
Towards Testing Stochastic Timed Systems�

Manuel Núñez and Ismael Rodŕıguez

Dept. Sistemas Informáticos y Programación, Facultad de Informática,
Universidad Complutense de Madrid, E-28040 Madrid, Spain,

{mn,isrodrig}@sip.ucm.es

Abstract. In this paper we present a first approach to the definition
of conformance testing relations for systems presenting stochastic timed
behavior. By stochastic time we mean that the probability of performing
an event may vary according to the elapsed time. In particular, we will
consider delays specified by means of random variables.
In order to define our formal model, we will provide a stochastic ex-
tension of the notion of finite state machine. We will give a first imple-
mentation relation and we will discuss its practical drawbacks. That is,
we will show that this relation cannot be appropriately checked under a
black/grey-box testing methodology. We will also present other alterna-
tive implementation relations that can be checked up to a certain degree
of confidence. We will define test cases and how they are applied to im-
plementations. Finally, we will give a test generation algorithm providing
complete, up to a degree of confidence, test suites.

Keywords: Conformance testing, test theory, performance testing

1 Introduction

Testing consists in checking the correctness of an implementation by performing
experiments on it. Usually, correctness is considered with respect to a specifica-
tion describing the desired behavior of the system. In order to perform this task,
several techniques, algorithms, and semantic frameworks have been introduced
in the literature (see e.g. [6, 17, 18] for overviews on the topic). In recent years the
testing community has shown a growing interest in extending these frameworks
so that not only functional properties but also quantitative ones could be tested.
Thus, there has been several proposals for timed testing (e.g. [8, 10, 15, 21, 23]).
In these works time is considered to be deterministic. In fact, in most of the
cases, time is introduced by means of clocks following [3].

Even though the inclusion of time allows the specifier to give a more precise
description of the system to be implemented, there are frequent situations that
cannot be accurately described by using this notion of time. For example, we
may desire to specify a system where a message is expected to be received with
probability 1

2 in the interval (0, 1], with probability 1
4 in (1, 2], and so on. This

� Research supported in part by the Spanish MCYT projects AMEVA and MASTER
and the Junta de Castilla-La Mancha project DISMEF.

H. König, M. Heiner, and A. Wolisz (Eds.): FORTE 2003, LNCS 2767, pp. 335–350, 2003.
c© IFIP International Federation for Information Processing 2003

336 Manuel Núñez and Ismael Rodŕıguez

is an advantage with respect to usual deterministic time where we could only
specify that the message arrives in the interval (0,∞). Thus, stochastic extensions
of classical formal models, as process algebras and Petri Nets, have appeared in
the literature (see e.g. [1, 2, 5, 7, 11, 12, 14, 16, 20]). As we have shown in
the previous example, the main idea underlying stochastic models is that time
information is incremented with some kind of probabilistic information.

In contrast with testing of timed systems, stochastic testing has received
almost no attention. In fact, to the best of our knowledge, there are only two
works in the field [4, 19], where extensions of the classical theory of testing [9, 13]
are given. We think that this lack of research in this area is due to the technical
difficulties in the definition of the corresponding notions of testing. For example,
even if we consider white-box testing, as it is the case of [4, 19], we still have
technical problems as the aggregation of delays. In the case of grey/black-box
testing, that we consider in this paper, the problem of detecting time faults
is much more involved than in the case of timed testing. This is so because
we will suppose that the test(er) has no access to the probability distribution
functions associated with delays. Let us remark that due to the probabilistic
nature of time in stochastic timed systems, several observations of a system
may lead to different times of execution. Actually, this may happen even if the
implementation performs in all the cases the same sequence of actions (and
through the same sequence of states).

In this paper we give notions of conformance testing for systems presenting
stochastic time information. In order to do so, we need to introduce a formal
framework to specify this kind of systems. We will consider a suitable extension of
finite state machines where (stochastic) time information is included. Intuitively,
transitions in finite state machines indicate that if the machine is in a state s
and receives and input i then it will produce and output o and it will change its

state to s′. An appropriate notation for such a transition could be s
i/o−→ s′. If we

consider a timed extension of finite state machines (see e.g. [22]), transitions as

s
i/o−−−−→ t s

′ indicate that the time between receiving the input i and returning
the output o is equal to t. In the new model that we introduce in this paper
for stochastic transitions, we will consider that the delay between the input
is applied and the output is received is given by a random variable ξ. Thus

the interpretation of a transition s
i/o−−−−→ ξ s′ is: If the machine is in state s

and receives an input i then it will produce the output o before time t with
probability P (ξ ≤ t) and it will change its state to s′.

The rest of the paper is organized as follows. In Section 2 we present our
stochastic finite state machine model. In Section 3 we define our first implemen-
tation relation and we show its weakness from the practical point of view. In
Section 4 we give our notion of test case and we define how they are applied to
implementations under test. In Section 5 we take up again the study of imple-
mentation relations. We give a first notion where an implementation conforms
a specification up to a certain degree of confidence, with respect to a (multi)set
of observations from the implementation. The idea, regarding time, is that we

Towards Testing Stochastic Timed Systems 337

try to decide whether the times observed from the implementation correspond
to the random variable indicated by the specification. Next we give other alter-
native notions where the speed of the implementation is taken into account. In
Section 6 we give a test derivation algorithm and we show that, given a specifi-
cation, the generated test suite is complete, for a certain confidence level, with
respect to the first implementation relation given in Section 5. In Section 7 we
present our conclusions and some lines for future work. In the appendix of this
paper we formally introduce Pearson’s contrast, which is (abstractly) used along
the paper.

