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Abstract.  A message sequence chart (MSC) is a high-level description of the 
message interaction between system components and their environment. 
Communication between distributed instances can be described by MSCs and 
these descriptions can be extended by notions for time consumption and 
resources and afterwards included in a system performance model. Such models 
can be evaluated by discrete event simulation or under reasonable assumptions 
alternatively with analytical queueing network algorithms. In this way steady 
state performance measures like resource utilizations and end-to-end delays can 
be calculated with low effort. The simulation uses the same input like the 
analytical formulas and allows for the investigation of dynamic performance 
behaviour or for the study of models including features which can not be 
handled by analytical formulas. 

1   Introduction 

The motivation for this work originates from the IPonAir project on architectures of 
future mobile communication systems [13]. The IPonAIR/MxRAN1 project aims at a 
flexible radio access architecture that supports multi-band, multi-standard radio 
systems integration and the usage of existing and future IP-based protocols. A part of 
this project is the development of a discrete event simulation system which is to study 
the performance behaviour of different system designs. In [9 and 29] it is proposed to 
develop a simulation environment to analyze alternative network architectures and 
protocol stacks with respect to signalling performance. The authors describe a use 
case approach to construct a general event driven signalling protocol performance 
model. To this end Message Sequence Charts (MSCs) are employed as an input of use 
cases to a performance simulation tool.   

Many approaches do exist to enhance formal description techniques by non-
functional information on time and resources. In the field of SDL and MSC an 
overview on the role of performance aspects is given in [21, 22 and 23].  Examples 
for tools combining the SDL and/or MSC methodology and performance evaluation 
are QUEST, SPEET, and SPECS [11, 12, 18, 22 and 23].  Much work has also been 
especially done with respect to Timed MSCs [22 and 23] and Performance MSC [18]. 

                                                           
1 MxRAN stands for Multi-band, Multi-standard Radio Access Network 
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In [18], the Performance Message Sequence Chart (PMSC) language extends MSC-
96 by annotations to integrate performance aspects. Annotations have semantical 
meanings for performance evaluation tools as developped e.g. at the university of 
Erlangen-Nuremberg [10] but they are comments in the original language to allow 
standard tools to process the specification. PMSC is described in earlier versions in [6] 
and [7]. PMSC introduces a concept of time for an executed MSC by interpreting MSC 
events as actions that are executed by tasks which need some time to complete. Every task 
has a start and completion events that occur at some point in time.  In PMSC a system 
model is used that has two separate sub-models, namely the load model and the machine 
model. The load model includes the MSC, which describes the functional dependencies 
between load units, the machine requirements, which are annotated with every load unit 
(action), and the traffic sources, that specify the intensity of the load. The machine model 
consists of queueing stations that model processors or channels between processors. To 
complete the system model a mapping from instances on modeled processors and 
communication paths on modeled channels must be obtained. To allow flexibility the 
concepts are separated in different documents. 

There are some approaches to integrate time and performance into MSC. [28] 
extends MSC-92 (MSC-Real Time) by language constructs rather than by 
annotations. [30] introduces an extension of MSC-96, called Timed MSC, to support 
performance testing. Performance simulation on the basis of formalised use cases 
with a language similar to MSC-96 is reported in [4]. A tool that uses MSC-96 for 
deriving performance models in early phases of the object-oriented software 
engineering process is described in [31]. In [17] a formal timed semantical model 
based on term rewriting rules is introduced for MSC-92. 

Most approaches to support specification based performance evaluation of systems 
in the SDL/MSC context extend SDL itself (e.g. the approach described in [5]). Since 
SDL and MSC are often combined in one project SDL- and MSC-based performance 
prediction should be integrated and share common documents to support consistency 
between both specifications. 

Here we follow the ideas sketched above; in particular we will use MSCs notions 
which are extended by annotations to describe required resource consumptions. The 
instances are assumed to run on resources which have a certain processing speed.  In 
this way a performance model is established which can be quantitatively evaluated, 
either by discrete event simulation or by queueing network algorithms.  Here we 
mainly follow the latter approach to efficiently calculate mean values for end-to-end-
delays and resource utilizations. Moreover a simulation tool has been developed 
which allows evaluating models which do not satisfy the necessary assumptions to 
obtain analytical solutions. Additionally simulation can be used to study the dynamic 
performance behaviour. This paper illustrates the basic ideas by a simplified real 
world example taken from a project on future wireless communication. 

