Skip to main content

Tight Bounds for k-Set Agreement with Limited-Scope Failure Detectors

  • Conference paper
Distributed Computing (DISC 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2848))

Included in the following conference series:

Abstract

A system with limited-scope failure detectors ensures that there are q subsets X i of x i processes, 0 ≤ iq-1, such that some correct process in X i is never suspected by any process in X i . Let x be the sum of x i and X be the union of X i . The failure detector class S x, q satisfies this property all the time, while ⋄S x, q satisfies it eventually.

This paper gives the first tight bounds for the k-set agreement task in asynchronous message-passing models augmented with failure detectors from either the S x, q or ⋄S x, q classes.

For S x, q , we show that any k-set agreement protocol that tolerates f failures must satisfy f < k + xq. This result establishes for the first time that the protocol of Mostéfaoui and Raynal for the S x = S x,1 failure detector is optimal.

For ⋄S x, q , our lower bound is \(f < min (\frac{n+1}{2}, k+x-q)\). We give a novel protocol that matches our lower bound, disproving a conjecture of Mostéfaoui and Raynal for the ⋄S x = ⋄S x,1 failure detector.

Our lower bounds exploit techniques borrowed from Combinatorial Topology, demonstrating for the first time that this approach is applicable to models that encompass failure detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Attiya, H., Avidor, Z.: Wait-free n-set consensus when inputs are restricted. In: Malkhi, D. (ed.) DISC 2002. LNCS, vol. 2508, pp. 326–338. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Borowsky, E., Gafni, E.: Generalized flp impossibility result for i-resilient asynchronous computations. In: Proceedings of the 1993 ACM Symposium on Theory of Computing (May 1993)

    Google Scholar 

  3. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving consensus. Journal of the ACM (JACM) 43(4), 685–722 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed systems. Journal of the ACM (JACM) 43(2), 225–267 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chaudhuri, S.: Agreement is harder than consensus: set consensus problems in totally asynchronous systems. In: Proceedings of the Ninth Annual ACM Symosium on Principles of Distributed Computing, August 1990, pp. 234–311 (1990)

    Google Scholar 

  6. Chaudhuri, S., Herlihy, M., Lynch, N.A., Tuttle, M.R.: Tight bounds for k-set agreement. Journal of the ACM (JACM) 47(5), 912–943 (2000)

    Article  MathSciNet  Google Scholar 

  7. Gafni, E.: Round-by-round fault detectors (extended abstract): unifying synchrony and asyn-chrony. In: Proceedings of the seventeenth annual ACM symposium on Principles of distributed computing, pp. 143–152. ACM Press, New York (1998)

    Chapter  Google Scholar 

  8. Herlihy, M., Rajsbaum, S.: Algebraic spans. Mathematical Structures in Computer Science 10(4), 549–573 (2000); Special Issue: Geometry and Concurrency

    Article  MATH  MathSciNet  Google Scholar 

  9. Herlihy, M., Rajsbaum, S., Tuttle, M.R.: Unifying synchronous and asynchronous message-passing models. In: Proceedings of the seventeenth annual ACM symposium on Principles of distributed computing, pp. 133–142. ACM Press, New York (1998)

    Chapter  Google Scholar 

  10. Herlihy, M., Rajsbaum, S., Tuttle, M.R.: A new synchronous lower bound for set agreement. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 136–150. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  11. Herlihy, M., Shavit, N.: The topological structure of asynchronous computability. Journal of the ACM (JACM) 46(6), 858–923 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Mostéfaoui, A., Rajsbaum, S., Raynal, M., Roy, M.: Condition-based protocols for set agreement problems. In: Malkhi, D. (ed.) DISC 2002. LNCS, vol. 2508, pp. 48–62. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Mostéfaoui, A., Raynal, M.: k-set agreement with limited accuracy failure detectors. In: Proceedings of the nineteenth annual ACM symposium on Principles of distributed computing, pp. 143–152. ACM Press, New York (2000)

    Chapter  Google Scholar 

  14. Munkres, J.R.: Elements Of Algebraic Topology. Addison Wesley, Reading (1984) ISBN 0-201-04586-9

    MATH  Google Scholar 

  15. Saks, M., Zaharoglou, F.: Wait-free k-set agreement is impossible: The topology of public knowledge. SIAM Journal on Computing 29(5), 1449–1483 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Spanier, E.H.: Algebraic Topology. Springer, New York (1966)

    MATH  Google Scholar 

  17. Yang, J., Neiger, G., Gafni, E.: Structured derivations of consensus algorithms for failure detectors. In: Proceedings of the seventeenth annual ACM symposium on Principles of distributed computing, pp. 297–306. ACM Press, New York (1998)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Herlihy, M., Penso, L.D. (2003). Tight Bounds for k-Set Agreement with Limited-Scope Failure Detectors. In: Fich, F.E. (eds) Distributed Computing. DISC 2003. Lecture Notes in Computer Science, vol 2848. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39989-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39989-6_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20184-7

  • Online ISBN: 978-3-540-39989-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics