
H. König, M. Heiner, and A. Wolisz (Eds.): FORTE 2003, LNCS 2767, pp. 415–429, 2003.
 IFIP International Federation for Information Processing 2003

Towards an Efficient Performance Evaluation
of Communication Systems

Described by Message Sequence Charts

Hesham Kamal Arafat Mohamed and Bruno Müller-Clostermann

Institute for Computer Science and Business Information Systems
University of Duisburg-Essen, 45127 Essen, Schützenbahn 70

{Hesham, bmc}@informatik.uni-essen.de
www.informatik.uni-essen.de

Abstract. A message sequence chart (MSC) is a high-level description of the
message interaction between system components and their environment.
Communication between distributed instances can be described by MSCs and
these descriptions can be extended by notions for time consumption and
resources and afterwards included in a system performance model. Such models
can be evaluated by discrete event simulation or under reasonable assumptions
alternatively with analytical queueing network algorithms. In this way steady
state performance measures like resource utilizations and end-to-end delays can
be calculated with low effort. The simulation uses the same input like the
analytical formulas and allows for the investigation of dynamic performance
behaviour or for the study of models including features which can not be
handled by analytical formulas.

1 Introduction

The motivation for this work originates from the IPonAir project on architectures of
future mobile communication systems [13]. The IPonAIR/MxRAN1 project aims at a
flexible radio access architecture that supports multi-band, multi-standard radio
systems integration and the usage of existing and future IP-based protocols. A part of
this project is the development of a discrete event simulation system which is to study
the performance behaviour of different system designs. In [9 and 29] it is proposed to
develop a simulation environment to analyze alternative network architectures and
protocol stacks with respect to signalling performance. The authors describe a use
case approach to construct a general event driven signalling protocol performance
model. To this end Message Sequence Charts (MSCs) are employed as an input of use
cases to a performance simulation tool.

Many approaches do exist to enhance formal description techniques by non-
functional information on time and resources. In the field of SDL and MSC an
overview on the role of performance aspects is given in [21, 22 and 23]. Examples
for tools combining the SDL and/or MSC methodology and performance evaluation
are QUEST, SPEET, and SPECS [11, 12, 18, 22 and 23]. Much work has also been
especially done with respect to Timed MSCs [22 and 23] and Performance MSC [18].

1 MxRAN stands for Multi-band, Multi-standard Radio Access Network

416 Hesham Kamal Arafat Mohamed and Bruno Müller-Clostermann

In [18], the Performance Message Sequence Chart (PMSC) language extends MSC-
96 by annotations to integrate performance aspects. Annotations have semantical
meanings for performance evaluation tools as developped e.g. at the university of
Erlangen-Nuremberg [10] but they are comments in the original language to allow
standard tools to process the specification. PMSC is described in earlier versions in [6]
and [7]. PMSC introduces a concept of time for an executed MSC by interpreting MSC
events as actions that are executed by tasks which need some time to complete. Every task
has a start and completion events that occur at some point in time. In PMSC a system
model is used that has two separate sub-models, namely the load model and the machine
model. The load model includes the MSC, which describes the functional dependencies
between load units, the machine requirements, which are annotated with every load unit
(action), and the traffic sources, that specify the intensity of the load. The machine model
consists of queueing stations that model processors or channels between processors. To
complete the system model a mapping from instances on modeled processors and
communication paths on modeled channels must be obtained. To allow flexibility the
concepts are separated in different documents.

There are some approaches to integrate time and performance into MSC. [28]
extends MSC-92 (MSC-Real Time) by language constructs rather than by
annotations. [30] introduces an extension of MSC-96, called Timed MSC, to support
performance testing. Performance simulation on the basis of formalised use cases
with a language similar to MSC-96 is reported in [4]. A tool that uses MSC-96 for
deriving performance models in early phases of the object-oriented software
engineering process is described in [31]. In [17] a formal timed semantical model
based on term rewriting rules is introduced for MSC-92.