2   Extending MSCs by Time and Resources 

2.1   Introduction 

A message sequence chart (MSC) is a high-level description of the message 
interaction between system components and their environment. A major advantage of 
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the MSC language is its clear and unambiguous graphical layout, which immediately 
gives an intuitive understanding of the described system behavior. The syntax and 
semantics of MSCs are standardized by ITU-T, as recommendation Z.120. Message 
Sequence Charts is a language to describe the interaction between a numbers of 
independent message-passing instances. The basic constituents of the Message 
Sequence Chart are instance, message, general ordering, condition, timer, action, 
instance creation and termination. For more details see the ITU standardization 
documents [25, 26]. 

2.2   An MSC Example  

Here our focus is on MSCs consisting only of instances and messages. The most 
fundamental language constructs of MSCs, are instances (e.g., entities of SDL 
systems, blocks, processes and services). Instances are reactive entities whose 
communication behavior is described by the MSCs. The message exchange is the only 
mean of communication among instances.  

Within the instance body the ordering events are specified. A message can be as 
simple as a signal or as complex as a sophisticated data packet. Each message is 
associated with a send and a receive event. To illustrate the basic ideas Fig. 1 shows a 
simple MSC-example. 

 

Fig. 1. An example of an MSC (Graphical notation) 

2.3   High Level MSC 

To define more complex scenarios, the High Level MSC (HMSC) provides a mean to 
graphically define how a set of MSC can be combined. A HMSC is a directed graph 
where different types of nodes can be found. An HMSC reference (a component) 
consists of a frame with rounded corners enclosing the name of the referenced HMSC. 
Every component has exactly one start node, indicated by an upside-down triangle. 
Also, it may contain a number of end nodes depicted by a triangle and several HMSC 
references. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2. Basic Graphical Syntax of HMSC (taken from [1]) 

MSCs can be composed via operators into high-level MSCs (HMSC). MSCs are 
identified in HMSCs by so called MSC-references. To gain flexibility these high-level 
MSCs can be MSC-references themself. The various compositional operators of 
HMSC are sketched below, cf. [16 and 19]. 

Sequencing: Whenever two MSCs M1 and M2 are sequenced or concatenated, it is 
interpreted to be vertically composed. A strong sequencing of Ml and M2 is 
interpreted to mean that transfer to M2 is possible only after the termination of all 
events in Ml whereas weak sequencing of Ml and M2 denotes the parallel execution 
of Ml and M2 with the restriction that an action from M2 can be executed only if that is 
permitted by Ml as defined by consistency requirements for the MSCs. 

Selection: The selection operator is shown in Fig. 2(a). In Fig. 2(a), the branch MSC:M4 
will be taken only if the condition denoted by 'C' is true and branch bMSC:M5 will be 
taken otherwise. Note that the feature introduces the notion of variables into MSCs and 
is useful in representing scenarios even though it adds complexity into the model.  

Parallel composition:  This is also called horizontal composition, and means 
that multiple MSCs "run" in parallel. There is no restriction among the MCSs. 

Loops: A "Loop" is used to represent the possible execution of an MSC an arbitrary 
number of times with the possibility of termination. The loops are not explicit 
declared as an operation, but they can be constructed due the fact that the HMSC is a 
digraph.  

Other HMSC operators are repetition, option, and exception. The operators option 
and exception are only abbreviations that can be encoded using (delayed) choice. 
Similarly finite repetition can be encoded using (delayed) choice and (weak) 
sequencing essentially by unfolding of the loop. Through the partial order of MSC 
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events a set of (totally ordered) traces is specified by one plain MSC. An HMSC with 
only finite loops can be seen as the definition of a set of plain MSCs where the 
sequential composition glues MSCs together, choice is a set of all possible branches 
and parallel composition is a set of all possible combinations of free merges where the 
precedences between MSC events in each MSC is preserved. 

2.4   Introducing Time and Resources 

In order to construct quantitatively assessable models we extend MSCs by time and 
resources. This can be done in a rather straightforward way. Each message is 
associated with a service amount ai to be executed at the receiving instance i. Each 
instance has a speed gi, such that the service time is simply calculated by si=ai/gi. Of 
course we can group messages into classes and distinguish them, say by index j, 
j=1,.., m; hence we get the notion si,j = aij/gi, describing the service time of a message 
of class j at station i. Furthermore we consider the instances to behave like queueing 
stations, i.e. messages arriving at a busy instance are stored in a queue and will have 
to wait for service. 

Fig. 3 displays the execution of a timed MSC; each message has to spend some 
wait time at arrival at an instance (including the case of zero wait time) followed by a 
service time which depends on speed of the instance and the required service amount. 

