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ABSTRACT

Multi-Writer Consistency Conditions for Shared Memory Objects. (December 2007)

Cheng Shao, B.E., Tianjin University;

M.E., Institute of Computing Technology, China Academia of Science

Chair of Advisory Committee: Dr. Jennifer L. Welch

Regularity is a shared memory consistency condition that has received consider-

able attention, notably in connection with quorum-based shared memory. Lamport’s

original definition of regularity assumed a single-writer model, however, and is not

well defined when each shared variable may have multiple writers. In this thesis, we

address this need by formally extending the notion of regularity to a multi-writer

model. We have shown that the extension is not trivial. While there exist various

ways to extend the single-writer definition, the resulting definitions will have different

strengths. Specifically, we give several possible definitions of regularity in the presence

of multiple writers. We then present a quorum-based algorithm to implement each of

the proposed definitions and prove them correct. We study the relationships between

these definitions and a number of other well-known consistency conditions, and give

a partial order describing the relative strengths of these consistency conditions. Fi-

nally, we provide a practical context for our results by studying the correctness of two

well-known algorithms for mutual exclusion under each of our proposed consistency

conditions.
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CHAPTER I

INTRODUCTION

A. Overview

Distributed computer systems are ubiquitous today, ranging from multiprocessors to

local area networks to wide-area networks such as the Internet. Shared memory,

the exchange of information between processes by the reading and writing of shared

objects, is an important mechanism for interprocess communications in distributed

systems. A consistency condition in a shared memory system is a set of constraints

on values returned by data accesses when those accesses may be interleaved or over-

lapping. A shared memory system with a strong consistency condition may be easy

to design protocols for, but may require a high-cost implementation. Conversely, a

shared memory system with a weak consistency condition may be easy to implement,

but difficult for the user to program or reason about. Finding a consistency condition

that can be implemented efficiently and that is nonetheless strong enough to solve

practical problems is one of the aims of shared memory research.

A desirable consistency condition for shared memory objects is atomicity (or lin-

earizability) ([16]), in which read and write operations behave as though they were

executed sequentially, i.e, with no interleaving or overlap, in a sequence that is consis-

tent with the relative order of non-overlapping operations. In many cases, however,

this semantics is difficult to implement, particularly in distributed systems where

variables are replicated and where the number of processes with access to the vari-

able is not known in advance. For such systems, the related but weaker condition of

regularity ([16]) may be easier to implement while retaining some usefulness. For this

The journal model is IEEE Transactions on Automatic Control.
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reason, it has received considerable attention in its own right, notably in connection

with quorum-based shared memory ([2], [20], [19] and [18]).

Informally speaking, regularity requires that every read operation return either

the value written by the latest preceding write (in real time) or that of some write that

overlaps the read. This description is sufficiently clear for the single-writer model1,

in which the order of the writes performed on a given variable in any execution is

well-defined; in fact, it was for this model that Lamport gave his formal definition

of regularity. In a multi-writer model, however, multiple processes may perform

overlapping write operations to the same variable so that the “latest preceding write”

for a given read may have no obvious definition.

A common way to circumvent this problem is to rely on a plausible generalization

of the informal definition above, e.g. the following, which appears in [20]:

• A read operation that is concurrent with no write operations returns a value

written by the last preceding write operation in some serialization of all preced-

ing write operations, and

• A read operation that is concurrent with one or more write operations returns

either the value written by the last preceding write operation in some serializa-

tion of all preceding write operations, or any of the values being written in the

concurrent write operations.

Such a definition, however, leaves a good deal of room for interpretation. What is

meant by “some serialization” in this context? Is there a single serialization of the

writes for which the above is true for all read operations, or does it suffice for there

to be some (possibly different) such serialization for each operation? Or should all

1In the single-writer model, only one process can write to a shared object; other
processes can only read from it.
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read operations of the same process perceive writes as occurring in the same order?

Such ambiguities can be avoided with a formal definition of multi-writer regularity,

but to our knowledge none has yet been proposed.

B. Contributions

In this thesis, we formally extend the notion of regularity to a multi-writer model.

Specifically, we give several possible formal definitions of regularity in the presence of

multiple writers. We then present a quorum-based algorithm to implement each of

these definitions and prove the algorithms correct.

The definitions form a lattice as respect to their strength, and the implementa-

tions have varying costs with respect to number of messages, size of messages, time

delay, and local memory requirements. Taken together, the set of definitions point

out the ambiguity of the informal notion of regularity and the algorithms suggest that

different costs may be associated with different choices for disambiguating.

If a consistency condition is said to be local, it means that the whole shared

memory system satisfies the consistency condition if and only if the consistency con-

dition is satisfied on per-variable basis. Locality is a desired property of consistency

conditions: as mentioned in [12], locality enhances modularity and concurrency. In

our study, we show that all the proposed definitions satisfy locality.

We also study the relationships between our definitions of multi-writer regularity

and several existing consistency conditions: linearizability ([12]), sequential consis-

tency ([15]), coherence ([10]), PRAM ([17]) and PCG ([1]). As part of this analysis, we

give a partial order describing the relative strengths of these consistency conditions.

Finally, we provide a practical context for our results by studying the correct-

ness of two well-known algorithms for mutual exclusion when the variables are im-
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plemented under our proposed consistency conditions. The algorithms we examine

are Peterson’s algorithm for 2 processes ([23]) and Dijkstra’s algorithm ([24]). We

find that Peterson’s algorithm is fully correct under all the conditions. Dijkstra’s al-

gorithm satisfies only some of the constraints of the mutual exclusion problem under

any of the conditions.

C. Related Work

There is copious literature on consistency conditions for shared memory, both imple-

mentations and applications (e.g., [15], [17], [10], [12], [1], [4] and [25]). Our work

builds on the the notion of regularity as introduced in [16]. A consistency condition

called Normality was introduced in [11], which, when all the operations are unary2,

is equivalent to atomicity. As it turns out, all of our proposed definitions are weaker

than Normality.

We use a similar approach as in [27] by identifying building blocks and using var-

ious combinations of the building blocks to explore potential consistency conditions.

The benefit of this approach is that consistency conditions can be easily organized

into a lattice. The difference between our work and [27] is that in [27] the building

blocks are identified in the definition level while in our work, the building blocks are

identified in the implementation level.

We use a similar framework and system model as introduced in [26] to define

our proposed definitions as well as those well-established consistency conditions. The

only difference is the partial order used in the frameworks. In [26], the partial order

is a combination of per-process order and the ’read from’ relation. In our work, the

partial order is the real time order among operations.

2An operation is unary if it only involves a single shared object.
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We follow the example of [3], [1] and [13] in using the mutual exclusion problem

as an application for our consistency conditions. In [3], Attiya and Friedman revised

Peterson’s 2-process algorithm ([23]) to solve the mutual exclusion problem under

their hybrid consistency model. In [1], Ahamad et al. examined the correctness of

Peterson’s algorithm and Lamport’s bakery algorithm under the PCG consistency

model, showing that Peterson’s algorithm solves the mutual exclusion problem under

PCG, while Lamport’s algorithm fails to do so. In a later study, Higham et al. ([13])

investigated other mutual exclusion algorithms, including Dekker’s and Dijkstra’s,

none of which guarantees mutual exclusion under PCG.

D. Roadmap of Thesis

The rest of the thesis is organized as follows. Chapter II defines our system model and

gives a generic algorithm that uses quorum systems to implement a shared read/write

object. Chapter III presents our proposed definitions of multi-writer regularity and

their implementation algorithms. Chapter IV discusses the locality property of our

proposed definitions and compares their relative strength. Chapter V studies the

correctness of two mutual exclusion algorithms, Peterson’s algorithm for two pro-

cesses and Dijkstra’s algorithm, when variables are implemented under our proposed

definitions Chapter VI concludes this thesis and discusses future work.

A preliminary version of this thesis was published in [28].
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CHAPTER II

PRELIMINARIES

A. Shared Read/Write Registers and Consistency Conditions

We assume a concurrent system composed of n application processes, p0, . . . , pn−1,

and some number of shared objects. In this thesis, we focus on read/write registers.

Such a register, x, supports two operations, read and write, which can be executed

by the processes. Each operation has a set of invocations and a set of responses. For

a read operation, the invocation by process pi is denoted readi(x) and the responses

have the form returni(x, v), where v is the return value. For a write operation, the

invocations by process pi have the form writei(x, v), where v is the value to be written,

and the response is denoted acki(x).

The behavior of the shared register in the presence of concurrent accesses by

different processes is defined with respect to the desired behavior of the register in

the absence of concurrency, so we first define the latter.

When there are no concurrent accesses, the invocation of each operation is di-

rectly followed by its matching response, and this pair forms an indivisible operation.

The sequential specification of a read/write register is the set of all sequences of read

and write operations such that each read operation returns the value of the latest

preceding write operation; if there is no preceding write, then the read returns the

initial value of the register.

Definition 1 A sequence of operations on a shared object is legal if it belongs to the

sequential specification of the shared object.

We now return to considering behavior of the register in the presence of concur-

rent accesses. In this situation, invocations and responses can be interleaved, although
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we assume that each process has at most one operation pending at a time. To capture

such “well-formedness” constraints, we define the notion of a schedule next. If σ is

a sequence of operation invocations and responses, we denote by σ|i the subsequence

of σ containing all the invocations and responses performed by process pi.

Definition 2 A sequence σ of invocations and responses is a schedule if, for each i,

0 ≤ i < n, the following hold:

• σ|i consists of alternating invocations and matching responses, beginning with

an invocation; and

• if the number of steps taken by pi is finite, then the last step by pi is a response,

i.e., every invocation has a matching response.