Most approaches to support specification based performance evaluation of systems
in the SDL/MSC context extend SDL itself (e.g. the approach described in [5]). Since
SDL and MSC are often combined in one project SDL- and MSC-based performance
prediction should be integrated and share common documents to support consistency
between both specifications.

Here we follow the ideas sketched above; in particular we will use MSCs notions
which are extended by annotations to describe required resource consumptions. The
instances are assumed to run on resources which have a certain processing speed. In
this way a performance model is established which can be quantitatively evaluated,
either by discrete event simulation or by queueing network algorithms. Here we
mainly follow the latter approach to efficiently calculate mean values for end-to-end-
delays and resource utilizations. Moreover a simulation tool has been developed
which allows evaluating models which do not satisfy the necessary assumptions to
obtain analytical solutions. Additionally simulation can be used to study the dynamic
performance behaviour. This paper illustrates the basic ideas by a simplified real
world example taken from a project on future wireless communication.

2 Extending MSCs by Time and Resources

2.1 Introduction

A message sequence chart (MSC) is a high-level description of the message
interaction between system components and their environment. A major advantage of

Towards an Efficient Performance Evaluation of Communication Systems 417

the MSC language is its clear and unambiguous graphical layout, which immediately
gives an intuitive understanding of the described system behavior. The syntax and
semantics of MSCs are standardized by ITU-T, as recommendation Z.120. Message
Sequence Charts is a language to describe the interaction between a numbers of
independent message-passing instances. The basic constituents of the Message
Sequence Chart are instance, message, general ordering, condition, timer, action,
instance creation and termination. For more details see the ITU standardization
documents [25, 26].

2.2 An MSC Example

Here our focus is on MSCs consisting only of instances and messages. The most
fundamental language constructs of MSCs, are instances (e.g., entities of SDL
systems, blocks, processes and services). Instances are reactive entities whose
communication behavior is described by the MSCs. The message exchange is the only
mean of communication among instances.

Within the instance body the ordering events are specified. A message can be as
simple as a signal or as complex as a sophisticated data packet. Each message is
associated with a send and a receive event. To illustrate the basic ideas Fig. 1 shows a
simple MSC-example.

Fig. 1. An example of an MSC (Graphical notation)

2.3 High Level MSC

To define more complex scenarios, the High Level MSC (HMSC) provides a mean to
graphically define how a set of MSC can be combined. A HMSC is a directed graph
where different types of nodes can be found. An HMSC reference (a component)
consists of a frame with rounded corners enclosing the name of the referenced HMSC.
Every component has exactly one start node, indicated by an upside-down triangle.
Also, it may contain a number of end nodes depicted by a triangle and several HMSC
references.

418 Hesham Kamal Arafat Mohamed and Bruno Müller-Clostermann

(a)

(b)

(c)

(d)

Fig. 2. Basic Graphical Syntax of HMSC (taken from [1])

MSCs can be composed via operators into high-level MSCs (HMSC). MSCs are
identified in HMSCs by so called MSC-references. To gain flexibility these high-level
MSCs can be MSC-references themself. The various compositional operators of
HMSC are sketched below, cf. [16 and 19].

Sequencing: Whenever two MSCs M1 and M2 are sequenced or concatenated, it is
interpreted to be vertically composed. A strong sequencing of Ml and M2 is
interpreted to mean that transfer to M2 is possible only after the termination of all
events in Ml whereas weak sequencing of Ml and M2 denotes the parallel execution
of Ml and M2 with the restriction that an action from M2 can be executed only if that is
permitted by Ml as defined by consistency requirements for the MSCs.

Selection: The selection operator is shown in Fig. 2(a). In Fig. 2(a), the branch MSC:M4
will be taken only if the condition denoted by 'C' is true and branch bMSC:M5 will be
taken otherwise. Note that the feature introduces the notion of variables into MSCs and
is useful in representing scenarios even though it adds complexity into the model.

Parallel composition: This is also called horizontal composition, and means
that multiple MSCs "run" in parallel. There is no restriction among the MCSs.

Loops: A "Loop" is used to represent the possible execution of an MSC an arbitrary
number of times with the possibility of termination. The loops are not explicit
declared as an operation, but they can be constructed due the fact that the HMSC is a
digraph.