 

Fig. 3.Wait and service times during execution of a timed MSC 
 
Moreover we consider MSCs to be “open“, i.e. the start of an MSC is triggered 

from the environment according to some interarrival distribution. Since we will 
employ analytical mean value formulas based on queueing network theory the 
interarrival distribution is assumed to be negative exponential. The same assumption 
is made for the service amounts. 

By combining MSCs using the HMSC operators of composition more complex 
traces can be defined. As a consequence we can define end-to-end delays also for 
HMSCs; this is done in a later section. 
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3   Mapping of MSC-Scenarios to Queueing Network Models 

Here we describe the derivation of a model which can be quantitatively assessed by 
means of analytical or simulative techniques. Since the instances are queueing 
stations and the messages can be considered to be customers or jobs we obtain a 
queueing network. Each queueing station consists of a wait queue and a server. 
Messages are generated according to an arrival rate λ, are served at the stations 1 
through 4, and finally leave into a sink. 

 

CPU 1 CPU 2 

CPU 4 

CPU 3 

m1 

m2 
m3 

m4 m5 Source 

Sink 

 

Fig. 4. The example MSC transformed into a queueing network model 

Depending on the interarrival distribution of messages, the service time 
distribution of the messages and the service disciplines of the stations such a network 
has the so called product form property and can be solved analytically, i.e. 
performance measures, like utilization of stations or response time can be derived 
very fast. Theory and algorithms are well established; indeed in this scenario we have 
a queueing network of Jackson type [14, 20].  

Note that the numbering of messages defines their order of execution, here source 
! m1! m2 ! m3 ! m4 ! m5 ! sink. On the other hand, the queueing network 
formula2 to be applied here does neglect the correct order of visits! What really 
matters when deriving mean performance measures is the number of visits (not their 
order) and the amount of requested service at the stations. 

Here we assume that each station is of type -/M/1-FCFS and MSC arrivals occur 
according to a Poisson stream and the service times of the messages are also negative 
exponentially distributed. 

In general we assume that a system consists of n stations and m different MSCs 
classes which arrive with an overall MSC arrival rate λ [MSCs/sec]. Each MSC 
consists of a certain number of messages which are to be served by the different 
stations. The arrival rate at station i is Pi λ, [messages/sec] where Pi is the number of 
messages to be served by station i, i = 1, 2, …, n for all MSCs of the classes j, j=1,.2, 
…, m. 

Let cij be the number of messages of an MSC of class j which are served at station 
i, then we can define Pi, the total number of messages received and served by station 
i, as follows: 

                                                           
2 In case any of these assumptions is not valid, we have to use approximation algorithms or 

discrete event simulation. 
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The same way, we can define the message arrival rates λi,j [messages/sec] at station 
i for all messages of MSC class j as: 

mjnicijij ...,,2,1,...,,2,1, === λλ  (2) 

Hence, the overall message arrival rate λi at station i for all messages of all MSC 
classes is: 

niPii ...,,2,1, == λλ  (3) 

Let µij be the service rate (messages of MSC class j / sec) at station i, i = 1, 2, …, n. 
According to our definition of service amount aij and speed of stations gi we have the 
service time sij = aij/gi and hence these service rates are defined by µij=1/sij 
[messages/sec]. 

4   Computing Performance Measures   
     by Queueing Network Analysis 

Under the definitions given by equations 1, 2 and 3 we can easily compute mean 
values for stationary performance measures like station utilizations and response 
times.  Of course the response times for each MSC class and the overall end-to-end 
delay (E2E) for the execution of a all MSCs can also be computed.  

4.1   MSC Response Times 

Note that we calculate performance measures for the execution of MSCs, i.e. response 
time refers to the mean execution time of one MSC including wait times as well as 
service times. Link delays are only included if links are explicitly modeled as 
instances. Performance measures for single messages are not considered; moreover all 
messages belonging to the same MSC are not distinguished. An extension to 
distinguish between messages would lead to a three-indexed service amount, say aijk. 
This can be done, but is not in the scope of this paper. 

The utilization ρij of station i with respect to MSC class j is defined as   
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Let Rij denote the response time for an MSC of class j that is served by station i, 
then we can apply the M/M/1 formula to get the response times Rij as follows: 

i
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ρ
λ

R
−

⋅=
1

1
 (6) 

Let Rj denotes the overall response time for MSC of class j that is served by all 
stations, then we can apply the M/M/1 formula to get the Rj as follows: 
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4.2   End-to-End Delay for Strong Sequencing Composition in HMSC 

