
Type Abstraction
in Formal Protocol Specifications

with Container Types

Joachim Thees

University of Kaiserslautern, Postfach 3049, D-67653 Kaiserslautern, Germany,
thees@informatik.uni-kl.de

Abstract. In this paper, we propose a seamless integration of the con-
cept of “(universal) container types” into Formal Description Techniques
(FDTs), which introduces a new concept of data abstraction. We show
how this syntactical and semantic extension increases the expressiveness
in the area of component reuse, without sacrificing the formal precision of
the FDT. The ideas are exemplified for Estelle, but apply to other FDTs
in the protocol domain (e.g., SDL) as well. Furthermore we will demon-
strate, how this extension increases the capability to formally specify the
static and even the dynamic packet composition and decomposition of
pre-existing protocols (like TCP/IPv6 or XTP).

1 Introduction

Type safety is an important requirement to the formal (i.e. mathematically pre-
cise) specification of communication systems. Therefore all data handling opera-
tions must have an implementation independent and unique semantics. However,
the level of type safety enforced by many FDTs in the protocol domain (e.g.,
Estelle [1, 2] and SDL [4]) has a negative impact on the complexity and usability
of large, hierarchically structured, and heterogeneous protocol stacks, especially
against the background of reuse approaches of protocol components (e.g., as
open systems with SDL or Open Estelle [10]).

In this paper, we will demonstrate why this level of type safeness hampers a
generic and application independent definition of communication protocols and
services. This limitation becomes apparent especially at very complex, heteroge-
neous specifications and against the background of reuse approaches of protocol
components (e.g., as open systems with SDL or Open Estelle [10]).

As a solution to this problem, we propose a seamless integration of the con-
cept of “(universal) container types”, which introduces a new concept of data
abstraction, but avoids the overhead of a complete data description technique
like ASN.1 [3]. We show how this syntactical and semantic extension increases
the expressiveness in the area of component reuse, without sacrificing the formal
precision of the FDT. The ideas are exemplified for Estelle, but apply to other
FDTs in the protocol domain (e.g., SDL) as well.

H. König, M. Heiner, and A. Wolisz (Eds.): FORTE 2003, LNCS 2767, pp. 383–398, 2003.
c© IFIP International Federation for Information Processing 2003

384 Joachim Thees

N-1

N N

N+1 N+1

Service Interface Layer N-1

Service Interface Layer N

Fig. 1. Layered model for structured communication systems

N

N+1A N+1B

Service Interface
Layer N

N+1

NA NB

Fig. 2. Independence of service users and service providers

1.1 Hierarchical Communication Systems

Service hierarchies are an important means for the structuring of communication
systems. A system is structured into a number of layers (see Fig. 1), which
provide services to higher layers by making use of the services of lower layers.
The service interface of these layers hides the internal details of each layer from
all other layers. So these interfaces can be restricted to service aspects only. This
concept becomes even more important, if different service users access the same
service (see left hand side of Fig. 2) or a service user shall be bound to different
service providers without modifications (see right hand side of Fig. 2). Such
situations are very common in real world communication systems. For example,
we are used to running different applications on our workstation with the same
TCP/IP protocol implementation without any system reconfiguration. On the
other hand, the TCP/IP implementation on a workstation should not depend
on the kind of basic technology that is used to access the internet, especially if
different basic technologies are used concurrently.

Obviously the concept of information hiding and the abstraction provided
by minimal service interfaces are very important requirements for heterogeneous
structured communication systems.

1.2 Data Representation in Hierarchical Communication Systems

The OSI Reference Model [5] defines access to data transfer services in terms
of Service Access Points (SAPs), which allow a service user (layer N+1) to pass
its payload as a Service Data Unit (N-SDU) to a service provider (layer N, see
Fig. 3). The protocol machine of layer N will now create a Protocol Data Unit

Type Abstraction in Formal Protocol Specifications with Container Types 385

N-PDU

N-SAP

layer N

N-SDU

N-SDU N-PDU

N-SAP

N-SDU

N-SDU

N-1-SAP N-1-SAP

= N-1-SDU = N-1-SDU

N-1-SDU

layer N+1

layer N-1
N-PDUN-SDU

Fig. 3. Nesting of SDUs into PDUs

N-PDU = N-1-SDU

N-SDU

b0 bn

N-PDU-header N-PDU-trailer

N-1-PDU
N-1-PDU-header N-1-PDU-trailer

Fig. 4. Framing of SDUs into PDUs at byte encoding level

(N-PDU) that includes the N-SDU (i.e. the initial payload) and some additional
protocol specific data. This N-PDU itself is now used as a N-1-SDU for the SAP
to the next lower service (layer N-1). As soon as this service at layer N-1 delivers
the N-1-SDU to the peer protocol machine, the payload (N-SDU) is extracted
and transferred to the layer N+1 service user.