Other HMSC operators are repetition, option, and exception. The operators option
and exception are only abbreviations that can be encoded using (delayed) choice.
Similarly finite repetition can be encoded using (delayed) choice and (weak)
sequencing essentially by unfolding of the loop. Through the partial order of MSC

Towards an Efficient Performance Evaluation of Communication Systems 419

events a set of (totally ordered) traces is specified by one plain MSC. An HMSC with
only finite loops can be seen as the definition of a set of plain MSCs where the
sequential composition glues MSCs together, choice is a set of all possible branches
and parallel composition is a set of all possible combinations of free merges where the
precedences between MSC events in each MSC is preserved.

2.4 Introducing Time and Resources

In order to construct quantitatively assessable models we extend MSCs by time and
resources. This can be done in a rather straightforward way. Each message is
associated with a service amount ai to be executed at the receiving instance i. Each
instance has a speed gi, such that the service time is simply calculated by si=ai/gi. Of
course we can group messages into classes and distinguish them, say by index j,
j=1,.., m; hence we get the notion si,j = aij/gi, describing the service time of a message
of class j at station i. Furthermore we consider the instances to behave like queueing
stations, i.e. messages arriving at a busy instance are stored in a queue and will have
to wait for service.

Fig. 3 displays the execution of a timed MSC; each message has to spend some
wait time at arrival at an instance (including the case of zero wait time) followed by a
service time which depends on speed of the instance and the required service amount.

Fig. 3.Wait and service times during execution of a timed MSC

Moreover we consider MSCs to be “open“, i.e. the start of an MSC is triggered

from the environment according to some interarrival distribution. Since we will
employ analytical mean value formulas based on queueing network theory the
interarrival distribution is assumed to be negative exponential. The same assumption
is made for the service amounts.

By combining MSCs using the HMSC operators of composition more complex
traces can be defined. As a consequence we can define end-to-end delays also for
HMSCs; this is done in a later section.

m2

m4

End-
to-end
delay

Wait
time

Service
time

m3

m1

Instance1 Instance2 Instance3 Instance4

m5

420 Hesham Kamal Arafat Mohamed and Bruno Müller-Clostermann

3 Mapping of MSC-Scenarios to Queueing Network Models

Here we describe the derivation of a model which can be quantitatively assessed by
means of analytical or simulative techniques. Since the instances are queueing
stations and the messages can be considered to be customers or jobs we obtain a
queueing network. Each queueing station consists of a wait queue and a server.
Messages are generated according to an arrival rate λ, are served at the stations 1
through 4, and finally leave into a sink.

CPU 1 CPU 2

CPU 4

CPU 3

m1

m2
m3

m4 m5 Source

Sink

Fig. 4. The example MSC transformed into a queueing network model

Depending on the interarrival distribution of messages, the service time
distribution of the messages and the service disciplines of the stations such a network
has the so called product form property and can be solved analytically, i.e.
performance measures, like utilization of stations or response time can be derived
very fast. Theory and algorithms are well established; indeed in this scenario we have
a queueing network of Jackson type [14, 20].

Note that the numbering of messages defines their order of execution, here source
! m1! m2 ! m3 ! m4 ! m5 ! sink. On the other hand, the queueing network
formula2 to be applied here does neglect the correct order of visits! What really
matters when deriving mean performance measures is the number of visits (not their
order) and the amount of requested service at the stations.

Here we assume that each station is of type -/M/1-FCFS and MSC arrivals occur
according to a Poisson stream and the service times of the messages are also negative
exponentially distributed.

In general we assume that a system consists of n stations and m different MSCs
classes which arrive with an overall MSC arrival rate λ [MSCs/sec]. Each MSC
consists of a certain number of messages which are to be served by the different
stations. The arrival rate at station i is Pi λ, [messages/sec] where Pi is the number of
messages to be served by station i, i = 1, 2, …, n for all MSCs of the classes j, j=1,.2,
…, m.

Let cij be the number of messages of an MSC of class j which are served at station
i, then we can define Pi, the total number of messages received and served by station
i, as follows:

2 In case any of these assumptions is not valid, we have to use approximation algorithms or

discrete event simulation.

Towards an Efficient Performance Evaluation of Communication Systems 421

istationsallfornicP
m

j
iji ,...,,2,1,

1

== ∑
=

 (1)

The same way, we can define the message arrival rates λi,j [messages/sec] at station
i for all messages of MSC class j as:

mjnicijij ...,,2,1,...,,2,1, === λλ (2)

Hence, the overall message arrival rate λi at station i for all messages of all MSC
classes is:

niPii ...,,2,1, == λλ (3)

Let µij be the service rate (messages of MSC class j / sec) at station i, i = 1, 2, …, n.
According to our definition of service amount aij and speed of stations gi we have the
service time sij = aij/gi and hence these service rates are defined by µij=1/sij
[messages/sec].

4 Computing Performance Measures
 by Queueing Network Analysis

Under the definitions given by equations 1, 2 and 3 we can easily compute mean
values for stationary performance measures like station utilizations and response
times. Of course the response times for each MSC class and the overall end-to-end
delay (E2E) for the execution of a all MSCs can also be computed.

4.1 MSC Response Times

Note that we calculate performance measures for the execution of MSCs, i.e. response
time refers to the mean execution time of one MSC including wait times as well as
service times. Link delays are only included if links are explicitly modeled as
instances. Performance measures for single messages are not considered; moreover all
messages belonging to the same MSC are not distinguished. An extension to
distinguish between messages would lead to a three-indexed service amount, say aijk.
This can be done, but is not in the scope of this paper.

The utilization ρij of station i with respect to MSC class j is defined as

mjni
ij

ij
ij ...,,2,1,...,,2,1, ===

µ
λ

ρ (4)

Of course the overall utilization ρi for station i with respect to all MSC classes is

ni
cm

j ij

ij
m

j ij

ij
m

j
iji ...,,2,1,

111

==== ∑∑∑
=== µ

λ
µ
λ

ρρ (5)

422 Hesham Kamal Arafat Mohamed and Bruno Müller-Clostermann

Let Rij denote the response time for an MSC of class j that is served by station i,
then we can apply the M/M/1 formula to get the response times Rij as follows:

i

ij
ij ρ

ρ
λ

R
−

⋅=
1

1
 (6)

Let Rj denotes the overall response time for MSC of class j that is served by all
stations, then we can apply the M/M/1 formula to get the Rj as follows:

∑∑
== −

==
n

i i

ij
n

i
ijj ρ

ρ
λ

RR
11 1

1
 (7)

4.2 End-to-End Delay for Strong Sequencing Composition in HMSC

In the previous section, we assumed that Rj denotes the overall response time for
MSC of class j that is served by all stations and the corresponding formula is given by
equation 7. In this section we will derive a formula for calculating the end-to-end
delay E2E. We can define the end-to-end delay to be the time between the arrival of
the first message in the first MSC of the HMSC and the departure of the last message
in the last MSC of that HMSC, i.e. the time needed to run a complete HMSC. We
assume that we have n MSCs that are strongly sequenced and that the calculated
response times are Rj , j = 1, 2,…, n. In this case the average end-to-end delay E2E
gives the average time duration of one single execution of all MSCs by:

∑∑ ∑ ∑
∑

∑
== = =

=

= −
=

−
=

−
==

n

i i

i
m

j

n

i

n

i i

m

j
ij

i

ij
m

j
jREE

11 1 1

1

1 1

1

1

1

1

1
2

ρ
ρ

λρ

ρ

λρ
ρ

λ

(8)

Equation 8 gives a formula to calculate the end-to-end delay which can be applied in
cases similar to the example, in which we have two MSCs that are vertically
composed (see Fig. 7). According to the definition of the sequencing, the HMSC in
the example represents a strong sequencing case. Note that we assumed that there is
no time gap between the MSCs.

The analytical computation of average end-to-end delay for other cases of HMSC
compositions can be done under assumptions which must be defined more precisely.
For the simulation we just determine the time between the start of the first and the end
of the last message of all simulated HMSCs and calculate some statistic measures,
like mean values, confidence intervals, minimum and maximum.

5 An Example from Mobile Communications

We study an example which is closely related to current projects on third and fourth
wireless initiatives, like the one pursued in the IPonAir-project. We consider the

Towards an Efficient Performance Evaluation of Communication Systems 423

communication interaction between User Equipment (UE, these are users with mobile
terminals), one or several NodeBs (which are the UMTS equivalent to the Base
Transceiver Stations, in the context of GSM known as BTS), a Radio Network
Controller (RNC) and the Core Network (CN). This communication needs dozens of
system functions which are structured into many MSCs with many hundreds of
messages.

Here we consider a scenario following system functions named “RRC connection
setup” and “RRC connection release” as shown in Fig. 5 and Fig. 6.

These two MSCs may grouped together to build a High Level MSC as displayed in
Fig. 7. We consider a strongly sequenced pair of setup and release functions as a
workload model. To build a scenario for performance evaluation we have to consider
the execution of this HMSC assuming a certain traffic model, e.g. assuming a Poisson
stream of HMSCs according a certain arrival rate; also a certain system configuration
must be described.

 UE NodeB RNC CN

MSC_1 for
Connection
Setup

RRC_setup_req

NBAP_setup_req

NBAP_setup_resp

ALCAP_setup_req

ALCAP_setup_resp

RRC_setup_complete

CN_setup_req

CN_setup_resp

Fig. 5. MSC_1 for connection setup (partially fictitious)

 UE NodeB

MSC_2 for
Connection
Release

RRC_release_req

NodeB_release_req

NodeB_release_resp

CN_release_req

CN_release_resp

CNRNC

Fig. 6. MSC_2 for connection release (partially fictitious)

424 Hesham Kamal Arafat Mohamed and Bruno Müller-Clostermann

Connection Setup

Connection Release

Start

MSC_1

MSC_2

End

Fig. 7. High Level MSC consisting of MSC1 and MSC2

We consider four queueing stations which are to execute (or do represent) the four
instances and the HMSC combining the connection setup (MSC_1) and the
connection release (MSC_2) respectively as displayed in Fig. 7.

We assume speeds of 1000, 2000, and 5000 messages/sec for the stations, named
UE, NodeB and CN. We run a series of model evaluations for three different RNC-
configurations by setting the speed of the station RNC to 3000, 4000 and 5000
messages/sec. The service amounts of the messages are set to 2.0 for service at
NodeB, to 5.0 at the RNC, and to 10.0 at the CN-station; in this way we account
roughly for the fact that a single message may represent multiple messages.

We considered for each configuration the HMSC arrival rates λ =10, 20, …, 130
HMSC/sec, i.e. the number of Setup/ Release-Pairs described by HMSC are varied in
the range from 10 to 130 per second. Please note, that we do just consider a part of the
signalling traffic; neither other signalling traffic nor user traffic is included in this
example.

Note that the kind of queueing stations used in these calculations can be differently
chosen to better describe real system properties, e.g. the UE-cluster should be
modelled as an infinite-server station and the Radio Network Controler (RNC) and
Core Network (CN) as multi-server stations. This would still result in analytically
solvable models implying minor modifications of the analytical formulas.

The evaluation of the formulas yields the end-to-end delays for the connection
setup. As expected the evaluations provide exponentially increasing curves as
displayed in Fig. 8.

Such curves are useful to investigate in early design stages which amount of traffic
can be carried by the planned configuration, or the other way round, what kind of
resources are needed to carry the traffic under specified service levels.

Although the necessary assumptions with respect to the independence of messages
and negative exponential service normally do not hold exactly, these evaluations may
be extremely helpful for a system developer. Such analytical results show the scope of
possible parameter settings and allow a better planning of simulation scenarios which
include more details and are closer to reality.