2 Stochastic Finite State Machines

In this section we introduce our notion of finite state machines with stochastic
time. We use random variables to model stochastic delays. Thus, we need to
introduce some basic concepts on random variables. We will consider that the
sample space (that is, the domain of random variables) is the set of real numbers
IR. Besides, random variables take positive values only in IR+. The reason for
this restriction is that they will always be associated with time distributions, so
they cannot take a negative value.

Definition 1. We denote by V the set of random variables (ξ, ψ, . . . to range
over V). Let ξ be a random variable. We define its probability distribution function
as the function Fξ : IR −→ [0, 1] such that Fξ(x) = P (ξ ≤ x), where P (ξ ≤ x)
is the probability that ξ assumes values less than or equal to x. Let ξ, ξ′ ∈ V be
random variables. We write ξ = ξ′ if for any x ∈ IR we have Fξ(x) = Fξ′(x).

Given two random variables ξ and ψ we consider that ξ+ψ denotes a random
variable distributed as the addition of the two random variables ξ and ψ.

We will call sample to any multiset of positive real numbers. We denote the
set of multisets in IR+ by ℘(IR+). Let ξ be a random variable and J be a sample.
We denote by γ(ξ, J) the confidence of ξ on J . ��

In the previous definition, a sample simply denotes an observation of values.
In our setting, samples will be associated with times that implementations take
to perform sequences of actions. We have that γ(ξ, J) takes values in the interval
[0, 1]. Intuitively, bigger values of γ(ξ, J) indicate that the observed sample J
is more likely to be produced by the random variable ξ. That is, this function
decides how similar the probability distribution function generated by J and the
one corresponding to the random variable ξ are. In the appendix of this paper
we show how confidence is formally defined. Next we introduce our notion of
stochastic finite state machines.

Definition 2. A Stochastic Finite State Machine, in short SFSM, is a tuple
M = (S, I,O, δ, sin) where S is the set of states, I and O denote the sets of
input and output actions, respectively, δ is the set of transitions, and sin is the
initial state. Each transition belonging to δ is a tuple (s, i, o, ξ, s′) where s, s′ ∈ S
are the initial and final states, i ∈ I and o ∈ O are the input and output ac-

338 Manuel Núñez and Ismael Rodŕıguez

1

2 3

i2/o1 i2/o1

i2/o2

i1/o1

i1/o2
i1/o3

i1/o2

i1/o1

i1/o2

i1/o1

M1

i2/o2

1

2

i1/o1i1/o2

i2/o1

M2

1

2

i1/o1i1/o2

i2/o1

i2/o1 i2/o3

M3

Fig. 1. Examples of SFSM.

tions, and ξ ∈ V is the random variable defining the delay associated with the

transition. Transitions will be sometimes denoted as s
i/o−−−−→ξ s

′. ��

Intuitively, a transition (s, i, o, ξ, s′) indicates that if the machine is in state s
and receives the input i then the machine emits the output o before time t with
probability Fξ(t) and the machine changes its current state to s′. In order to
avoid side-effects, we will assume that all the random variables appearing in the
definition of a SFSM are independent. Let us note that this condition does not
restrict the distributions to be used. In particular, there can be random variables
identically distributed even though they are independent. Next we define some
conditions that are usually required to finite state machines.

Definition 3. Let M = (S, I,O, δ, sin) be a SFSM. We say that M is input-
enabled if for any state s ∈ S and input i ∈ I there exist s′, o, ξ, such that
(s, i, o, ξ, s′) ∈ δ. We say that M is deterministically observable if for any s, i, o
there do not exist two different transitions (s, i, o, ξ1, s1), (s, i, o, ξ2, s2) ∈ δ. ��

First, let us remark that the previous concepts are independent of the stochas-
tic information appearing in SFSMs. Regarding the notion of deterministically ob-
servable SFSM, it is worth to point out that it is different from the more restricted
notion of deterministic finite state machine. In particular, we allow transitions
from the same state labelled by the same input action, as far as the outputs are
different.

Example 1. Let us consider the finite state machines depicted in Figure 1. In
order to transform these machines into stochastic finite state machines, we need
to add random variables to all the transitions. Let us consider M2. We have
M2 = ({1, 2}, {i1, i2}, {o1, o2, o3}, δ, 1) where the set of transitions δ is given by:

δ = {(1, i2, o1, ξ1, 1), (1, i1, o1, ξ2, 2), (2, i1, o2, ξ3, 1)}

Towards Testing Stochastic Timed Systems 339

In order to complete our specification ofM2 we need to say how random variables
are distributed. Let us suppose the following distributions:

Fξ1(x) =




0 if x ≤ 0
x
3 if 0 < x < 3
1 if x ≥ 3

Fξ2(x) =
{

0 if x < 4
1 if x ≥ 4

Fξ3(x) =
{

1 − e−3·x if x ≥ 0
0 if x < 0

We say that ξ1 is uniformly distributed in the interval [0, 3]. Uniform distribu-
tions allow us to keep compatibility with time intervals in (non-stochastic) timed
models in the sense that the same weight is assigned to all the times in the inter-
val. We say that ξ2 is a Dirac distribution in 4. The idea is that the corresponding
delay will be equal to 4 time units. Dirac distributions allow us to simulate de-
terministic delays appearing in timed models. We say that ξ3 is exponentially
distributed with parameter 3. Let us consider the transition (1, i2, o1, ξ1, 1). In-
tuitively, if M2 is in state 1 and it receives the input i2 then it will produce the
output o2 after a delay given by ξ1. For example, we know that this delay will
be less than 1 unit of time with probability 1

3 , it will be less than 1.5 units of
time with probability 1

2 , and so on. Finally, once 3 units of time has passed we
know that the output o1 has been performed (that is, we have probability 1).