This mechanism can be found in most layered communication systems which
honor the concept of separation of concerns between the layers: the payload of
any service user is handled and transmitted by the lower service providers ba-
sically without any interpretation of its contents.1 Therefore at implementation
level payloads (SDUs) are most often represented as unstructured byte sequences
and the inclusion of an SDU into an PDU is handled as a simple concatenation
of byte sequences (header, payload and trailer), known as framing (see Fig. 4).

1.3 Formal Specification of Hierarchical Communication Systems

A natural representation of services and protocol machine structures in Estelle
is based on modules. In Fig. 1 we have seen a typical module instance hierarchy
implementing a protocol stack and its service structure. This is at first glance
1 Some integrated protocols like TCP and IP share some data (e.g., destination IP-

Address) inside the payload between different layers, but these could also be passed
redundantly as payload and separate service parameter.

386 Joachim Thees

appropriate to our information hiding requirements, since Estelle modules have
a well defined external interface and encapsulate all further internal details from
their environment.

But as soon as we start to model the internal aspects of the protocol machines,
we will have to specify the framing and un-framing mechanisms described above.
The type safeness of Estelle implies only one precise way for doing this: On every
layer (N) the SDU (N-SDU) is embedded into the PDU (N-PDU) as a record-
component.2 Framing is implemented by assigning SDU value to the appropriate
PDU component under construction. The resulting N-PDU is already the N-1-
SDU and can transferred (also type safe3) by the underlying communication
service N-1. At the destination module instance of layer N, the un-framing is
implemented by direct access to the N-SDU component of the N-PDU record.

The advantage of this approach is obvious: All data transfers and assignments
are type safe across the whole system. The disadvantages become apparent as
soon as we consider systems with a great number of framing layers: since for
every layer N the N-PDU aggregates its N-SDU (i.e. the N+1-PDU), the data
structures become more and more complex with every layer we step down in the
hierarchy (see Fig. 5). Obviously there is some kind of “inheritance” of payload
types down the protocol stack.4 This is even more undesirable as it acts inversely
compared to the service complexity5 provided at the individual layers.

The solution appears even worse if we consider heterogeneous protocol stacks,
where all services may be used by different protocols or applications (see Fig. 2).
Except of the pathological case, where all users of a service N use exactly the

N

N+1 N+1

N+2 N+2

N+3 N+3

N-SDUN+1-SDUN+2-SDU

N+2-SDU N+1-SDU

N+2-SDU

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

high

low

SD
U

s
co

m
pl

ex
it

y

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

high

low

se
rv

ic
e

co
m

pl
ex

it
y

Fig. 5. Complexity of Services and SDUs in Communication Hierarchies

2 Alternatively also an array over N-SDU-types could be used, but in most cases this
is only useful if the array is part of an N-PDU-Record, which also holds additional
protocol specific data for N.

3 The type safeness of the system can be proved by structural induction over the
number of layers.

4 We call this composing of types “vertical” (orthogonal to the “horizontal composi-
tion” noted below).

5 In most cases we put a service (or protocol) on top of another service in order to
improve it in any way.

Type Abstraction in Formal Protocol Specifications with Container Types 387

same N-SDU (i.e. payload) type, a handling of different N-SDUs is necessary.
The obvious solution is to embed not only one N-SDU type into the N-PDU,
but all possible N-SDU (i.e. payload) types, e.g., as variants of a variant record.6

Since heterogeneous protocol applications can occur on every layer and the re-
sulting variant records are also “inherited” to the external interfaces of all service
interfaces below, the combination of horizontal and vertical composition results
in a real type explosion of exponential complexity.7

1.4 Data Type Abstraction

Obviously the kind of type safe SDU-PDU-nesting shown above is only useful for
protocol specifications with a low number of layers and very little heterogeneity.
But this requirement is contradictory to the approach of true generic service and
protocol machine specification. Especially if we try to specify communication
services separately from and independently of concrete service users (e.g., as
an open system with the Estelle extension Open Estelle [10]) we would have to
specify the payload types of all possible8 users in advance.

On the other hand, the internal structure of the payloads is of no interest
for most data transfer services, since they simply transmit them without any
interpretation.9 Consequently the internal structure of the PDU of a protocol
machine could be kept as one of its internal secrets, which are isolated from the
environment in terms of the external interface.

Basically we are looking for a data type abstraction for SDU and PDU types
in formally specified protocol machines for the following tasks:

1. SDU types of services (and also of protocols) should be abstract, as long as
only the service users are interested in their concrete structure and contents.
This allows us to give an abstract service specification without reference to
a concrete payload type. Furthermore, the independence from any concrete
payload type also proves automatically, that the service is defined indepen-
dently of the concrete payload type.10

2. Protocol machines should be able to keep their concrete PDU types as an
internal secret, as long as lower services do not have to consider their con-
tent. This simplifies the external interface, since it can reflect only service

6 We call this composing of types “horizontal” (orthogonal to the “vertical composi-
tion”noted above).

7 In a system with n service layers and m variants on every layer we have a PDU type
with O(mn) at the lowest service provider.

8 For a truely generic service (e.g. specified as open system in Open Estelle) any not
pointer containing type would have to be supported.

9 In implementation level services payload is most often represented and handled as
simple byte sequence, where only the number of bytes and abstract properties like
their checksum are considered.

10 In Fig. 5 service provider N knows the complete structure of the payload (N-SDU)
and therefore could access or even modify any substructure from higher layers (e.g.,
the N+2-SDU). In most cases this is not intended and therefore should be avoided
at conceptional level.

388 Joachim Thees

aspects and can be kept free of internal details. For example, the external in-
terface of a transport layer protocol machine should not depend on protocol
mechanisms like acknowledgement strategies or sliding window lengths.

3. Service users (including protocol machines) should be able to pass their pay-
load types to the abstract SDU-parameters of these abstract service providers
and protocol machines. Of course this step must be reversible at the receipt
of SDU-parameters by the peer service users.

4. All operations must be semantically formal, i.e. type safe.

Unfortunately, Estelle has no means to do this kind of data abstraction,
especially if we take into consideration the demand to formally specify services
with Open Estelle completely independent of their later users:

– The SDU-type polymorphism already discussed above is only applicable if
all service users are known in advance, and even then it is only useful for a
small number of type variants.

– The use of incomplete type specifications (e.g., “TYPE T = ... ;”) makes
the whole specification incomplete, i.e. it has no formal semantics.

– Any kind of type parametrization11 of formally described open systems is
only useful for a single SDU type, but if several service users with different
SDU-types access the same service provider instance in the same system,
the resulting system suffers from the same problems (see left hand side of
Fig. 2).

– The application of primitive encoding and decoding functions as proposed in
Annex B of [2] represents all SDU types as byte arrays of fixed size. Since
the size of these arrays has to be specified and therefore limited in advance,
these SDU types do not lead to a truly universal service definition.12 Apart
from this, the abstraction level of specifications using this technique is only
appropriate if we have to consider encoding specific aspects, which is far
below the goals of Estelle as a formal description technique.

The introduction of data type description languages like ASN.1 [3] into Es-
telle requires a close coupling and interaction of both, the Estelle type description
and the ASN.1 type descriptions. This goes beyond our goals described above,
since ASN.1 aims especially to the exchange of data between different, hetero-
geneous worlds.

In the following section we will present a very simple and fully embedded
solution for the data abstraction problem described above.13

11 The concept of type parametrization is not part of Standard Estelle.
12 Obviously, for every number of bytes in this array, we can find a data type that

cannot be encoded into it in all cases.
13 The data serialisation mechanism of Java doesn not provide a true container type

according to Def. 1, since the conversion is not implicit. Another (also not universal)
container type candidate in Java is the class Object that is a base class for all
non-primitive types in Java.