Towards an Efficient Performance Evaluation of Communication Systems 425

0

0.05

0.1

0.15

0.2

0.25

0 50 100 150

MSC arrivals [MSC/sec]

en
d-

to
-e

nd
 d

el
ay

RNC
speed =
3000

RNC
speed =
4000

RNC
speed =
5000

Speed is given in
messages/sec

Fig. 8. End-to-end delay of MSC connection setup

6 Simulation of MSC Based Models

Additional to the analytical formulas a simulation system has been developed, which
uses the same input as the analytical model and delivers the same results, i. e. mean
values and confidence intervals. Of course the simulator can be used to evaluate
models which do not satisfy the conditions necessary for analytical evaluations;
important examples for model features which violate these conditions are non-
exponential distributed service times (e.g. low service time variations or even
deterministic service), non-Poisson arrivals (e.g. bursty sources) and priority
scheduling.

This simulator has been written in Java using the JavaDEMOS package [8, 15 and
24]. JavaDemos is a Java library for discrete event simulation, which was inspired by
the DEMOS system written by G. M. Birtwistle [2 and 3]. JavaDemos is based on an
implementation of the DEMOS features in Java. The syntax of the procedures is as
close as possible to DEMOS, in order to simplify the translation of DEMOS programs
to JavaDemos. In addition, JavaDemos consists of a graphical front-end which
permits the visualization of a simulation run and which allows basic interactions with
the simulation system.

The basic concept of JavaDEMOS include process-like objects which do
implement behaviour patterns, which may acquire and release resources, may wait
until certain conditions are fulfilled, are able to interact with each other in a
master/slave mode and can of course be scheduled in the event list.

Fig. 9 has taken from the simulation of our example described in a previous
section. In the simulation the messages are entities and the visited stations (UE,
NodeB, …) are modeled as resources. Fig. 9 (on the left) shows the entities which are
scheduled in the event list according to their event times. Moreover, the state of all
objects can be inspected at any time; Fig. 9 (on the right) shows the current values of
the state variables of the station RNC, in particular the maximum queue length Q-

426 Hesham Kamal Arafat Mohamed and Bruno Müller-Clostermann

MAX, the current queue length Q-NOW, the average queue length and the average
wait time.

Observing these parameters dynamic performance behaviour can be inspected. As
an example consider the values displayed in Fig. 9 showing a snapshot of the
simulation at a certain point of time (here after approximately 34.43 seconds); since
the utilization of the system is rather large the simulation is still in its transient phase
and the average queue length is 12.27 (26444 observed messages, RNC utilization
93.6%,) in contrast to an average queue length of 15.4 after more than 773000
observed messages and 1000 sec model time (and we have still slightly growing
utilization of 93.95 %), cf. Fig. 11.

Also the maximum observed queue lengths of 61 (at time point 34.43) and 156 (at
time point 1000, at the end of the simulation) respectively, illustrate some aspects of
the dynamic system behaviour. The true stationary values (obtained by the analytical
formulas) are still significantly higher than those obtained by simulation, namely
96.25 % for utilization and 26.66 for the average queue length.

In Fig. 10 we can see the trace-window in which we can see step by step how the
simulation proceeds. It shows the model times, the messages and their actions with
respect to resource acquirements and resource releases.

Fig. 9. The graphical user interface of JavaDEMOS

Towards an Efficient Performance Evaluation of Communication Systems 427

Fig. 10. Trace window showing a running MSC simulation

Fig. 11. Report-window for the MSC simulation

A complete report can be obtained as shown in Fig. 11. We see in Fig. 11 the
resources report which shows the observation number (the number of messages that
visited each station), the maximum queue length for each station, the average queue
length and the average wait time for entities in the queue for each station and finally
the % usage (utilization) for each station.

Other performance measures like the end-to-end-delay for a system function
defined by one or several MSCs is not part of JavaDEMOS and has been programmed
additionally including a batch means procedure for the estimation of confidence
intervals.

