o1, o2 after
applying a detects timing fault III. None of these observations correspond to
those required by (7).

4.3 Delaying Timers

To prevent feasible transitions from becoming unreachable during testing, the
transitions that start a guarding or functional timer may need to be delayed by
certain amount of time [9]. The following rule is applied to graph G′’s traversal:
• If ei starts a timer and at least one other timer is running when ei is to

be traversed, delay ei’s traversal by the amount of time less than the time
remaining until the earliest timeout.
The action of delaying such transitions allows us to explore various orderings

of timers’ expirations by causing certain timers to expire before others. The
length of delaying timers is found algorithmically.

Example 2 (Delaying timers) The FSM in Figure 6 consists of three states
v0 (the initial state), v1, and v2, and five transitions e1 through e5. Suppose that
all transitions take 1sec to traverse and each has the time condition 〈1〉 (i.e.,
true). There are two functional timers defined for the FSM: tm1 (started by e1)
with the length of D1 = 4 and the timeout transition e3, and tm2 (started by
e2) with the length of D2 = 2 and the timeout transition e4. Transitions e3 and
e4 also explicitly stop timers tm2 and tm1, respectively.

Let us illustrate that e3 may not be traversed if no delaying timers are used.
When the IUT is in its initial state v0 with all timers inactive, there is no need
to delay e1, since a delay cannot affect the time-related behavior of the system.
Suppose that a tester does not delay e2 either. In this case, when v2 is visited,
tm1 and tm2 have 3sec and 2sec left until expiration, respectively. Timer tm2
expires first in the timeout transition e4 that also stops tm1. The system returns
to v0 with all timers stopped and e3 never traversed.

On the other hand, when e2 is delayed by more than 1sec, tm1 and tm2 have
less than 2sec and exactly 2sec left until expiration, respectively. In this case,
timer tm1 expires first in the timeout transition e3, which also stops tm2. Thus
by choosing the length of the delaying timer in e2 as 0, a tester can traverse e4.
At another visit to v1, the length greater than 1 will make e3 feasible.



284 Mariusz A. Fecko, M. Ümit Uyar, and Ali Y. Duale

procedure  delaying 1(1)

* v1 or v2

vt v0

      on        off

T1=0; f1=−inf;
T2=0; f2=−inf;

transition
e_on

* v0 v1 T1 & T2
off

Timeout
T1

Timeout
T2

start T1 start T2

T1=0;
f1=−inf;
T2=0;
f2=−inf

T2=0;
f2=−inf;
T1=0;
f1=−inf

T1=1;
f1=0;

T2=1;
f2=0;

start T1 start T2

v0 v0 v1 v2 vt v0

transition
e3

transition
e4

transition
e1

transition
e2

transition
e_off

transition
e5

yes no

Fig. 6. Delaying affects reachability.

To generalize our previous results [9], let us consider the following state space
defined for states in V and variables V = {T1, f1, . . . , T|K|, f|K|}:

W = {(vp, (τj1 , yj1), . . . , (τjn , yjn)) : vp ∈ V, Tjk
∈ V}

where τj1 , . . . , τjn are indices of running timers in the order of expiration. Each
yjk �=1 is defined as the time between tmjk−1 ’s and tmjk

’s timeouts; yj1 is set to
0. Let W ′

G be the subset of W reachable in G′, with the set of transitions among
states in W ′

G denoted as X ′
G. Each xi ∈ X ′

G is derived [14] from the original G′’s
transition ei = (v1

i , v2
i ) and labeled with the following parameters:

• ei—original transition in E
• w1

i , w2
i ∈ W ′

G—xi’s start and end states in W ′
G, respectively, where w1

i =
(v1

i , . . .) and w1
i = (v2

i , . . .)
Suppose that transition xi ∈ X ′

G is to be traversed. It is clear that the time-
related components (i.e., variables of Ti and yi) of w1

i and w2
i are identical unless

xi is derived from a timeout transition or a transition that starts/stops a timer.
Other transitions alter neither the order nor the time between timer expirations,
which makes it unnecessary for a tester to delay their inputs.



Towards Testing SDL Specifications 285

Fig. 7. Delaying transition xi.