Type Abstraction in Formal Protocol Specifications with Container Types 389

2 Universal Container Types

As a solution for the data abstraction problems in hierarchical communication
systems we will now introduce the concept of “(Universal) Container Types” to
Estelle. We will start with some language independent considerations.

Definition 1. Container Type
A Type TX is called Container Type of Type T if
TX and T are assignment compatible and for all Values x of type T is valid: if
x is converted to type TX and then back again to type T, then both conversions
are allowed and the resulting value is equal to x.

The idea of this definition is that a container type TX of a type T can
hold any value of type T without loss. For example, the Estelle type INTEGER
is a container type for the INTEGER sub-range type T=0..9. On the other
hand, T=0..9 is not a container type for INTEGER, since the value 10 can’t
be converted legally to type T. Furthermore, every type T is its own (trivial)
container type.

For any pair of types with val(TX) ⊇ val(T), TX is a container type for T,
but the definition it is not restricted to these situations. For example, with an im-
plicit conversion rule for integers to character strings (e.g., in hex-representation)
and vice versa, character strings could serve as container types for integers.

A universal container type is a type that has the ability to serve as a con-
tainer type for any type. Some languages, which support the concept of data
serialization (e.g., into character strings in Java), may have universal container
types.

2.1 Estelle Extension “Universal Container Type”

Obviously Estelle does not have a universal container type, i.e. a type that can
serve as a container type for any Estelle type T. Hence we will now introduce a
new Estelle type “any-type”, which extends the Estelle syntax given in [2]:

Definition 2. Syntax of the Estelle Container Type “any-type”
any-type = “ANY” “TYPE” .
type-denoter = — | any-type .

With this extension we can use the non-terminal14 any-type as a new type-
denoter for the definition of variables, parameters, new types, etc., similar to a
predefined type name. Most interesting is its application as a interaction param-
eter in the channel definition below:

Example 1. Syntactical Use of any-type

14 We use the combination of Standard-Estelle keywords “any” and “type” to avoid the
introduction of a new keyword. This simplifies the integration of our extension into
existing specifications, since no collisions with identifiers are possible. Furthermore
the term “any type” mimics Estelle constructs like “any integer”.

390 Joachim Thees

TYPE T = ANY TYPE;
VAR x: ANY TYPE;
PROCEDURE f(x: ANY TYPE); BEGIN (* ... *) END;
CHANNEL ChService_N(User,Provider);

BY User: D_Send(Data: ANY TYPE);
BY Provider: D_Recv(Data: ANY TYPE);

The syntactical non-terminal any-type denotes a new type (also called “any-
type” here). As already suggested by it’s name, this new type has special proper-
ties concerning its compatibility with other types. These properties are defined
by the following extension of the definition of assignment compatibility given in
section 6.4.6, Annex C15 of [2]:

Definition 3. Extended Type Compatibility of the any-type extension
A value of type T2 shall be designated assignment-compatible with a type T1
if any of the following seven statements is true:

a .. e) { unmodified }
f) T1 is the any-type and T2 is not pointer-containing.
g) T1 is not pointer-containing and T2 is the any-type.

At any place where the rule of assignment-compatibility is used
a, b) { unmodified }
c) it shall be an error, if T1 is the any-type and the value of T1 was

not created by conversion from type T2 to the any-type.
{ rest unmodified }

Clause (f) means, that assignments to the any-type are allowed from all types,
which are not pointer containing.16 As a consequence, the any-type itself is also
not pointer containing.17 This restriction is a requirement to use the any-type as
parameters to interactions (see channel definition in example 1).

This syntactical extension already fulfills our requirements for abstract com-
munication services in hierarchical communication systems. The SDU type any-
type with its assignment compatibilities allows us to specify really abstract service
interfaces. Any service user can convert its specific payload type into an any-type
and pass it as its SDU to the abstract service provider (e.g., N-1 in Fig. 1). The
service provider passes this any-type SDU without further consideration of its
possible contents to the destination service user (still as any-type SDU). This
destination service user can convert the any-type value into its original type and
value and handle its contents appropriately.

15 Annex C defines the Pascal-subset contained in Estelle. Obviously the proposed
extension could also be applied to native imperative languages like Pascal.