Regarding the notions of input-enabled and deterministically observable, we
have that M1 fulfills the first of the properties but not the second one (there are
two transitions from the state 1 labelled by i2/o1). The first property does not
hold in M2 (there is no outgoing transition labelled by i2 from the state 2) while
the second one does. Finally, both properties hold for M3. ��

Usually we need to consider not only single evolutions of a SFSM but also
sequences of transitions. Thus, we introduce the notion of trace.

Definition 4. Let M = (S, I,O, δ, sin) be a SFSM. We write the generalized

transition s
(i1/o1,...,in/on)

===========⇒ ξ s
′ if there exist s1, . . . , sn−1, ξ1, . . . , ξn such that

s
i1/o1−−−−−→ξ1 s1

i2/o2−−−−−→ξ2 s2 · · · sn−1
in/on−−−−−→ξn s

′ and ξ = ξ1 + . . .+ ξn.
We say that ρ = (i1/o1, . . . , in/on) is a non-stochastic trace, or simply a

trace, of M if there exist s′ ∈ S and ξ ∈ V such that sin
ρ

==⇒ ξ s
′. We say that

ρs = ((i1/o1, . . . , in/on), ξ) is a stochastic trace of M if there exist s′ ∈ S such
that sin

ρ
==⇒ξ s

′.
We denote by NSTraces(M) and STraces(M) the sets of non-stochastic and

stochastic traces of M , respectively. ��
Traces are defined as sequences of transitions. In this case, the random vari-

able associated with stochastic traces is computed from the corresponding to
each transition of the sequence. In fact, we consider the addition of all the ran-
dom variables appearing in the trace. Intuitively, the time that it will take for

340 Manuel Núñez and Ismael Rodŕıguez

the trace to be performed is equal to the sum of the delays corresponding to
each of the transitions.

3 Stochastic Implementation Relations: A First Attempt

In this section we introduce our first implementation relation. It follows the
classical pattern: An implementation I conforms to a specification S if for any
possible evolution of S the outputs that the implementation I may perform after
a given input are a subset of those for the specification. In addition to the non-
timed conformance of the implementation, we will require some time conditions
to be held.

Next, we formally define the sets of specifications and implementations: Spec
and Imp. We will consider that both specifications and implementations are given
by deterministically observable SFSMs. That is, we do not allow a machine to
have two different transitions as (s, i, o, ξ1, s′) and (s, i, o, ξ2, s′′). Note that we
do not restrict observable non-determinism, that is, we may have the transitions
(s, i, o1, ξ1, s1) and (s, i, o2, ξ2, s2,) as far as o1 	= o2. Besides, we assume that
input actions are always enabled in any state of the implementation, that is,
implementations are input-enabled according to Definition 3. This is a usual
condition to assure that the implementation will react (somehow) to any input
appearing in the specification.

Next, we introduce our first implementation relation.

Definition 5. Let I and S be SFSMs. We say that I non-stochastically conforms
to S, denoted by I confns S, if for each ρ = (i1/o1, . . . , in/on) ∈ NSTraces(S),
with n ≥ 1, we have

ρ′ = (i1/o1, . . . , in/o′
n) ∈ NSTraces(I) implies ρ′ ∈ NSTraces(S)

We say that I stochastically conforms to S, denoted by I confs S, if I confns S
and for any ρs = (ρ, ξ) ∈ STraces(I) we have

ρ ∈ NSTraces(S) implies (ρ, ξ′) ∈ STraces(S) ∧ ξ = ξ′
��

Intuitively, the idea underlying the definition of the non-stochastic confor-
mance relation I confnsS is that the implementation I does not invent anything
for those inputs that are specified in the specification. Let us note that if the
specification has also the property of input-enabled then we may remove the
condition “for each ρ = (i1/o1, . . . , in/on) ∈ NSTraces(S), with n ≥ 1”.

Example 2. Consider the finite state machines M2 and M3 depicted in Figure 1
(center and right). We have M3 confns M2. Note that the traces of M3 having
as prefix the sequence i1/o1, i2/o, with o ∈ {o1, o3}, are not checked since M2
(playing the role of specification) cannot perform those traces.

Let us now consider thatM2 is extended with the transition (2, i2, fail, ξ2, 2),
for a random variable ξ2, so that it fulfills the conditions required for implemen-
tations (input-enabled). Then, M2 does not conform to M3. For example, M3

Towards Testing Stochastic Timed Systems 341

T1

i2

fail

o2 o1

i2

fail

o2 o1

i1

pass

o1

fail

o2

fail

o3

fail

o3

fail

o3

T2

i1

fail

o2 o1

i1

fail

o1

pass

o2

fail

o3

fail

o3

T3

i2

fail

o2

pass

o1

fail

o3

T4

i1

fail

o2 o1

i1

fail

o1 o2

i2

pass

o1

fail

o2

fail

o3

fail

o3

fail

o3

Fig. 2. Examples of Test Cases.

may perform the trace ρ = i1/o1, i2/o3, M2 has the trace ρ′ = i1/o1, i2/fail,
but ρ′ does not belong to the set of non-stochastic traces of S3. Note that ρ and
ρ′ have the same prefix i1/o1, i2. ��

In addition to requiring this notion of non-timed conformance, we have to ask
for some conditions on delays. Thus, I confs S also requires that any stochastic
trace of the specification that can be performed by the implementation must
have the same associated delay. Even though this is a very reasonable notion of
conformance, the fact that we assume a grey/black-box testing framework dis-
allows us to check whether the corresponding random variables are identically
distributed. In fact, we would need and infinite number of observations from a
random variable of the implementation (with an unknown distribution) to as-
sure that this random variable is distributed as another random variable from
the specification (with a known distribution). Thus, we have to give more real-
istic implementation relations based on a finite set of observations. In the next
sections we will present other implementation relations that are less accurate
but that are checkable.