In the previous section, we assumed that Rj denotes the overall response time for 
MSC of class j that is served by all stations and the corresponding formula is given by 
equation 7.  In this section we will derive a formula for calculating the end-to-end 
delay E2E. We can define the end-to-end delay to be the time between the arrival of 
the first message in the first MSC of the HMSC and the departure of the last message 
in the last MSC of that HMSC, i.e. the time needed to run a complete HMSC. We 
assume that we have n MSCs that are strongly sequenced and that the calculated 
response times are Rj , j = 1, 2,…, n. In this case the average end-to-end delay E2E 
gives the average time duration of one single execution of all MSCs by: 
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(8) 

Equation 8 gives a formula to calculate the end-to-end delay which can be applied in 
cases similar to the example, in which we have two MSCs that are vertically 
composed (see Fig. 7). According to the definition of the sequencing, the HMSC in 
the example represents a strong sequencing case. Note that we assumed that there is 
no time gap between the MSCs. 

The analytical computation of average end-to-end delay for other cases of HMSC 
compositions can be done under assumptions which must be defined more precisely. 
For the simulation we just determine the time between the start of the first and the end 
of the last message of all simulated HMSCs and calculate some statistic measures, 
like mean values, confidence intervals, minimum and maximum.   

5   An Example from Mobile Communications 

We study an example which is closely related to current projects on third and fourth 
wireless initiatives, like the one pursued in the IPonAir-project. We consider the 
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communication interaction between User Equipment (UE, these are users with mobile 
terminals), one or several NodeBs (which are the UMTS equivalent to the Base 
Transceiver Stations, in the context of GSM known as BTS), a Radio Network 
Controller (RNC) and the Core Network (CN).  This communication needs dozens of 
system functions which are structured into many MSCs with many hundreds of 
messages.  

Here we consider a scenario following system functions named “RRC connection 
setup” and “RRC connection release”  as shown in Fig. 5 and Fig. 6. 

These two MSCs may grouped together to build a High Level MSC as displayed in 
Fig. 7. We consider a strongly sequenced pair of setup and release functions as a 
workload model. To build a scenario for performance evaluation we have to consider 
the execution of this HMSC assuming a certain traffic model, e.g. assuming a Poisson 
stream of HMSCs according a certain arrival rate; also a certain system configuration 
must be described.  

 
 

 UE NodeB RNC CN

MSC_1  for  
Connection  
Setup 

RRC_setup_req 

NBAP_setup_req 

NBAP_setup_resp 

ALCAP_setup_req 

ALCAP_setup_resp 

RRC_setup_complete 

CN_setup_req 

CN_setup_resp 

 

Fig. 5. MSC_1 for connection setup (partially fictitious) 

 
 UE NodeB

MSC_2  for 
Connection 
Release 

RRC_release_req 

NodeB_release_req 

NodeB_release_resp 

CN_release_req 

CN_release_resp 

CNRNC 

 

Fig. 6. MSC_2 for connection release (partially fictitious) 
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Connection Setup 

Connection Release 

Start

MSC_1

MSC_2

End
 

Fig. 7. High Level MSC consisting of MSC1 and MSC2 

We consider four queueing stations which are to execute (or do represent) the four 
instances and the HMSC combining the connection setup (MSC_1) and the 
connection release (MSC_2) respectively as displayed in Fig. 7.  

We assume speeds of 1000, 2000, and 5000 messages/sec for the stations, named 
UE, NodeB and CN. We run a series of model evaluations for three different RNC-
configurations by setting the speed of the station RNC to 3000, 4000 and 5000 
messages/sec.  The service amounts of the messages are set to 2.0 for service at 
NodeB, to 5.0 at the RNC, and to 10.0 at the CN-station; in this way we account 
roughly for the fact that a single message may represent multiple messages.  

We considered for each configuration the HMSC arrival rates λ =10, 20, …, 130 
HMSC/sec, i.e. the number of  Setup/ Release-Pairs described by HMSC are varied in 
the range from 10 to 130 per second. Please note, that we do just consider a part of the 
signalling traffic; neither other signalling traffic nor user traffic is included in this 
example. 

Note that the kind of queueing stations used in these calculations can be differently 
chosen to better describe real system properties, e.g. the UE-cluster should be 
modelled as an infinite-server station and the Radio Network Controler (RNC) and 
Core Network (CN) as multi-server stations. This would still result in analytically 
solvable models implying minor modifications of the analytical formulas. 

The evaluation of the formulas yields the end-to-end delays for the connection 
setup. As expected the evaluations provide exponentially increasing curves as 
displayed in Fig. 8.  

Such curves are useful to investigate in early design stages which amount of traffic 
can be carried by the planned configuration, or the other way round, what kind of 
resources are needed to carry the traffic under specified service levels.  