16 Obviously the any-type is not really a universal container type. But it is in fact
universal for the set of types that can be passed as interaction parameters between
module instances (i.e. all not pointer containing types).

17 It is not pointer containing by value. Technically being no real structured type, the
definition of pointer containing in [ISO97] is not appropriate for this type, since it
refreres only to its syntactical structure.

Type Abstraction in Formal Protocol Specifications with Container Types 391

Apparently we attenuate the type safeness of Estelle with this kind type
conversions into the any-type and back. This is only acceptable, if the semantics
of the conversions is unambiguous in a mathematical sense. This is achieved by
the following two requirements:
1. Besides assignment and the conversions defined in Def. 3, there are no oper-

ations or actions on instances of the any-type.
2. If there is a conversion from an arbitrary type to the “any-type”, then the

resulting any-type value can only be converted back to the initial type (see
clause (c) in Def. 3).
So the type safeness of the possible operations with any-type is secured by

construction. Obviously an important requirement to the assignment compati-
bility, clause (c) in Def. 3, can only be verified at runtime. This is not a new
concept to Estelle, since e.g., also the correctness of pointer values or variant
records cannot be verified statically (see Sections 6.4.3 and 6.4.4 of Annex C of
[2]). We will come back to this aspect in Sections 3 and 4.

The semantics of the proposed Estelle extension is based directly on the
definition of container types (see Def. 1):

Definition 4. Semantics of the any-type
The any-type is a container type for all not-pointer-containing types.

Consequently, the use of the any-type has a precise semantics and a specifi-
cation does not become “not well-formed” because of its use (instead of e.g., the
type denoter “...”; see section 8.2.3 of [2]).

2.2 Application of the Estelle Extension
“Universal Container Type”

For the demonstration of the practical application of the proposed any-type
extension, we will now implement the essential aspects of the communication
scenario shown in Fig. 6. Two service users communicate through an abstract
and application independent service interface based on the any-type as SDU
types (see example 2).

Provider

abstract service interface

IpToProvider

IpToUser[1] IpToUser[2]

IpToProvider

User User

Fig. 6. Module and Connection Structure of Example Communication Scenario

392 Joachim Thees

Example 2. Abstract Service Interface
TYPE Td = ANY TYPE;
CHANNEL ChService_N(User,Provider);

BY User: D_Send(Data: Td);
BY Provider: D_Recv(Data: Td);

With this definition of Td the service user can send any payload (here: local
type T1) without explicit conversion as interaction parameter:

Example 3. Service User (Sender)
IP IpToProvider: ChService_N(User); (* external IP *)
(* ... *)
TYPE T1 = RECORD

a: REAL;
b, c: BOOLEAN;
END;

VAR x1: T1;
TRANS

BEGIN
OUTPUT IpToProvider.D_Send(x1); (* any-type conversion *)
END;

In the opposite direction the any-type parameter received with the D_Recv
interaction can be converted back to its original type, in order to evaluate its
contents:

Example 4. Service User (Receiver)

TRANS
WHEN IpToProvider.D_Recv(Data: Td)

VAR x: T1;
BEGIN
x := Data; (* any-type back-conv. *)
(* evaluates x ... *)
END;

As in example 4, another service user may transfer completely different pay-
load types through the same service and the same interaction parameter. But it
is important that the any-type value sent is finally received by the right receiver
in order to be converted back to the right (i.e. the sent) type.

The most interesting part finally is the service provider, which becomes com-
pletely independent of any possible service user. The any-type payload is simply
handled without any knowledge of its specific contents:

Example 5. Service Provider

IP IpToUser: ARRAY [1..2] OF ChService_N(Provider); (* ext. IPs *)
(* ... *)
TRANS

ANY i: 1..2 DO
WHEN IpToUser[i].D_Send(Data: Td)

BEGIN
OUTPUT IpToUser[3-i].D_Recv(Data);
END;

Type Abstraction in Formal Protocol Specifications with Container Types 393

Obviously this kind of service abstraction can be used on all service levels of
a hierarchical communication systems (see e.g., Fig. 1). Like the user modules
in the example above, also the protocol machines can hide their specific PDU
structure internally.