4 Tests Cases for Stochastic Systems

In this section we introduce test cases and we present how they are applied to
implementations under test. We consider that a test case is simply a sequence
of inputs applied to the implementation. Once an output is received, we check
whether it is the expected one or not. In the latter case, a fail signal is produced.
In the former case, either a pass signal is emitted (indicating successful termina-
tion) or the testing process continues by applying another input. If we are testing
an implementation with input and output sets I and O, respectively, tests are
deterministic acyclic I/O labelled transition systems (i.e. trees) with a strict al-
ternation between an input action and the whole set of output actions. After an

342 Manuel Núñez and Ismael Rodŕıguez

output action we may find either a leaf or another input action. Leaves can be
labelled either by pass or by fail. In the first case we add a random variable. The
idea is that we will record the time that it takes for the implementation to arrive
to that point. We will collect a sample of times (one for each test execution) and
we will compare this sample with the random variable. By comparison we mean
that we will apply a contrast to decide, with a certain confidence, whether the
sample could be generated by the corresponding random variable.

Definition 6. A test case is a tuple T = (S, I,O, δ, s0, SI , SO, SF , SP , ζ) where
S is the set of states, I and O, with I ∩O = ∅ are the sets of input and output
actions, respectively, δ ⊆ S × I ∪ O × S is the transition relation, s0 ∈ S is the
initial state, and the sets SI , SO, SF , SP ⊆ S are a partition of S. The transition
relation and the sets of states fulfill the following conditions:

– SI is the set of input states. We have that s0 ∈ SI . For any input state s ∈ SI

there exists a unique outgoing transition (s, a, s′) ∈ δ. For this transition we
have that a ∈ I and s′ ∈ SO.

– SO is the set of output states. For any output state s ∈ SO we have that for
any o ∈ O there exists a unique state s′ such that (s, o, s′) ∈ δ; in each case,
s′ /∈ SO. Moreover, there do not exist i ∈ I and s′ ∈ S such that (s, i, s′) ∈ δ.

– SF and SP are the sets of fail and pass states, respectively. We say that these
states are terminal. That is, for any state s ∈ SF ∪ SP we have that there
do not exist a ∈ I ∪O and s′ ∈ S such that (s, a, s′) ∈ δ.

Finally, ζ : SP −→ V is a function associating random variables with passing
states.

Let ρ = (i1/o1, . . . , ir/or). We write T
ρ

=⇒ s, if s ∈ SF ∪ SP and there exist
states s12, s21, s22, . . . sr1, sr2 ∈ S such that {(s0, i1, s12), (sr2, or, s)} ⊆ δ, for
any 2 ≤ j ≤ r we have (sj1, ij , sj2) ∈ δ, and for any 1 ≤ j ≤ r − 1 we have
(sj2, oj , s(j+1)1) ∈ δ.

We say that a test case is valid if the graph induced by T is a tree with root
at the initial state s0. ��

In Figure 2 we give some test cases, where random variables associated with
passing states have been omitted. Before we define the application of a test to an
implementation, we need to introduce an auxiliary definition. As we said before,
we will compare the time that the implementation needs to perform the test
with the random variable appearing in the reached passing state of the test.
Thus, we suppose that there exists a mechanism allowing to observe the time
that the implementation needed to perform the sequence offered by the test and
that leads the test to the corresponding passing state.

Definition 7. Let I be a SFSM. We say that ((i1/o1, . . . , in/on), t) is the observed
timed execution of I, or simply timed execution, if the observation of I shows
that the sequence (i1/o1, . . . , in/on) is performed in time t.

Let Φ = {ρ1, . . . , ρm} be a set of traces and H = {|(ρ′
1, t1), . . . , (ρ

′
n, tn)|} be

a multiset of timed executions. We say that Sampling(H,Φ) : Φ −→ ℘(IR+) is a
sampling application of H for Φ if Sampling(H,Φ)(ρ) = {|t | (ρ, t) ∈ H|}, for any
ρ ∈ Φ. ��

Towards Testing Stochastic Timed Systems 343

Regarding the definition of sampling applications, we just associate with each
trace the observed times of execution. Next we define the application of a test
to an implementation.

Definition 8. Let I = (S1, I, O, δ1, sin) be an implementation under test and
T = (S2, I, O, δ2, s0, SI , SO, SF , SP , ζ) be a valid test. We denote the application
of the test T to the implementation I as I ‖ T .

We write I ‖T ρ
=⇒t s

T if T
ρ

=⇒ sT and (ρ, t) is the observed timed execution
of I. In this case we say that (ρ, t) is a test execution of I and T .

Let H = {|(ρ1, t1), . . . , (ρn, tn)|} be a test executions sample of I and T ,
0 ≤ α ≤ 1, Φ = {ρ | ∃ sT , t : I ‖ T ρ

=⇒t s
T }, and let us consider Sampling(H,Φ).