Note that this definition of a schedule allows arbitrary asynchrony of process

steps, i.e., no constraints are placed on the relative speed with which operations

complete or on the time between operation invocations. However, for convenience of

analysis, we follow the example of [16] and [9] in employing the useful abstraction of

an imaginary global clock. All our references to “real time” in the sequel are with

respect to this imaginary clock, which is not available to the processes themselves.

This is equivalent to the global-time model introduced in [8] and [5].

The key remaining point is what values should be returned by the reads? This is

defined by a consistency condition. Most consistency conditions define a connection

between the behavior of the register in the presence of concurrency and the register’s

sequential specification. Formally, a consistency condition is specified by a particular

set of schedules. Thus, the relative “strength” of two consistency conditions can be

compared by considering the sets of schedules defining each condition, as follows.

Given two consistency conditions C1 and C2, C1 is at least as strong as C2 if C1 ⊆ C2.
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Furthermore, C1 is stronger than C2 if C1 ⊂ C2. It is also easy to define a consistency

condition as the union or intersection of two other consistency conditions1.

The following pieces of notation are useful for defining particular consistency

conditions.

Given a schedule σ, we use the expression ops(σ) to denote the set of all opera-

tions whose invocations and responses appear in σ2. By the definition of a schedule,

each invocation has a matching response, namely the response by the same process

that follows it most closely; an invocation and its matching response form an opera-

tion. Furthermore, ops(σ|i) denotes the set of all operations that are performed in σ

by process pi.

For a shared variable x, ops(σ|x) denotes the set of all operations that are per-

formed on x.

Finally, we let writes(σ) denote the set of all write operations in schedule σ.

Informally speaking, a permutation on a subset of ops(σ) is σ-consistent if it

preserves the partial order of the operations in σ.3 Before giving a more formal

defintion, we first define a partial order <σ on ops(σ): For two operations o1 and o2

in σ, o1 <σ o2 iff the response for o1 precedes the invocation for o2 in σ.

Definition 3 Given a schedule σ, a permutation π of a subset of ops(σ) is σ-consistent

if, for any operations o1 and o2 in π, o1 precedes o2 in π whenever o1 <σ o2.

1For example, as we elaborate on later in the thesis, PCG can be represented
by Coherence ∩ PRAM, where PCG, Coherence, and PRAM are known consistency
conditions.

2Assume for convenience that each operation in sigma has a unique id, for instance,
the j-th operation invoked by process i; this mechanism allows us to distinguish
between two reads of the same value by the same process that occur at different
points in the schedule.

3In most situations of interest, σ represents the order of operation invocations and
responses in real time.
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Furthermore, we use op1 6>σ op2 to denote that operation op1 starts before op2

ends in schedule σ. According to [16], the following relation holds:

If op1 <σ op2 6>σ op3 <σ op4, then op1 <σ op4

Several of the definitions we present in this thesis rely on the notion of a read

operation “reading from” a write operation. Formally:

Definition 4 Given a schedule σ, consider a function ρ from the set of read oper-

ations in σ to the set of write operations in σ. ρ is called a reads-from function if

for every read operation r, r and ρ(r) operate on the same shared variable, the value

returned by r is the same as the value written by ρ(r) and ρ(r) 6>σ r. We say that r

reads from ρ(r).

We conclude this section by giving an important example of a consistency condi-

tion in our framework. The original definition of regularity by Lamport ([16]) assumed

that only one process performs writes on a given shared register and stated that every

read returns either the value of the latest preceding write or the value of some over-

lapping write. Since there is only one writer and it performs operations sequentially,

the notion of “latest preceding write” is well-defined. A rephrasing of this definition

that links the concurrent behavior to the sequential specification is given next, where

a single-writer schedule is a schedule in which every write operation is performed by

the same process.

Definition 5 (Single-Writer Regularity or SWReg) A single-writer schedule

σ satisfies SWReg iff for every read r in ops(σ), there exists a permutation πr of

writes(σ) ∪ {r} such that

• πr is legal, and
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• πr is σ-consistent.

B. Quorum Systems

Although having processes communicate through shared variables is generally viewed

as desirable from a software development perspective, most distributed systems do

not directly provide such functionality. However, the illusion of shared variables can

be provided through a shared variable simulation layer that runs in a message-passing

communication environment. This software layer simulates shared registers on top of

the message-passing layer.

The algorithms in this thesis for simulating a shared register use the notion of

a quorum system, which is a technique for handling replicated data. Some processes

in the system play the role of “servers”, which maintain replicas, while others play

the role of “clients”, which handle invocations of operations on the replicated data.

There is one client process corresponding to each application process introduced in

the previous section. Let PS be the set of server processes and PC be the set of client

processes. (It is possible for a single physical node to host both a client and a server

process.)

A quorum system Q (over PS) is a collection of subsets of PS , each of which is

called a quorum, satisfying the property that for every two distinct quorums Q and

Q′, Q ∩Q′ 6= ∅.

C. System Model

In this section, we provide definitions for modeling our execution environment. There

is a collection P = PS ∪ PC of processes that communicate with each other through

message-passing.
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Each process is modeled as a (possibly infinite) state machine, with an initial state

and a transition function. The state machine represents the code for the simulation

layer that is running at the process.