If xi is a timeout transition for tmj , the amount of time a tester can delay
xi is independent of the tester’s action and equal to Dj − fj . If xi is not a
timeout transition, one of the timers—say tma—is to expire first. Let dm

i be
the amount of time by which xi is delayed in this case. It can be observed
that if xi is to be traversed instead of tma’s timeout, dm

i must be less than
Da − fa (Figure 7 (b)). In the case where none of the timers are running before
traversing xi (Figure 7 (a)), dm

i will be set to 0 because time passage does not
affect system behavior if all timers are inactive. (A delay greater than Da − fa

cannot be applied, as shown in Figure 7 (c)).
If xi stops a timer, delaying xi by any 0 < dm

i < Da − fa does not result
in the end state w2

i different from the end state for a zero delay. Therefore, dm
i

will be set to 0 as for a timeout transition. If xi starts a timer, delaying xi by
any 0 ≤ dm

i < Da − fa is likely to result in multiple end states w2
i depending on

the value of dm
i . These multiple copies of w2

i need to be considered in G′, since
certain transitions in G′ may be feasible only for a specific copy.

To satisfy the above requirement, each xi will be replaced by a set of transi-
tions Xi. Transition x

(0)
i ∈ Xi handles the case with dm

i set to 0 where all timers
are inactive before traversing xi. Transition x

(0)
i has the following appended

condition: (∀k) timer tmk not running. Formally, this condition is 〈¬Tk〉.
The case where dm

i is upper bounded by a running timer tma with the shortest
time to expire is handled by transitions x

(a)
i ∈ Xi, defined for each a: 1 ≤ a <

|K|. In the above conversion, xi is replaced with |K| + 1 transitions in Xi, out
of which only one has a consistent condition, i.e., x

(0)
i if no timer is running,

or x
(a)
i for a particular tma that is to expire first. Each x

(a)
i has the following

appended condition and actions:
• condition: for each timer tmk �=a: timer tma running AND timer tma is to

expire before tmk. Formally, this condition is Ta ∧ (Da − fa < Dk − fk)〉;
• action: for each k, increment tmk’s current time by the introduced delay:

fk = fk + dm
i , where 0 ≤ dm

i < Da − fa.
During an application of the indeel, the two inequalities of dm

i ≥ 0 and dm
i <

Da − fa must be included in the consistency check of conditions involving dm
i .

The actual instantiation of parameter dm
i , i.e., assigning a particular value from

between dm
i ’s bounds, takes place after generating a test sequence. In addition, if

xi stops or starts timer tmj , the actions {Tj = 0; fj = −∞} or {Tj = 1; fj = 0}
must be appended to xi’s action list, respectively.

Let us now define a trace in state space W ′
G, which will be instantiated as a

test sequence in E [10].



286 Mariusz A. Fecko, M. Ümit Uyar, and Ali Y. Duale

Definition 1 A trace of G′ in state space W ′
G is defined as a feasible sequence

of tuples t′G = (d1, x1), . . . , (dm, xm), where, for each xk, tester delays applying
ak to an IUT by dk. For a non-timeout xk that starts a timer, dk ∈ R+; for a
timeout xi = xj

i , dk = max(0, Dj − fj), for the remaining transitions, dk is 0.

Example 2 (cont’d) For the FSM of Fig. 6, consider state space W ′
G and

its transition set X ′
G. The IUT traverses x1 to enter w1. In w1, if no delay is

applied before traversing x2, the IUT will move to state w2(0) = (v2, (2, 0), (1, 1))
regardless of a possible delay applied for x1. If, however, delay dm

2 is applied
before x2 is triggered, the IUT may be in multiple states distinguished by the
value of dm

2 . For the delay 1 < d1
2 < 3, x3 is feasible and x4 is not feasible in the

states defined by w2(d1
2) = (v2, (1, 0), (2, 2)). For 0 ≤ d2

2 < 1, in any state w2(d2
2)

= (v2, (2, 0), (1, 1 − d2
2)), x4 is feasible and x3 is not feasible.