We say that the implementation I (α,H)−passes the test T if for any trace
ρ ∈ NSTraces(I) with I ‖ T ρ

=⇒t s
T we have both that sT 	∈ SF and if sT ∈ SP

then γ(ζ(sT), Sampling(H,Φ)(ρ)) > α. ��
Intuitively, an implementation passes a test if two conditions hold. First,

there is no evolution leading to a fail state (see the condition sT 	∈ SF). Once we
know that the functional behavior of the implementation is correct with respect
to the test, we need to check time conditions. The set H corresponds to the
observations of the (several) applications of T to I. Thus, we have to decide
whether, for each trace ρ, the observed times (that is, Sampling(H,Φ)(ρ))) match
the definition of the random variable appearing in the successful state of the test
corresponding to the execution of that trace (that is, ζ(sT)). As we commented
previously, we assume a function γ that can perform this hypothesis contrast.
In the appendix of this paper we give the technical details about the definition
of this function (we will use Pearson’s χ2).

Next we extend the notion of passing a test to deal with test suites. In order
to increase the degree of reliability, we will not take the classical approach where
passing a test suite is defined according only to the results for each test. In our
approach, we will put together all the observations, for each test, so that we
have more samples for each trace. In particular, some observations will be used
several times. In other words, an observation from a given test may be used to
check the validity of another test sharing the same observed trace.

Definition 9. Let I be a SFSM and Ω = {T1, . . . , Tn} be a set of tests. Let
H1, . . . , Hn be test execution samples of I and T1, . . . , Tn, respectively. Finally,
let H =

⋃n
i=1Hi. We say that the implementation I (α,H)−passes the test

suite Ω if for any 1 ≤ i ≤ n we have that I (α,H ′
i)−passes Ti, where H ′

i =
{|(ρ, t) | (ρ, t) ∈ H ∧ ∃ sT , t : I ‖ Ti

ρ
=⇒t s

T |}. ��

5 Implementation Relations Based on Samples

In Section 3 we presented an implementation relation that fulfilled a nice defi-
nition and it seemed appropriate for our framework. Unfortunately, this notion
is useful only from a theoretical point of view since, under our assumptions, it
cannot be tested in finite time that an implementation conforms with respect to

344 Manuel Núñez and Ismael Rodŕıguez

a specification. In this section we introduce a new implementation relation that,
inspired by our testing framework, takes into account the observations that we
may get from the implementation.

Definition 10. Let I and S be two SFSMs. Let H be a multiset of timed ex-
ecutions of I, 0 ≤ α ≤ 1, Φ = NSTraces(I) ∩ NSTraces(S), and let us con-
sider Sampling(H,Φ). We say that I (α,H)−stochastically conforms to S, de-
noted by I confs(α,H) S, if I confns S and for any non-stochastic trace ρ =
(i1/o1, . . . , in/on) ∈ NSTraces(I) we have that if there exists a stochastic trace
((i1/o1, . . . , in/on), ξ) ∈ STraces(S) then γ(ξ, Sampling(H,Φ)(ρ)) > α. ��

The idea underlying the new relation is that the implementation must con-
form to the specification in the usual way (that is, I confns S). Besides, for any
trace of the implementation that it can be performed by the specification, the
observed execution times fit the random variable indicated by the specification.
Again, this notion of fitting is given by the function γ that it is formally defined
in the appendix of this paper. A first direct result says that if we decrease the
confidence level then we keep conformance.

Lemma 1. Let I and S be two SFSMs such that I confs(α1,H) S. If α2 < α1
then we have I confs(α2,H) S. ��

The next result, whose proof is straightforward, says that if we have two
samples sharing some properties then our conformance relation gives the same
result for both of them.

Lemma 2. Let I and S be two SFSMs, H1, H2 be multisets of timed executions
for I, and let bi = {|(ρ, t) | (ρ, t) ∈ Hi ∧ ρ ∈ NSTraces(I) ∩ NSTraces(S)|}, for
i = {1, 2}. If b1 = b2 then we have I confs(α,H1) S iff I confs(α,H2) S. ��

Next we present different variations of the previous implementation relation.
First, we define the concept of shifting a random variable with respect to its
mean. For example, let us consider a random variable ξ following a Dirac dis-
tribution in 4 (see Example 1 for the formal definition). If we consider a new
random variable ξ′ following a Dirac distribution in 3, we say that ξ′ represents
a shift of ξ. Moreover, we also say that ξ and ξ′ belong to the same family.

Definition 11. We say that ξ′ is a mean shift of ξ with mean M ′, and we denote
it by ξ′ = MShift(ξ,M ′), if ξ, ξ′ belong to the same family and the mean of ξ′,
denoted by µξ′ , is equal to M ′.

Let I and S be two SFSMs. Let H be a multiset of timed executions of I,
0 ≤ α ≤ 1, Φ = NSTraces(I) ∩ NSTraces(S), and let us consider Sampling(H,Φ).
We say that I (α,H)−stochastically conforms to S with speed π, denoted by
Iconfm

(α,H)
π S, if IconfnsS and for any ρ = (i1/o1, . . . , in/on) ∈ NSTraces(I) we

have that if there exists a stochastic trace ((i1/o1, . . . , in/on), ξ) ∈ STraces(S)
then γ(MShift(ξ, µξ · π), Sampling(H,Φ)(ρ)) > α. ��

An interesting remark regarding this new relation is that when α is small
enough and/or π is close enough to 1, then it may happen that we have both

Towards Testing Stochastic Timed Systems 345

I confs(α,H)S and Iconfm(α,H)
π S. Nevertheless, it is enough to increase α, as far

as π 	= 1, so that we do not have both results simultaneously. Let us note that
in the previous notion, a value of π greater than 1 indicates that the new delay
is slower. This observation induces the following relation.