A configuration of the system is a vector of local states, one per process. An

initial configuration contains an initial state for each process.

There are two kinds of events that can occur in the system, input and output

events. Each event occurs at a single process. The input events are the receipt of a

message and the invocation of a shared register operation. The output events are the

sending of a message and the response of a shared register operation.

Each input event triggers its corresponding process to take a step: the transi-

tion function is applied to the current state of the process and the particular event,

and produces a new state of the process and a set of output events. The output

events consist of a set of messages sent by the process and at most one shared-object

operation response to occur at the process.

An event list is a sequence of events, all taking place at the same process, that

begins with an input, followed by any number of message sends, and ends with at

most one operation response.

An execution is a sequence d0`1d1`2d2 . . . of alternating configurations dk and

event lists `k, starting with an initial configuration d0, that satisfies the following

conditions.

• Consider any dk−1`kdk in the sequence, where `k takes place at process qi. Then

applying qi’s transition function to qi’s state in dk−1 and the first event in `k

produces the remaining events in `k and qi’s state in dk. All other components

of dk are the same as in dk−1. That is, the process states and events occurring

in the sequence are consistent with the processes’ transition functions (i.e., the
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shared variable simulation algorithm).

• Every message sent is received exactly once and subsequent to its send; only

messages sent are received. That is, the communication is reliable.

• If an operation invocation occurs in some event list `k occurring at process qi,

then the most recent preceding invocation or response at qi (if any) is a response.

That is, the application process that is generating the invocations to the client

process waits for one operation to finish before invoking the next one.

We can now state our main correctness condition for simulating a register with

a particular consistency condition.

Definition 6 The system implements a read/write register with consistency condi-

tion C if, for every execution of the system, the projection onto the set of invocations

and responses of the register is a schedule that is in (i.e., satisfies) C.

D. Generic Algorithm

A generic algorithm that uses quorums to implement a shared read/write register

with initial value v0 is given in Figure 1. Upon receiving a read or write request

on the shared object, a client process chooses a quorum using some quorum selection

strategy and then queries each member of this quorum about its current “view” of the

shared object, which consists of the value of the object and the timestamp associated

with the value. After gathering all the responses, the process chooses a set of views

to work with, using the function ChooseV iews(), and then decides which timestamp

among the chosen views is the latest, using function MaxTS(). The operations then

continue as follows:
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• write: The process increments the timestamp returned by MaxTS(), using the

function IncTS(), and writes the new value and the incremented timestamp

back to every member of some quorum.

• read: The process uses a function GetV alue() to obtain a value associated with

the timestamp selected by MaxTS(), and returns that value as the result of

the read. The reading process then uses the function OptionalWriteBack() to

notify a subset of the processes (which can be either no processes or a quorum

of processes) of the value it plans to return before it actually returns.

By plugging in different implementations for the functions MaxTS(), IncTS(), GetV alue(),

and ChooseV iews(), and choosing whether to call OptionalWriteBack(), we obtain

registers satisfying different consistency conditions.

This algorithm is a generalization of several existing quorum-based protocols.

For example, the appropriate instantiations of the functions yield the algorithms in

[20], [7] and [21].

The following lemma states a property of the generic algorithm that we will use

later.

Lemma 1 The sequence of timestamp values taken on by the replica on any server

is non-decreasing during any execution of the generic algorithm.

We define the timestamp of a write operation as the timestamp the write oper-

ation uses to write to a quorum in Line 7 of the write procedure in Figure 1. The

timestamp of a read operation is the timestamp value associated with the variable

value returned by the read in Line 5 of the read procedure in Figure 1. For both

cases, we use the expression ts(op) to denote the timestamp of operation op.

We now define the reads-from function for the generic algorithm. Given a sched-

ule σ, let ρ be any function from the read operations in σ to the write operations in
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σ such that for every read r, r does not end before ρ(r) starts, and ts(r) = ts(ρ(r)).

There always exists such a function ρ since a read r will not observe a timestamp t

unless it has already been written by some write that started before r ends.
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Code for client process ci ∈ PC :

local variables:
val /* local copy of shared variable, initially v0 */
ts /* local copy of timestamp, initially smallest timestamp value */

writei(x, v):
1 for some quorum Q ∈ Q, send 〈read〉 to each sj ∈ Q;
2 wait to receive 〈view, v, t〉 from each sj ∈ Q;
3 V := ChooseViews();
4 ts := MaxTS(V );
5 ts := IncTS(ts);
6 val := v;
7 for some quorum Q′ ∈ Q, send 〈write, val, ts〉 to each sj ∈ Q′;
8 wait to receive 〈ack〉 from each sj ∈ Q′;
9 acki(x);

readi(x):
1 for some quorum Q ∈ Q, send 〈read〉 to each sj ∈ Q;
2 wait to receive 〈view, v, t〉 from each pj ∈ Q;
3 V := ChooseViews();
4 ts := MaxTS(V );
5 val := GetV alue(V, ts);
6 OptionalWriteBack();
7 returni(x, val);