Conclusion and Outlook

Currently the tool is in a state that demonstrates the feasibility of the approach. In
particular the automatic inclusion of complex system functions consisting of many
procedures described as MSCs and HMSCs will allow to build up and evaluate

428 Hesham Kamal Arafat Mohamed and Bruno Müller-Clostermann

performance models with rather low effort. The analytical results can be used to get a
fast overview on the overall stationary performance or potential bottlenecks.
Simulation can alternatively used to study the dynamic behaviour or to show the
impact of features which can not be represented sufficiently in analytical models.
Future work will be directed towards the application of these methods and the
associated tool to real world projects. Hence, the mapping of systems specified by
MSC and HMSC to queueing networks must be conceptually enhanced and
implemented. This includes the extension of the analytical formulas to a richer model
world; for this purpose the field of queueing network theory provides vast resources.

Acknowledgements

This work has been inspired by related work done in the IPonAir/MxRAN project.
The authors acknowledge the contributions of Peter Schefczik, Michael Söllner,
Wilfried Speltacker (all with Lucent Technologies, Nuremberg), Andreas Mitschele-
Thiel (Technical University of Ilmenau), Georgios Nikolaidis (University of Athens)
and Anja Wiedemann (University of Duisburg-Essen).

References

1. Belachev, M., Shyamasundar, R. K.: MSC+: From Requirement to Prototyped Systems.
13th Euromicro Conference on Real-Time Systems, Technical University of Delft, Delft,
The Netherlands, June 13th - 15th, (2001), 117-124.

2. Birtwistle G. M.: DEMOS a System for Discrete Event Modelling on Simula. Macmillan,
http://www.cosc.canterbury.ac.nz/teaching/classes/cosc327/

3. Birtwistle G. M.: DEMOS Reference Manual, (1985)
http://www.informatik.uni-essen.de/Lehre/Material/DiskreteSim/DemosRefMan.txt

4. Braga L., Manione, R., and Renditore, P.: A Formal Description Language for the Modelling
and Simulation of Timed Interaction Diagrams. In: Gotzhein and Bredereke (eds.) [11], (1996)
245-260.

5. Diefenbruch, M., Hintelmann, J., and Müller-Clostermann, B.: The QUEST-Approach for
the Performance Evaluation of SDL-Systems. In: Gotzhein and Bredereke (eds.) [11], (1996)
229-244.

6. Faltin, N., Lambert, L., Mitschele-Thiel, A., and Slomka, F.: An Annotational Extension
of Message Sequence Charts to Support Performance Engineering. In: SDL'97: Time for Testing
- SDL, MSC and Trends, Evry, France, Eighth SDL Forum, North-Holland, (1997) 307-322

7. Faltin, N., Lambert, L., Mitschele-Thiel, A., and Slomka F.: PMSC - Performance Message
Sequence Chart. Technical Report 10/97, Universität Erlangen-Nürnberg, IMMD VII, Erlangen
(1997)

8. Flüs, C., Mohamed, H., Müller-Clostermann, B.: JavaDEMOS: Java-based Discrete Event
Simulation. In: MMB-Mitteilungen Nr. 41, (2002), cf. http://www.informatik.unibw-
muenchen.de/mmb/mmb41/inhalt.htm

9. Frangiadakis, N., Nikolaidis, G., Schefczik, P., Wiedemann, A.: MxRAN Functional
Architecture Performance Modeling. OPNET Conference, (2002) cf.
http://www.iponair.de/publications.shtml

10. Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Computer Science 7
Homepage: http://www7.informatik.uni-erlangen.de

Towards an Efficient Performance Evaluation of Communication Systems 429

11. Gotzhein, R. and Bredereke, J. (eds.): Formal Description Techniques IX: Theory,
application and tools, IFIP TC6 WG6.1 International Conference on Formal Description
Techniques IX / Protocol Specification, Testing and Verification XVI, Kaiserslautern,
Germany (1996)

12. Herzog, U.: Formal Methods in Performance Evaluation. In: Brinksma, E., Hermanns, H.,
Katoen, J.-P. (eds.): Lectures on Formal Methods and Performance Analysis; LNCS 2090,
Springer (2001)

13. IPonAir Homepage : http://www.iponair.de
14. Jain, R.: The Art of Computer Systems Performance Analysis: Techniques for

Experimental Design, Measurement, Simulation, and Modeling. John Wiley & Sons,
Inc., New York (1991)