Definition 12. Let I and S be two SFSMs. Let H be a multiset of timed execu-
tions of I. We say that I is generally faster (respectively generally slower) than
S for H if there exist 0 ≤ α ≤ 1, and 0 < π < 1 (respectively π > 1) such that
Iconfm

(α,H)
π S but I confs(α,H) S does not hold. ��

Given the fact that, in our framework, an implementation could fit better to
a specification with higher or lower speed, it will be interesting to detect which
variations of speed would make the implementation to fit better the specification.
Intuitively, the best variation will be the one allowing the implementation to
conform to the specification with a higher level of confidence α.

Definition 13. Let I and S be two SFSMs. Let H be a multiset of timed execu-
tions of I. Let us consider 0 ≤ α ≤ 1 and π ∈ IR+ such that Iconfm(α,H)

π S and
there do not exist α′ > α and π′ ∈ IR+ with Iconfm

(α′,H)
π′ S. Then, we say that

π is a relative speed of I with respect to S for H. ��
The concept of relative speed allows us to define another implementation

relation which is more restrictive than those presented so far. Basically, the
implementation must both (α,H)−stochastically conform to the specification
and have 1 as a relative speed. Let us note that the latter condition means that
the implementation fits perfectly in its current speed. However, let us remark
that this new notion correspond neither to our first implementation relation (see
Definition 5) nor to have a confidence level α equal to 1.

Definition 14. Let I and S be two SFSMs. Let H be a multiset of timed exe-
cutions of I and 0 ≤ α ≤ 1. We say that I (α,H)−stochastically and precisely
conforms to S, denoted by I confp(α,H) S, if I confs(α,H) S and we have that 1
is a relative speed of I with respect to S for H. ��

The following result relates some of the notions presented in this section.

Lemma 3. Let I and S be two SFSMs. We have I confp(α,H)S iff I confs(α,H)S
and neither I is generally faster than S for H nor I is generally slower than S
for H. ��

6 Test Derivation

In this section we provide an algorithm to derive tests from specifications. In
addition, we will show that the derived test suite is complete, up to a given
confidence α and for a sample H, with respect to the conformance relation
confs(α,H) given in Definition 10. As usually, the idea consists in traversing the
specification to get all the possible traces in the adequate way. So, each test
is generated so that it focuses on chasing a concrete trace of the specification.

346 Manuel Núñez and Ismael Rodŕıguez

Input: M = (S, I, O, δ, sin).
Output: T = (S′, I, O, δ′, s0, SI , SO, SF , SP , ζ).

Initialization:

– S′ := {s0}, δ′ := SI := SO := SF := SP := ζ := ∅.
– Saux := {(sin, ξ0, s0)}.

Inductive Cases: Apply one of the following two possibilities until Saux = ∅.

1. If (sM , ξ, sT) ∈ Saux then perform the following steps:
(a) Saux := Saux − {(sM , ξ, sT)}.
(b) SP := SP ∪ {sT }; ζ(sT) := ξ.

2. If Saux = {(sM , ξ, sT)} is a unitary set and there exists i ∈ I such that
out(sM , i) �= ∅ then perform the following steps:
(a) Saux := ∅.
(b) Choose i such that out(sM , i) �= ∅.
(c) Create a fresh state s′ /∈ S′ and perform S′ := S′ ∪ {s′}.
(d) SI := SI ∪ {sT }; SO := SO ∪ {s′}; δ′ := δ′ ∪ {(sT , i, s′)}.
(e) For each o /∈ out(sM , i) do

– Create a fresh state s′′ /∈ S′ and perform S′ := S′ ∪ {s′′}.
– SF := SF ∪ {s′′}; δ′ := δ′ ∪ {(s′, o, s′′)}.

(f) For each o ∈ out(sM , i) do
– Create a fresh state s′′ /∈ S′ and perform S′ := S′ ∪ {s′′}.
– δ′ := δ′ ∪ {(s′, o, s′′)}.
– sM

1 := after(sM , i, o).
– Let (sM , i, o, ξ1, s

M
1) ∈ δ. Saux := Saux ∪ {(sM

1 , ξ + ξ1, s
′′)}.

Fig. 3. Test Derivation Algorithm.

However, if during the execution of the test it is detected an output which does
not correspond to such a trace, then the testing process stops and finishes in
either a pass or a fail state. The status of the final state depends on whether
such an output is allowed by the specification at this point. First, we give some
auxiliary functions.

Definition 15. Let M = (S, I,O, δ, sin) be a SFSM. We define the set of possible
outputs in state s after input i as out(s, i) = {o | ∃s′ : (s, i, o, ξ, s′) ∈ δ}. For any
transition (s, i, o, ξ, s′) ∈ δ we write after(s, i, o) = s′. ��
Let us remark that due to the assumption that SFSMs are deterministically ob-
servable we have that after(s, i, o) is uniquely determined.

Our derivation algorithm is presented in Figure 3. By considering the possible
available choices we get a set of tests extracted from the specification M . We
denote this set of tests by tests(M).

In this algorithm, the set of pending states Saux keeps track of the states
of the test under construction whose definition has not been finished yet. A
tuple (sM , ξ, sT) ∈ Saux indicates that the current state in the traversal of the

Towards Testing Stochastic Timed Systems 347

specification is sM , that the random variable accounting for the elapsed time in
the specification from the initial state is ξ, and that we did not conclude yet the
description of the state sT in the test.