Code for server process sj ∈ PS :

local variables:
val /* local copy of shared variable, initially v0 */
ts /* local copy of timestamp, initially smallest timestamp value */

When sj receives 〈read〉 from ci:
1 send 〈view, val, ts〉 to ci;

When sj receives 〈write, v, t〉 from ci:
1 if (ts < t) then
2 val = v; ts = t;
3 endif

4 send 〈ack〉 to ci;

Fig. 1. A generic quorum-based algorithm to implement a shared read/write register
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CHAPTER III

MULTI-WRITER REGULAR VARIABLES: SPECIFICATIONS AND

IMPLEMENTATIONS

Suppose we instantiate the generic algorithm as follows:

• The timestamp is chosen from the set of natural numbers N ;

• Function MaxTS() returns the largest timestamp in numerical order and func-

tion IncTS() increments the timestamp by 1;

• Function GetV alue() returns the value that is associated with the timestamp

returned by MaxTS();

• ChooseV iews() combines all the query results from a certain quorum to form

a view;

• Function OptionalWriteBack() does nothing;

If only one designated process invokes the write procedure, the resulting algorithm

implements a read/write register that satisfies single-writer regularity (Definition 5).

What if more than one process is allowed to perform the write operation? Would

the resulting behavior qualify as a possible specification for multi-writer regularity?

In the rest of the thesis, we explore this question. But first, let us take a look at

various ways the generic algorithm can be instantiated, which, as it turns out, gives

us consistency conditions with different strength, and provides us possible definitions

of multi-writer regularity.
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A. Building Blocks in the Generic Algorithm

We identify three building blocks that we use to create a specific instantiation from

the generic algorithm. Different combinations of the building blocks will give us

different algorithms, which in turn yield shared variables with different consistency

conditions. The three building blocks are:

• Including unique id in timestamp: If we do not use this building block, then

the timestamp is simply chosen from the set of natural numbers N . Function

MaxTS() returns the largest timestamp in numerical order, while IncTS(ts)

increments its argument by 1. Since timestamps are not necessarily unique when

using this building block, several different values may share the same largest

timestamp value. In this case, GetV alue() simply chooses one arbitrarily and

returns the corresponding value.

When we use this building block, we define the timestamp as a pair 〈ts, id〉,
where ts is a natural number, and id is a unique process id. For timestamps

of this format, we define MaxTS() as the function that returns the largest

timestamp in lexicographic order among the pairs. Because this timestamp is

unique, GetV alue() simply returns the unique value associated with it. Finally,

IncTS() increments the ts field by 1 and places the calling process identifier

in the id field. The cost of using this building block is an additional O(log n)

bits to store a timestamp. However, this gives a total order on the timestamps

which can yield stronger consistency conditions.

• Write-back phase in the read procedure: When we do not use this build-

ing block, function OptionalWriteBack() in the read procedure of the generic

algorithm will simply do nothing and return.
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If the building block is used, function OptionalWriteBack() will select a quo-

rum and write the value and timestamp returned from GetV alue() and MaxTS()

to each of the servers in the quorum. Then it waits until it receives all the ac-

knowledgements from each server. The cost of using this building block is an

extra O(c) messages, where c is the size of the biggest quorum in the system.

Furthermore, the time for a read is increased by a round-trip message delay.

However, we can obtain stronger consistency conditions by using this building

block.

• Local cache on clients: If we do not keep a local cache at each client, function

ChooseV iews() in the generic algorithm will collect the query result from each

server in a certain quorum and form a view.

If we do use this building block, then each client will keep a local cache that

stores the latest value-timestamp pair that it knows about. In other words,

if the latest operation this client has performed is a write operation, then the

local cache holds the value-timestamp pair that has been sent to update a

quorum of servers; if it is a read operation, then the local cache holds what

the read has returned. Function ChooseV iew() will form a view by combining

the query result from a certain quorum and the current content in the local

cache. The cost of using this building block is that clients now have to keep this

information for each shared variable and thus it introduces space and robustness

issues. As with the other two techniques, however, this will also yield a stronger

consistency condition.

The overall result of our study is shown in Figure 2. The left lattice in Figure 2

shows all the algorithms instantiated from the generic algorithm by applying different

combinations of the building blocks. We use “ID” to denote the fact that the first
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building block gets used when instantiating the algorithm, and “WB” for the second,

and “LC” the third. So for example, the algorithm represented by “ID, WB” is

the one that uses process id in the timestamp and a write-back phase in the read.

The right lattice in Figure 2 shows the corresponding consistency conditions that are

yielded from the algorithms. An arrow from consistency condition A to consistency

condition B indicates B is stronger than A. As we will present later in Section I,

all the consistency conditions in the right lattice of Figure 2, except atomicity and

MWReg+, are possible definitions of multi-writer regularity in the sense that when

there is only a single writer in the system, all the definitions are equivalent to SWReg

(MWReg+ is stronger than SWReg, but it is still weaker than atomicity.).