A test sequence can be algorithmically derived in X ′
G as the following pa-

rameterized trace:

t′G(d1
2, d

2
2) = (0, x1), (d2

2, x2), (2, x4), (0, x1), (d1
2, x2), (3 − d1

2, x3) (8)

where x2 = x
(1)
2 ∈ X2, 0 ≤ d1

2, d
2
2 < 3, and the accumulated conditions are

x3 : 〈(D1 − f1 < D2 − f2) ∧ . . .〉 ≡ 〈(d1
2 > 1) ∧ . . .〉

x4 : 〈(D2 − f2 < D1 − f1) ∧ . . .〉 ≡ 〈(d2
2 < 1) ∧ . . .〉

The corresponding trace (test sequence) in E with the instantiated values of
parameters d1

2 = 2 and d2
2 = 0 is as follows:

t′G(2, 0) = (0, e1), (0, e2), (2, e4), (0, e1), (2, e2), (1, e3) (9)

Eq. (9) indicates that, when e2 is traversed the first and second times, the
length of its delaying timer is set to 2 and 0, respectively.

4.4 Flexible Timeout Settings

Let us now illustrate the advantages of our approach with respect to flexible
modeling of timeout settings. If the timer lengths are fixed in advance (as they
are, e.g., in Timed Automata (TA) [2]) certain portions of the system may be-
come unreachable. In particular, in a complex system or protocol it is difficult to
predict and manually assign the correct lengths for functional timers. Our model
offers the flexibility to define timer lengths as variables, and have the indeel
find the appropriate timer ranges, as shown below.

Example 2 (cont’d) Suppose the timeout settings for the FSM of Fig. 6 are
D1=4 and D2=5. For transitions x3 and x4, the accumulated conditions are

x3 : 〈(d1
2 < 3) ∧ . . .〉, x4 : 〈(d2

2 < −2) ∧ . . .〉 (10)

The only possible sequence of delay/edge pairs through the FSM of Fig. 6 is trace
t′G(d1

2, d
2
2) = (0, x1), (d1

2, x2), (3 − d1
2, x3) containing x3 with feasible condition



Towards Testing SDL Specifications 287

in (10). During test generation, path (0, x1), (d2
2, x2), (5, x4) that contains x4 is

also considered, but pruned because its condition in (10) is always false for the
initial timeout settings. As a result, x4 is always infeasible, and hence those
portions of the graph reachable only through x4 are untestable.

In our model, to find the timeout settings that make x4 feasible, D2 is a
variable rather than a constant. In this case, the following parameterized trace
will be obtained:

t′G(d1
2, d

2
2, D2) = (0, x1), (d2

2, x2), (D2, x4)(0, x1), (d1
2, x2), (3 − d1

2, x3) (11)

where x2 = x
(1)
2 ∈ X2, with the following accumulated conditions:

x3 : 〈(d1
2 > 3 − D2) ∧ . . .〉, x4 : 〈(d2

2 < 3 − D2) ∧ . . .〉 (12)

A linear programming algorithm, which is used here to determine path feasibility,
will find a feasible solution for (12) to instantiate (11). For example, trace (11)
can be instantiated as the following test sequence in E:

t′G(2.5, 0, 1) = (0, e1), (0, e2), (1, e4), (0, e1), (2.5, e2), (0.5, e3)

for d1
2=2.5, d2

2=0, and D2=1. The methodology not only finds D2=1, but also
computes the appropriate lengths 2.5 and 0 for e2’s delaying timer.

5 Conclusion

A recent model for testing systems with multiple timers is extended to compute
proper input delays and timeout settings, and is applied to several types of
timers required in a testing procedure. This model, combined with the indeel
algorithms, allows the generation of feasible test sequences. It can be used to
specify timers defined as timed extensions to SDL such as guarding and delaying
timers. In cases where it is difficult to predict and manually assign correct timer
lengths, the model also offers the flexibility to define timer lengths as variables,
and have the indeel find the appropriate timer ranges.

References

1. A.V. Aho, A.T. Dahbura, D. Lee, and M.U. Uyar. An optimization technique for
protocol conformance test generation based on UIO sequences and rural Chinese
postman tours. IEEE Trans. Commun., 39(11):1604–1615, 1991.

2. R. Alur and D.L. Dill. A theory of timed automata. Elsevier J. Theoret. Comput.
Sci., 126:183–235, 1994.

3. G.v. Bochmann, A.F. Petrenko, O. Bellal, and S. Maguiraga. Automating the
process of test derivation from SDL specifications. In Proc. SDL-Forum Symp.,
pp. 261–276, Evry, France, 1997.

4. M. Bozga, S. Graf, L. Mounier, I. Ober, J.-L. Roux, and D. Vincent. Timed
extensions for SDL. In SDL’01 [17].



288 Mariusz A. Fecko, M. Ümit Uyar, and Ali Y. Duale

5. S. Budkowski and P. Dembiński. An introduction to Estelle: A specification lan-
guage for distributed systems. Elsevier J. Comput. Networks ISDN Syst., 14(1):3–
24, 1991.

6. A.Y. Duale and M.U. Uyar. Generation of feasible test sequences for EFSM models.
In TestCom’00 [21], pp. 91–109.

7. A.Y. Duale and M.U. Uyar. INDEEL: A software system for inconsistency detec-
tion and elimination. In ATIRP’01 [20], pp. 3.29–34.

8. A. En-Nouaary, R. Dssouli, and F. Khendek. Timed Wp-method: Testing real-time
systems. IEEE Trans. Softw. Eng., 28(11):1023–1038, 2002.

9. M.A. Fecko, P.D. Amer, M.U. Uyar, and A.Y. Duale. Test generation in the
presence of conflicting timers. In TestCom’00 [21], pp. 301–320.

10. M.A. Fecko, M.U. Uyar, A.Y. Duale, and P.D. Amer. A technique to generate
feasible tests for communications systems with multiple timers. IEEE/ACM Trans.
Network. (to appear).

11. M.A. Fecko, M.U. Uyar, A.Y. Duale, and P.D. Amer. Efficient test generation for
Army network protocols with conflicting timers. In ATIRP’01 [20], pp. 3.47–52.

12. D. Hogrefe, B. Koch, and H. Neukirchen. Some implications of MSC, SDL and
TTCN time extensions for computer-aided test generation. In SDL’01 [17].

13. A. Khoumsi, A. En-Nouaary, R. Dssouli, and M. Akalay. A new method for testing
real-time systems. In Proc. IEEE RTCSA: Int’l Conf. Real-Time Comput. Syst.
Appl., pp. 441–450, Cheju Island, S. Korea, 2000.

14. R. Lai. A survey of communication protocol testing. Elsevier J. Syst. Softw.,
62:21–46, 2002.

15. G. Luo, G.v. Bochmann, and A.F. Petrenko. Test selection based on communicat-
ing nondeterministic finite state machines using a generalized Wp-method. IEEE
Trans. Softw. Eng., 20(2):149–162, 1994.

16. A.F. Petrenko and G.v. Bochmann. On fault coverage of tests for finite state
specifications. Elsevier J. Comput. Networks ISDN Syst., 29(1):81–106, 1996.

17. R. Reed and J. Reed, eds. Proc. SDL-Forum Symp., vol. 2078 of Springer LNCS,
Copenhagen, Denmark, 2001.

18. A. Rezaki and H. Ural. Construction of checking sequences based on characteri-
zation sets. Elsevier J. Comput. Commun., 18(12):911–920, 1995.

19. J. Springintveld, F. Vaandrager, and P.R. D’Argenio. Testing timed automata.
Elsevier J. Theoret. Comput. Sci., 254(1-2):225–257, 2001.

20. A.J. Tardif and J.W. Gowens, eds. ARL Advanced Telecommun./Information Dis-
tribution Research Program (ATIRP). UMD Printing, 2001.

21. H. Ural, R.L. Probert, and G.v. Bochmann, eds. Proc. IFIP TestCom: Int’l Conf.
Test. Communicat. Syst., Ottawa, ON, 2000.

22. H. Ural, K. Saleh, and A. Williams. Test generation based on control and data
dependencies within system specifications in SDL. Elsevier J. Comput. Commun.,
23(7):609–627, 2000.


	Towards Testing SDL Specifications: Models and Fault Coverage for Concurrent Timers
	1 Introduction
	2 Timing Model
	2.1 Model Overview

	3 Fault Analysis
	3.1 1-Clock, Interval Fault
	3.2 n-Clock Fault
	3.3 Incorrect Timer-Setting Fault

	4 Application to SDL
	4.1 FSM Derivation from SDL Specification
	4.2 Guarding Timers
	4.3 Delaying Timers
	4.4 Flexible Timeout Settings

	5 Conclusion
	References