A very interesting result of this approach is that finally the SDU types of
all service interfaces at all layers may be identical (i.e. any-type) and therefore
even some or all service interfaces could be defined identically.18 This proofs,
how far this approach reduces the service interfaces and the external interfaces
of protocol machines to aspects induced only by core requirements.

3 Dynamic Aspects of Container Types
in Communication Systems

An important requirement to the correctness of a conversion from an any-type
value back to a regular Estelle type is the conformity of this destination type
with the initial type, which created the any-type value (see clause (c) in Def.
3). We will now discuss, how this correctness can be ensured in more complex
situations.

Therefore we will first have a look at manual implementations of data type
handling in existing (“real world”) protocols.

3.1 Data Type Handling in Real World Protocol Implementations

In real world communication systems (e.g., TCP/IP) several protocols have to
share the same basic data transport services. As we have already seen in Section
1.2, these data transport services represent SDUs as unstructured byte arrays
(frames).

If such a data frame is received from the lower data transport service, its
internal structure must be reconstructed. This means, the data must be reinter-
preted from an unstructured data object to a (more) structured one. Obviously
this is also exactly the idea behind a cast from an any-type to a more specific
type.

But how can we assign a structure (i.e. a type) to the yet unstructured data
frame? If we can expect only one type of data frames with always the same
structure, we can simply assign it to this type. E.g., if our service users send
exclusively single two-byte little-endean integers to the data transport service
and we assert a faultless service, we can also expect that every frame received
contains only such integers.19

This shows the basic idea of the transfer of structured data as unstructured
SDUs: on receipt we reassign a structure to the unstructured data based on
our a priori knowledge (or at least our expectation) of its original type. If our
18 Of course, this can only happen if possible additional service specific parameters

(e.g., destination addresses or q.o.s. parameters) are identical, too.
19 Obviously in this example we could at best check the size of these frames (each

should be 2 bytes long).

394 Joachim Thees

expectation is correct, we will be able to reconstruct the data sent correctly. If
the data received is of different type than expected, we will fail: at best case we
will be able to detect this mismatch at means of other assertions (e.g., wrong
frame size, illegal contents, wrong checksums), but if not, we will reconstruct
and handle wrong data (i.e. data never sent). This is a basic property of any
communication over a not strictly type safe communication systems.

So finally the assignment of the correct type to a yet unstructured piece of
data is a basic task in all real communication systems. The container type exten-
sion just introduces this idea into formal protocol specifications: The assignment
of the correct type to a unstructured piece of data is modeled by the cast of an
any-type value to a more specific type. And analogous to the real world imple-
mentations, the correctness of this type assignment is left to the specifier and
cannot be checked statically.20

3.2 Successive Data Decomposition

We have seen that we have to assign the right structure (i.e. type) to a unstruc-
tured data received from our communication system. But what if there may be
different data types that are transmitted over the same service, i.e. the service
is multiplexed? In this case all known protocols use frame types that have a
common substructure for all variants. These common parts are in most cases
placed at beginning of the frame (the so called header).

Since the structure of this common part is known a priori, we can reconstruct
its contents without knowledge of the complete structure of the whole frame. In
this common structure we will find additional parameters for the further type
assignment of the data object. So we can reconstruct the complete type structure
of frame step by step.

We illustrate this idea by means of the TCP/IPv4 protocol [6]. All TCP/IP
frames start with a common IP header, followed by some payload data (Fig. 7).

Inside of this common header we find a field named “Protocol”, which (par-
tially) identifies the substructure of the data field: A value of 6 indicates a TCP
data field [7], a value of 17 indicates a UDP data field [8].

4 8 16 32 bit

Ver. IHL Type of Service Total length

Identification Flags Fragment Offset

Time to Live Protocol Header Checksum

Source Address

Destination Address

Option+Padding

Data

Fig. 7. IPv4 PDU structure

20 There may be consistency checks, which detect wrong type casts in implementation
or simulations (see Section 4). In some cases also a full static check may be possible
(e.g. in simple systems, where only one type is converted into the any-type).

Type Abstraction in Formal Protocol Specifications with Container Types 395

TCP-PDU

8 16 32 bit

Source Port Destination Port

Sequence Number

. . . .