In the remainder of this chapter, we will walk up the lattice and introduce each

of the possible definitions of multi-writer regularity and their implementation algo-

rithms. It is worth noting that right now we only focus on a single-variable shared

memory. Later in Chapter IV, we will show how to extend our results to a multi-

variable shared memory system.

ID, WB, LC

ID, WB ID, LC WB, LC

ID WB LC

None

Atomicity

MWWeakReg+ CohReg

PCGLinMWReg+

Atomicity

MWReg

MWWeakReg

Fig. 2. Lattice of algorithms and consistency conditions
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B. MWWeakReg

1. Specifying MWWeakReg

Our first proposed definition for multi-writer regularity is simply to use Definition 5,

which we restate here with a new name.

Definition 7 (MWWeakReg) A schedule σ satisfies MWWeakReg if, for all read

operations r in ops(σ), there exists a permutation πr of writes(σ) ∪ {r} such that:

• πr is legal, and

• πr is σ-consistent.

A shared memory object satisfies MWWeakReg if all schedules on that object satisfy

MWWeakReg.

Informally, a schedule σ satisfies MWWeakReg if each read r ∈ ops(σ) returns

the value of some write w that either overlaps or precedes r in σ, as long as no other

write falls completely between w and r. Note that this definition allows different

reads to behave as though the set of writes occurred in different orders, as long as all

such orderings are consistent with the partial order of the writes in σ.

P0

P1

P2

P3
R 2 (x,2)

R 1 (x,1)

R 4 (x,4) R 5 (x,2)

R 6 (x,4)

R 3 (x,2)

W(x,4)

W(x,3)

W(x,1)

W(x,2)

Fig. 3. Schedule that satisfies MWWeakReg

Figure 3 shows a schedule that satisfies MWWeakReg. (In our figures, W (x, v)

denotes a write operation that writes value v to variable x, and R(x, v) denotes a
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read operation on variable x that returns value v. We will use similar schedules to

illustrate other proposed definitions. The schedules differ in the return values of some

of the read operations.) The permutation for each read operation is given below. It

is easy to verify that all the permutations are legal and σ-consistent.

R1: W (x, 2),W (x, 1), R1(x, 1),W (x, 4),W (x, 3)
R2: W (x, 1),W (x, 2), R2(x, 2),W (x, 3),W (x, 4)
R3: W (x, 1),W (x, 2), R3(x, 2),W (x, 4),W (x, 3)
R4: W (x, 1),W (x, 2),W (x, 4), R4(x, 4),W (x, 3)
R5: W (x, 1),W (x, 2), R5(x, 2),W (x, 3),W (x, 4)
R6: W (x, 1),W (x, 2),W (x, 3),W (x, 4), R6(x, 4)

2. Implementing MWWeakReg

We name the implementation algorithm for MWWeakReg Alg None, which does not

use any of the building blocks introduced in Section A.

The following lemma states that the timestamp order (numerical order by times-

tamp) of certain operations extends the partial order <σ.

Lemma 2 For any schedule σ on a shared register implemented by Alg None, there

exist the following relationships between the operations and their timestamps:

(a) For any read operation r and any write operation w: if w <σ r, then ts(w) ≤
ts(r).

(b) For any two write operations w1 and w2: if w1 <σ w2, then ts(w1) < ts(w2).

Proof. (a) Suppose write w ends before read r begins in σ. Let s be a server process

that is in the intersection of the quorum that w uses for its update (Lines 7-8) and the

quorum that r uses for its query (Lines 1-2). According to Lemma 1, the sequence of

timestamp values taken on at s is non-decreasing. Since w finishes before r starts, s

returns to r a timestamp that is at least ts(w). Since r chooses the value associated

wtih the largest timestamp returned from its query, r’s timestamp is no less than w’s.
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(b) Using a similar argument to that in (a), we can show that some server process

s returns to w2 a timestamp that is at least as large as ts(w1). Since ts(w2) is larger

than the largest timestamp obtained in the query, w2’s timestamp is larger than w1’s.

Theorem 1 Algorithm Alg None implements MWWeakReg.

Proof. Consider any execution of Alg None and let σ be its schedule. For each read

operation r in σ, we construct πr as follows. We partition the set of writes into two

subsets:

• The set of writes that begin before r ends and whose timestamps are at most

that of r,

• the set of all remaining writes

Each of these two sets is arranged in increasing order of timestamp; writes with

identical timestamps are ordered arbitrarily with the exception that for the first set,

the write operation that r reads from will be arranged as the last operation in the

first sequence. We append r at the end of the first sequence and then append the

second sequence to the first sequence.

The reader can easily verify that the resulting sequence satisfies the two condi-

tions of MWWeakReg.

Now let us take a look on how Alg None can generate the schedule in Figure 3.

We assume that we have a quorum system on three server processes A, B and C, with

every set of two server processes forming a quorum. We also assume that the initial

value and timestamp of the shared object is (0, 0) in each server’s local copy. Figure 4

shows an execution of Alg None on four processes, whose projection onto the set of



23

invocations and responses of the shared register x is the schedule shown in Figure 3.

The following items will help understand the figure:

• Steps in boldface are invocations or responses on the share register.

• query(A) = (v, t) means querying server A gets a value-timestamp pair of (v, t).

• update(A, (v, t)) means updating the local copy of server A with value-timestamp

pair of (v, t).

• ts := 1 means we choose timestamp value 1 for the succeeding updates.

We will use the same model and the same denotation afterwards when illustrating

how an implementation algorithm could generate a certain schedule.

We now explain the purpose of demonstrating these executions. Suppose we

have two consistency conditions C1 and C2 with C1 ⊂ C2, and algorithm A. If we

prove that algorithm A implements consistency condition C2 (i.e., every execution

of A satisfies C2), we have not shown every schedule in C2 can be generated by A.

In fact, it is possible that A actually generates the more stringent condition C1. By

showing that A generates at least one schedule not in C1, we obtain some knowledge

that A is not “too strong”.

C. MWReg

MWWeakReg is actually a very weak consistency condition, as the read operations

do not have a common view on the order of preceding write operations even for the

read operations performed by the same process. For instance, in Figure 3, p1’s first

read R4 reflects the write of 4, but p1’s next read R5 does not: the later read returns

2 even though the write of 2 precedes the write of 3. It might, therefore, be desirable

to construct a stronger definition of regularity for the multi-writer case.
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p0 p1 p2 p3

start W (x, 1)
query(A) = (0, 0) start W (x, 2)
query(B) = (0, 0) query(A) = (0, 0)
ts := 1 query(C) = (0, 0)
update(C, (1, 1)) ts := 1
update(A, (1, 1)) update(B, (2, 1))

ack update(C, (2, 1))
ack

start R1(x)
query(A) = (1, 1) start R2(x)
query(B) = (2, 1) query(B) = (2, 1)

return 1 query(C) = (2, 1)
return 2

start R3(x)
query(A) = (1, 1)
query(C) = (2, 1)

return 2
start R4(x)

start W (x, 4)
query(B) = (2, 1) query(A) = (1, 1)

query(B) = (2, 1)
ts := 2
update(A, (4, 2))

query(A) = (4, 2)
return 4

start R5(x)
query(B) = (2, 1) start W (x, 3)

query(B) = (2, 1)
update(B, (4, 2))

query(C) = (2, 1) ack
return 2 query(C) = (2, 1)

ts := 2
update(A, (3, 2))
update(C, (3, 2))

ack
start R6(x)

query(B) = (4, 2)
query(C) = (3, 2)

return 4

Fig. 4. An execution of Alg None that generates the schedule in Figure 3. Time in-

creases going down the page.
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1. Specifying MWReg

Consider the schedule shown in Figure 5. We say a write is relevant to a read if the

invocation of the write is before the response of the read. In this example, W (x, 1)

and W (x, 2) are relevant to all the read operations, and W (x, 3) is relevant to R5 and

R6 only. For any two read operations in this schedule, the write operations that are

relevant to both reads will be observed in the same order and that order extends <σ.

For example, consider read operation R1 and R2. The write operations by p0 and p1

are relevant to both reads and they are observed by the two reads in the same order

as W (x, 1), W (x, 2). This is not true in the schedule shown in Figure 3, as the same

two reads cannot agree on the same order of the two writes.

P0

P1

P2

P3
R 2 (x,2)

R 1 (x,2)

R 4 (x,4) R 5 (x,2)

R 6 (x,4)

R 3 (x,2)

W(x,4)

W(x,3)

W(x,1)

W(x,2)

Fig. 5. Schedule that satisfies MWReg

The restriction on the common order of all the “relevant” writes is stronger than

what MWWeakReg requires. In order to accommodate behavior of this kind, we

propose a more sophisticated definition for our second and stronger version of multi-

writer regularity, by requiring any pair of reads to agree only on the ordering of writes

that are “relevant” to both of them. Toward this end, we use the following additional

notation: writes←r(σ) = {w|w ∈ writes(σ) and w begins before r ends in σ}.

Definition 8 (MWReg) A schedule σ satisfies MWReg if there exists a permutation

π of ops(σ) such that, for all read operations r in ops(σ), the projection πr of π onto

writes←r(σ) ∪ {r} satisfies:
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• πr is legal, and

• πr is σ-consistent.1

A shared memory object satisfies MWReg if all schedules on that object satisfy MWReg.

This definition is similar to that of MWWeakReg, except that for any two reads

r1 and r2, the set of writes that do not strictly follow either r1 or r2 must be perceived

by both reads as occurring in the same order. As before, each read returns the value

of an overlapping write or of the last preceding write in the order.

The schedule in Figure 5 satisfies MWReg as shown by the following argument.