The set Saux initially contains a tuple with the initial states (of both specifi-
cation and test) and a random variable ξ0 following a Dirac distribution in 0 (i.e.
no time has yet elapsed). For each tuple in Saux we may choose one possibility.
It is important to remark that the second possibility is applied at most to one
of the possible tuples. Thus, our derived tests correspond to valid tests as given
in Definition 6. The first possibility simply indicates that the state of the test
becomes a passing state. The second possibility takes an input and generate a
transition in the test labelled by this input. Then, the whole sets of outputs is
considered. If the output is not expected by the implementation, a transition
leading to a failing state is created. This could be simulated by a single branch
in the test, labelled by else, leading to a failing state (in the algorithm we sup-
pose that all the possible outputs appear in the test). For the rest of outputs,
we create a transition with the corresponding output and add the appropriate
tuple to the set Saux.

Finally, let us remark that finite test cases are constructed simply by consid-
ering a step where the second inductive case is not applied. For example, the test
cases appearing in Figure 2 can be generated by applying the previous algorithm
to the SFSM M2 given in Example 1. In addition, we have to define the random
variables corresponding to the passing states. Given that each of these tests has
a unique passing state, we will denote by ψi the random variable associated with
the passing state of the test Ti. We have ψ1 = ξ1 +ξ1 +ξ2, ψ2 = ξ2 +ξ3, ψ3 = ξ1,
and ψ4 = ξ2 + ξ3 + ξ1.

The next result states that for any specification S we have that the test suite
tests(S) can be used to distinguish those (and only those) implementations
that conforms with respect to confs. However, we cannot say that the test suite
is complete since both passing tests and the considered implementation relation
have a probabilistic component. So, we can talk of completeness up to a certain
confidence level.

Proposition 1. Let I and S be SFSMs. For any 0 ≤ α ≤ 1 and multiset of timed
executions H we have I confs(α,H)S iff I (α,H)−passes tests(S). Proof Sketch:
I confs(α,H) S requires that I confns S and that for any trace belonging to both
the specification and the implementation, the confidence of the random variable
of the specification on the samples observed in the implementation is higher than
α. The way our algorithm deals with non-stochastic information of the traces
is quite similar to other test derivation algorithms. Regarding stochastic infor-
mation, let us remark that the samples collected from the tests will be exactly
the samples we apply to check whether the implementation relation holds. So,
the conditions we require about the confidence of the random variables on the
samples will be the same both to pass the test and to make the implementation
relation to hold. ��

The previous idea can be easily extended to some of the implementation
relations presented in Section 5. For example, we may suppose that tests(S, π)

348 Manuel Núñez and Ismael Rodŕıguez

denotes the test suite generated by replacing the last instruction of the algorithm
in Figure 3 by Saux := Saux∪{(sM

1 , ξ+MShift(ξ1, µξ1 ·π), s′′)}, and then applying
the resulting algorithm.

Proposition 2. Let I and S be SFSMs. For any 0 ≤ α ≤ 1, π ∈ IR+, and multiset
of timed executions H we have Iconfm(α,H)

π S iff I (α,H)−passes tests(S, π).
��

7 Conclusions and Future Work

We have introduced a model of stochastic timed processes and we have presented
several implementation relations for this model. Each of them has some advan-
tages and drawbacks, so experiments on them are necessary to find out their
practical usefulness. In particular, the most appropriate relation is not checkable
if we consider a grey/black-box testing framework. We have included time by
means of the delay between the reception of an input and the generation of an
output. This delay is given by a random variable. Regarding testing, we have de-
fined an appropriate notion of test case and its application to the implementation
under test. We have given a derivation algorithm producing, for each specifica-
tion, a test suite. Finally, we have presented a notion of pseudo-completeness of
a test suite, for a certain degree of confidence.

A question that we do not address in this paper is test coverage as this is
beyond the scope of a first approach to this difficult topic. However, we think
that this is a relevant issue and we plan to confront it in the near future.

References

1. M. Ajmone Marsan, A. Bianco, L. Ciminiera, R. Sisto, and A. Valenzano. A
LOTOS extension for the performance analysis of distributed systems. IEEE/ACM
Transactions on Networking, 2(2):151–165, 1994.

2. M. Ajmone Marsan, G. Conte, and G. Balbo. A class of generalized stochastic petri
nets for the performance evaluation of multiprocessor systems. ACM Transactions
on Computer Systems, 5(2):93–122, 1984.

3. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126:183–235, 1994.

4. M. Bernardo and W.R. Cleaveland. A theory of testing for markovian processes.
In CONCUR’2000, LNCS 1877, pages 305–319. Springer, 2000.

5. M. Bernardo and R. Gorrieri. A tutorial on EMPA: A theory of concurrent pro-
cesses with nondeterminism, priorities, probabilities and time. Theoretical Com-
puter Science, 202:1–54, 1998.

6. B.S. Bosik and M.U. Uyar. Finite state machine based formal methods in protocol
conformance testing. Computer Networks & ISDN Systems, 22:7–33, 1991.

7. M. Bravetti and R. Gorrieri. The theory of interactive generalized semi-Markov
processes. Theoretical Computer Science, 282(1):5–32, 2002.

8. D. Clarke and I. Lee. Automatic generation of tests for timing constraints from re-
quirements. In 3rd Workshop on Object-Oriented Real-Time Dependable Systems,
1997.