15. JavaDEMOS software on the JavaDEMOS home page: http://www.informatik.uni-
essen.de/SysMod/JavaDEMOS/

16. Jonsson, B., Padilla, G.: An Execution Semantics for MSC2000. 10th International SDL
Forum Copenhagen, Denmark, Springer Verlag LNCS 2078 (2001)

17. Kosiuczenko, P.: Time in Message Sequence Chart. In Lengauer C., Griebl M., and Gorlatch,
S. (eds.), Euro-Par'97 Parallel Processing, Springer LNCS 1300, 562-566, (1997)

18. Lambert, L.: PMSC for Performance Evaluation. in: Mitschele-Thiel, A.; Müller-
Clostermann, B.; Reed, R. (eds.); Workshop on Performance and Time in SDL and MSC;
February 17-19, 1998, University of Erlangen-Nürnberg

19. Mauw, S. and Reniers, M.A.: High-Level Message Sequence Charts. In Cavalli and
Sarma [6], (1997) 291–306.

20. Menascé, D., Almeida, V. and Dowdy, L.: Capacity Planning and Performance Modeling:
From Mainframes to Client-Server Systems. Prentice-Hall (1994)

21. Mitschele-Thiel, A.: Integrating Performance and Time in SDL and MSC – Current State
and Vision. In [22]

22. Mitschele-Thiel, A., Müller-Clostermann, B. and Reed, R.(eds.): Proc. of Workshop on
Performance and Time in SDL and MSC. February 17-19, 1998, University of Erlangen-
Nürnberg

23. Mitschele-Thiel, A.: Systems Engineering with SDL – Developing Performance Critical
Applications. Wiley (2000)

24. Mohamed, H.: Discrete Event Simulation Using JavaDEMOS. Technical Report,
University of Essen, (2001)
http://www.informatik.uni-essen.de/SysMod/publikationen/index.html,

25. MSC Standard, ITU-T. Recommendation Z.120, Message Sequence Charts. Geneva,
(1999)

26. MSC-2000 MESSAGE SEQUENCE CHART (MSC), (revised in 2001), SDL Forum
Version of Z.120 (11/99) rev. 1(14/11/01)

27. Padilla, G.: An Execution Semantics for MSC2000. August 2000,
http://citeseer.nj.nec.com/padilla00execution.html

28. Schaffer. C.: MSC/RT: A Real-Time Extension to Message Sequence Charts (MSCs).
Technical Report TR140-96, Johannes Kepler Universitat Linz, Institut für
Systemwissenschaften (1996)

29. Schefczik, P., Mitschele-Thiel, A., Soellner, M. and Speltacker, W.: On MSC-Based
Performance Simulation. the Third International Workshop on Software and Performance
(WOSP 2002), Rome (2002)

30. Schieferdecker, I., Rennoch A., and Mertens, O.: Timed MSCs - an Extension to MSC96.
In Wolisz et al. [32], (1997) 165-174.

31. Smith, C.U. and Williams, L.G.: Performance Engineering Evaluation of Object-Oriented
Systems with SPEED. In R. Marie, B. Plateau, M. Calzarossa, and G. Rubino, (eds.),
Computer performance evaluation, Springer LNCS 1245 (1997)

32. Wolisz, A., Schieferdecker, I. and Rennoch, A. (eds.): Formale Beschreibungstechniken für
verteilte Systeme. GMD-Studie Nr. 315, Berlin, Germany, GI/ITG, GMD-Forschungszentrum
(1997)

	1 Introduction
	2 Extending MSCs by Time and Resources
	2.1 Introduction
	2.2 An MSC Example
	2.3 High Level MSC
	2.4 Introducing Time and Resources

	3 Mapping of MSC-Scenarios to Queueing Network Models
	4 Computing Performance Measures by Queueing Network Analysis
	4.1 MSC Response Times
	4.2 End-to-End Delay for Strong Sequencing Composition in HMSC

	5 An Example from Mobile Communications
	6 Simulation of MSC Based Models
	Conclusion and Outlook
	Acknowledgements
	References