Although the necessary assumptions with respect to the independence of messages 
and negative exponential service normally do not hold exactly, these evaluations may 
be extremely helpful for a system developer. Such analytical results show the scope of 
possible parameter settings and allow a better planning of simulation scenarios which 
include more details and are closer to reality.  
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Fig. 8. End-to-end delay of MSC connection setup 

6   Simulation of MSC Based Models 

Additional to the analytical formulas a simulation system has been developed, which 
uses the same input as the analytical model and delivers the same results, i. e. mean 
values and confidence intervals. Of course the simulator can be used to evaluate 
models which do not satisfy the conditions necessary for analytical evaluations; 
important examples for model features which violate these conditions are non-
exponential distributed service times (e.g. low service time variations or even 
deterministic service), non-Poisson arrivals (e.g. bursty sources) and priority 
scheduling.   

This simulator has been written in Java using the JavaDEMOS package [8, 15 and 
24]. JavaDemos is a Java library for discrete event simulation, which was inspired by 
the DEMOS system written by G. M. Birtwistle [2 and 3]. JavaDemos is based on an 
implementation of the DEMOS features in Java. The syntax of the procedures is as 
close as possible to DEMOS, in order to simplify the translation of DEMOS programs 
to JavaDemos. In addition, JavaDemos consists of a graphical front-end which 
permits the visualization of a simulation run and which allows basic interactions with 
the simulation system.  

The basic concept of JavaDEMOS include process-like objects which do 
implement behaviour patterns, which may acquire and release resources, may wait 
until certain conditions are fulfilled, are able to interact with each other in a 
master/slave mode and can of course be scheduled in the event list.  

Fig. 9 has taken from the simulation of our example described in a previous 
section. In the simulation the messages are entities and the visited stations (UE, 
NodeB, …) are modeled as resources. Fig. 9 (on the left) shows the entities which are 
scheduled in the event list according to their event times. Moreover, the state of all 
objects can be inspected at any time; Fig. 9 (on the right) shows the current values of 
the state variables of the station RNC, in particular the maximum queue length Q-
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MAX, the current queue length Q-NOW, the average queue length  and the average 
wait time.  

Observing these parameters dynamic performance behaviour can be inspected.  As 
an example consider the values displayed in Fig. 9 showing a snapshot of the 
simulation at a certain point of time (here after approximately  34.43 seconds); since 
the utilization of the system is rather large the simulation is still in its transient phase 
and the average queue length is 12.27 (26444 observed messages, RNC utilization 
93.6%,) in contrast to an average queue length of 15.4 after more than 773000 
observed messages and 1000 sec model time (and we have still slightly growing 
utilization of 93.95 %), cf. Fig. 11.  

Also the maximum observed queue lengths of 61 (at time point 34.43) and 156 (at 
time point 1000, at the end of the simulation) respectively, illustrate some aspects of 
the dynamic system behaviour. The true stationary values (obtained by the analytical 
formulas) are still significantly higher than those obtained by simulation, namely 
96.25 % for utilization and 26.66 for the average queue length. 

In Fig. 10 we can see the trace-window in which we can see step by step how the 
simulation proceeds. It shows the model times, the messages and their actions with 
respect to resource acquirements and resource releases. 

Fig. 9. The graphical user interface of JavaDEMOS 
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Fig. 10.  Trace window showing a running MSC simulation 

 

Fig. 11. Report-window for the MSC simulation 

A complete report can be obtained as shown in Fig. 11. We see in Fig. 11 the 
resources report which shows the observation number (the number of messages that 
visited each station), the maximum queue length for each station, the average queue 
length and the average wait time for entities in the queue for each station and finally 
the % usage (utilization) for each station. 

Other performance measures like the end-to-end-delay for a system function 
defined by one or several MSCs is not part of JavaDEMOS and has been programmed 
additionally including a batch means procedure for the estimation of confidence 
intervals. 

Conclusion and Outlook 

Currently the tool is in a state that demonstrates the feasibility of the approach. In 
particular the automatic inclusion of complex system functions consisting of many 
procedures described as MSCs and HMSCs will allow to build up and evaluate 
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performance models with rather low effort.  The analytical results can be used to get a 
fast overview on the overall stationary performance or potential bottlenecks. 
Simulation can alternatively used to study the dynamic behaviour or to show the 
impact of features which can not be represented sufficiently in analytical models. 
Future work will be directed towards the application of these methods and the 
associated tool to real world projects. Hence, the mapping of systems specified by 
MSC and HMSC to queueing networks must be conceptually enhanced and 
implemented. This includes the extension of the analytical formulas to a richer model 
world; for this purpose the field of queueing network theory provides vast resources. 
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