Option+Padding

Data*

UDP-PDU

8 16 32 bit

Source Port Destination Port

Length Checksum

Data*

IP-frame with UDP-PDU

. . . . Protocol = 17 Data (UDP)

IP-frame with TCP-PDU

. . . . Protocol = 6 Data (TCP)

Fig. 8. TCP- and UDP-PDUs embedded into IPv4-PDU

In order to decomposed a IPv4 frame received from a lower service, we will
first have to assign the a priori known structure to the IP header with its protocol
field. The Data field of the Frame is kept unstructured, yet. In a second step we
can start to assign a structure to the IPv4 Data field, depending on the Protocol
value (see Fig. 8).

With this knowledge of the TCP or UDP structure we can further detect
the Destination Port, pass the nested Data part to the bound application and
continue its decomposition with application level knowledge of its structure, and
so on.

Obviously we are practicing some kind of (vertical) successive data decom-
position: Starting from the a priori known structure of a frame we assign types
and decompose the frame step by step.

In order to model this kind of decomposition with our container type exten-
sion, we have to create a nested data structure with a structural known part
and an unknown part. The known part (e.g., the frame header) is modeled with
regular Estelle types, whereas the unknown part is an any-type. Both parts are
aggregated into a record (see type IPv4_Frame in example 6).

Example 6. Type Hierarchy for Successive Data Decomposition

TYPE Abstr_Frame = ANY TYPE;
TYPE IPv4_Header = RECORD

(* ... *)
Protocol: 0..255;
(* ... *)

END;
TYPE IPv4_Frame = RECORD

Header: IPv4_Header;
Data: ANY TYPE;

END;
TYPE TCP_PDU = ... ;
TYPE UDP_PDU = ... ;

If we receive a frame (modeled as an any-type, since the lower service provider
does not know anything about the frame structure), we first convert it into
the type IPv4_Frame, based on our a prior knowledge about its structure (see

396 Joachim Thees

example 7). Now we can access the header with its Protocol field. Then we
can continue the successive data decomposition for any known value of Protocol
(here: 6 and 17 for TCP and UDP).

Example 7. Successive Data Decomposition for IPv4

TRANS
WHEN FromLowerService.Frame{atf: Abs_Frame}
VAR f: IPv4_Frame;

tpdu: TCP_PDU;
updu: UDP_PDU;

BEGIN
f := atf; (* type known a priori *)
IF f.Header.Protocol = 6 THEN
BEGIN
tpdu := f.Data; (* type for Protocol 6: TCP *)
(* ... *)
END

ELSE IF f.Header.Protocol = 17 THEN
(* ... *);

END;

The composition of such a frame has to be done exactly in the opposite way,
in order to make every later decomposition step well defined (see Section 2.1).

Finally we will demonstrate the potential of our approach at the specification
of truly dynamic data types, as they are used in many modern protocols. In
protocols like IPv6 [9] or XTP 4.0 [13], frames are no longer of fixed structure
with a single, variable payload part, but instead consist of several parts, which
are optional, repetitive or of variable size. These so called segments are chained
inside the packet, starting from a (once again a priory known) header of fixed
type (see Fig. 9).

Standard Estelle has no appropriate means to specify such highly dynamic
frame structures. With the container type extension we can use a variable of
type any-type to hold any intermediate state of the packet composition (see
Fig. 10). Starting with the last segment (which is directly assigned to the any-
type variable), we insert step by step one segment, by creating an auxiliary record
value with a component of the current segment type and an any-type component
for the already constructed rest of the frame (like IPv4_Frame in example 6).
With this method we can construct segment sequences of arbitrary structure.

The construction process is done in this “reverse order”, because the decom-
position process has to be done the same way, but in opposite order, starting
with the forefront (i.e. a priori known) header.

IPv6-Header Routing-Header Authentication-Header
TCP-Header

+
TCP-Data

...

next Header
= Routing

next Header
= Authentication

next Header
= TCP

Fig. 9. TCP-PDU with different segments of a IPv6-PDU

Type Abstraction in Formal Protocol Specifications with Container Types 397

TCP-Data

Hdr3
any-type

next = 7

Hdr1
any-type

next = 3

any-type

conversion to
any-type

conversion to
any-type

conversion to
any-type

Fig. 10. Successive Data Composition any-type-Aggregation

4 Implementation Issues

Besides a basic implementation approach for the implementation of the any-type
on top of not object oriented implementation platforms, we have also imple-
mented it with our C++ based Estelle compiler XEC [11, 12]. Because of its
object oriented data model, the container type extension could be integrated
easily. By the use of class templates for the internal abstraction of the contained
data objects and dynamic_cast-operators for the casts from an any-type value
back to a specific type, a full dynamic type check is provided at implementation
level.