Towards Testing Stochastic Timed Systems 349

9. R. de Nicola and M.C.B. Hennessy. Testing equivalences for processes. Theoretical
Computer Science, 34:83–133, 1984.

10. A. En-Nouaary, R. Dssouli, and F. Khendek. Timed Wp-method: Testing real time
systems. IEEE Transactions on Software Engineering, 28(11):1024–1039, 2002.

11. N. Götz, U. Herzog, and M. Rettelbach. Multiprocessor and distributed system
design: The integration of functional specification and performance analysis us-
ing stochastic process algebras. In 16th Int. Symp. on Computer Performance
Modelling, Measurement and Evaluation (PERFORMANCE’93), LNCS 729, pages
121–146. Springer, 1993.

12. P.G. Harrison and B. Strulo. SPADES – a process algebra for discrete event
simulation. Journal of Logic Computation, 10(1):3–42, 2000.

13. M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.
14. H. Hermanns, U. Herzog, and J.-P. Katoen. Process algebra for performance

evaluation. Theoretical Computer Science, 274(1-2):43–87, 2002.
15. T. Higashino, A. Nakata, K. Taniguchi, and A. Cavalli. Generating test cases for

a timed I/O automaton model. In 12th Workshop on Testing of Communicating
Systems, pages 197–214. Kluwer Academic Publishers, 1999.

16. J. Hillston. A Compositional Approach to Performance Modelling. Cambridge
University Press, 1996.

17. R. Lai. A survey of communication protocol testing. Journal of Systems and
Software, 62:21–46, 2002.

18. D. Lee and M. Yannakakis. Principles and methods of testing finite state machines:
A survey. Proceedings of the IEEE, 84(8):1090–1123, 1996.

19. N. López and M. Núñez. A testing theory for generally distributed stochastic
processes. In CONCUR 2001, LNCS 2154, pages 321–335. Springer, 2001.

20. N. López, M. Núñez, and F. Rubio. Stochastic process algebras meet Eden. In
Integrated Formal Methods 2002, LNCS 2335, pages 29–48. Springer, 2002.

21. D. Mandrioli, S. Morasca, and A. Morzenti. Generating test cases for real time
systems from logic specifications. ACM Transactions on Computer Systems,
13(4):356–398, 1995.

22. M. Núñez and I. Rodŕıguez. Encoding PAMR into (timed) EFSMs. In FORTE 2002,
LNCS 2529, pages 1–16. Springer, 2002.

23. J. Springintveld, F. Vaandrager, and P.R. D’Argenio. Testing timed automata.
Theoretical Computer Science, 254(1-2):225–257, 2001.

Appendix. Statistics Background: Hypothesis Contrasts

In this appendix we introduce one of the standard ways to measure the confidence
degree that a random variable has on a sample. In order to do so, we will present
a methodology to perform hypothesis contrasts. The underlying idea is that a
sample will be rejected if the probability of observing that sample from a given
random variable is low. In practice, we will check whether the probability to
observe a discrepancy lower than or equal to the one we have observed is low
enough. We will present Pearson’s χ2 contrast. This contrast can be applied both
to continuous and discrete random variables. The mechanism is the following.
Once we have collected a sample of size n we perform the following steps:

– We split the sample into k classes which cover all the possible range of values.
We denote by Oi the observed frequency at class i (i.e. the number of elements
belonging to the class i).

350 Manuel Núñez and Ismael Rodŕıguez

– We calculate the probability pi of each class, according to the proposed
random variable. We denote by Ei the expected frequency, which is given by
Ei = npi.

– We calculate the discrepancy between observed frequencies and expected
frequencies as X2 =

∑n
i=1

(Oi−Ei)2

Ei
. When the model is correct, this discrep-

ancy is approximately distributed as a random variable χ2 .
– We estimate the number of freedom degrees of χ2 as k − r − 1. In this case,
r is the number of parameters of the model which have been estimated by
maximal likelihood over the sample to estimate the values of pi (i.e. r = 0
if the model completely specifies the values of pi before the samples are
observed).

– We will accept that the sample follows the proposed random variable if
the probability to obtain a discrepancy greater or equal to the discrep-
ancy observed is high enough, that is, if X2 < χ2

α(k − r − 1) for some
α low enough. Actually, as such margin to accept the sample decreases
as α decreases, we can obtain a measure of the validity of the sample as
min{α |X2 < χ2

α(k − r − 1)}.

According to the previous steps, we can now present an operative definition
of the function γ which is used in this paper to compute the confidence of a
random variable on a sample.

Definition 16. Let ξ be a random variable and let J be a multiset of real
numbers representing a sample. Let X2 be the discrepancy level of J on ξ calcu-
lated as explained above by splitting the sampling space into the set of classes
C = {[0, a1), [a1, a2), . . . , [ak−1, ak), [ak,∞)}, where k is a given constant and for
all 1 ≤ i ≤ k we have ai = q where P (ξ ≤ q) = i

k+1 . We define the confidence of
ξ on J with classes S, denoted by γ(ξ, J), as min{α |X2 < χ2

α(k − 1)}. ��
Let us comment some important details. First, given the fact that the random

variables that we use in our framework denote the passing of time, we do not need
classes to cover negative values. Thus, we will suppose that the class containing
0 will also contain all the negative values. Second, let us remark that in order to
apply this contrast it is strongly recommended that the sample has at least 30
elements while each class must contain at least 3 elements.

	Towards Testing Stochastic Timed Systems
	1 Introduction
	2 Stochastic Finite State Machines
	3 Stochastic Implementation Relations: A First Attempt
	4 Tests Cases for Stochastic Systems
	5 Implementation Relations Based on Samples
	6 Test Derivation
	7 Conclusions and Future Work
	References