5 Summary

We have shown how the level of type safety enforced by many FDTs in the proto-
col domain (e.g., Estelle and SDL) has a negative impact on the complexity and
usability of large, hierarchically structured, and heterogeneous protocol stacks,
especially against the background of reuse approaches of protocol components
(e.g., as open systems with SDL or Open Estelle).

As a solution to this problem, we proposed the concept of “(universal) con-
tainer types” and their seamless integration into FDTs, which introduced a new
concept of data abstraction, but avoids the overhead of a complete data descrip-
tion technique like ASN.1. We further demonstrated how this syntactical and
semantic extension increases the expressiveness in the area of component reuse
and flexible data representation, without sacrificing the formal precision of the
FDT. The ideas were exemplified as the “any-type”-extension for Estelle, but
apply to other FDTs in the protocol domain (e.g., SDL) as well.21

21 This work has been supported by the Deutsche Forschungsgemeinschaft (DFG) under
grant Go 503/4-2.

398 Joachim Thees

References

1. Dembinski, P., Budkowski, S.: Specification Language Estelle, in: M. Diaz et al.
(eds.), “The Formal Description Technique Estelle”, North-Holland, 1989

2. ISO/TC97/SC21: Estelle - A Formal Description Technique Based on an Extended
State Transition Model, ISO/TC97/SC21, IS 9074, 1997

3. ITU-T Recommendation X.680 – X.683 (07/02): Abstract Syntax Notation One
(ASN.1), International Telecommunication Union (ITU), 2002

4. ITU-T: CCITT Specification and Description Language (SDL), Recommendation
Z.100 (03/03), 1994

5. ISO/TC 97/SC 16, ISO 7498, “Data Processing – Open Systems Interconnection
– Basic Reference Model”, 1981

6. J. Postel (Edt.), “Internet Protocol, Specification”, RFC791, 1981
7. J. Postel (Edt.), “Transmission Control Protocol, Specification”, RFC793, 1981
8. J. Postel (Edt.), “User Datagram Protocol, Specification”, RFC768, 1980
9. S. Deering, R. Hinden (Edts.), “Internet Protocol, Version 6 (IPv6), Specification”,

RFC1883/2460, 1995
10. J. Thees, R. Gotzhein: Open Estelle - An FDT for Open Distributed Systems, in:

S. Budkowski et.al. (Edts.): Formal Destcription Techniques and Protocol Specifi-
cation, Testing and Verification (FORTE XI/PSTV XVIII’98), Kluwer Academic
Publishers, Boston/Dordrect/London, 1998

11. J. Thees: The eXperimental Estelle Compiler - Automatic Generation of Imple-
mentations from Formal Specifications, in: Formal Methods in Software Practice
(FMSP’98), Clearwater Beach, Florida, USA, 1998

12. J. Thees: Protocol Implementation with Estelle - from Prototypes to Efficient Im-
plementations, in: S. Budkowski, et.al.: 1st International Workshop of the Formal
Description Technique Estelle (ESTELLE’98), Evry, France, Nov. 1998

13. XTP Forum, Xpress Transport Protocol Specification, XTP Rev. 4.0, XTP Forum,
Santa Barbara, USA, 1995

	Type Abstraction in Formal Protocol Specifications with Container Types
	1 Introduction
	1.1 Hierarchical Communication Systems
	1.2 Data Representation in Hierarchical Communication Systems
	1.3 Formal Specification of Hierarchical Communication Systems
	1.4 Data Type Abstraction

	2 Universal Container Types
	2.1 Estelle Extension ``Universal Container Type''
	2.2 Application of the Estelle Extension ``Universal Container Type''

	3 Dynamic Aspects of Container Types in Communication Systems
	3.1 Data Type Handling in Real World Protocol Implementations
	3.2 Successive Data Decomposition

	4 Implementation Issues
	5 Summary
	References