Let π = W (x, 1),W (x, 2), R1(x, 2), R2(x, 2), R3(x, 2), R5(x, 2), W (x, 3), W (x, 4),

R4(x, 4), R6(x, 4). Then the projections for the read operations are:

R1: W (x, 1),W (x, 2), R1(x, 2)
R2: W (x, 1),W (x, 2), R2(x, 2)
R3: W (x, 1),W (x, 2), R3(x, 2)
R4: W (x, 1),W (x, 2),W (x, 4), R4(x, 4)
R5: W (x, 1),W (x, 2), R5(x, 2),W (x, 3),W (x, 4)
R6: W (x, 1),W (x, 2),W (x, 3),W (x, 4), R6(x, 4),

Notice that the projection for R4 does not include W (x, 3) since it is not relevant

to the read. It is easy to verify that all the projections are legal and σ-consistent.

2. Implementing MWReg

We implement a shared variable satisfying MWReg by using the first building block

in the generic algorithm, that is, adding the process id (as in [20]) to the timestamps

used by the generic algorithm. Since no individual process chooses the same ts value

for two different writes, each write operation is guaranteed a unique timestamp value.

1Note that if there are only a finite number of reads in a given execution, the
writes after the last read are not constrained by MWReg to appear in any particular
order. We consider this to be acceptable, as such writes are never observed.
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This ensures that no matter how many write operations overlap, all read operations

that begin after all these write operations finish are able to agree on which is the

“last” write. Note that this is a commonly used approach in the implementation of

shared variables using quorum systems. We name the resulting algorithm Alg ID.

The proof of correctness of Alg ID is based on the following supporting lemma:

Lemma 3 The write operations performed using Algorithm Alg ID are totally ordered

by timestamp, and this total order extends <σ.

Proof. Because the timestamp includes the process id to break ties, the timestamp

order is a total order. Since we still use the timestamp of Alg None as the first field

in the lexicographic order, Lemma 2 implies that <σ is preserved among the writes.

Theorem 2 Algorithm Alg ID implements MWReg.

Proof. Consider any execution of Alg ID and let σ be its schedule. We construct

the permutation π of ops(σ) as follows. We begin by ordering the write operations into

a sequence according to their timestamp order. We then insert each read operation r

after the write operation that r reads from and before the next write operation in the

total order. Read operations with identical timestamps are ordered arbitrarily. Now

we prove that for any r, the projection πr of π satisfies the conditions in Definition 8.

The sequence πr is legal by construction, as r appears immediately after the

write that it reads from.

Now, consider any two operations op1 and op2 in πr such that op1 finishes before

op2 starts in σ. There are two possible cases:

• op1 and op2 are both write operations. Then according to Lemma 3 and our

construction method, their order in πr is σ-consistent.
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• op1 is a write operation and op2 = r. If r reads from op1, then op1 appears

immediately before r according to our construction. Otherwise, according to

algorithm Alg ID, r reads from a write w whose timestamp is larger than that

of op1. Therefore, the operations appear in πr in the order op1, w, and r, and

thus the order of op1 and r is again σ-consistent.

There are no other cases, as writes that begin after r completes are not included in

writes←r(σ), and thus do not appear in πr.

Figure 6 shows an execution of Algorithm Alg ID that can generate the schedule

shown in Figure 5. Comparing with Figure 4, the timestamp includes the process id

in addition to the integer counter.

D. MWWeakReg+

MWReg strengthens MWWeakReg by requiring any two read operations to agree on

a total order of the write operations that are relevant to both of them and that total

order extends <σ. An alternative way to strengthen MWWeakReg is to require any

two read operations to agree on a partial order of all the write operations and that

extends <σ. This section explores this alternative.

1. Specifying MWWeakReg+

Before we introduce MWWeakReg+, let us define a causal order relationship among

read and write operations on a shared variable. For a given schedule σ and a reads-

from function on σ, the causal order <co on ops(σ) is defined as follows:

• if two operations op1 <σ op2, then op1 <co op2,

• if op2 reads from op1, then op1 <co op2,
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p0 p1 p2 p3

start W (x, 1)
query(A) = (0, [0, 0]) start W (x, 2)
query(B) = (0, [0, 0]) query(A) = (0, [0, 0])
ts := [1, 0] query(C) = (0, [0, 0])
update(C, (1, [1, 0])) ts := [1, 1]
update(A, (1, [1, 0])) update(B, (2, [1, 1]))

ack update(C, (2, [1, 1]))
ack

start R1(x)
query(A) = (1, [1, 0]) start R2(x)
query(B) = (2, [1, 1]) query(B) = (2, [1, 1])

return 2 query(C) = (2, [1, 1])
return 2

start R3(x)
query(A) = (1, [1, 0])
query(C) = (2, [1, 1])

return 2
start R4(x)

start W (x, 4)
query(B) = (2, [1, 1]) query(A) = (1, [1, 0])

query(B) = (2, [1, 1])
ts := [2, 3]
update(A, (4, [2, 3]))

query(A) = (4, [2, 3])
return 4

start R5(x)
query(B) = (2, [1, 1]) start W (x, 3)

query(B) = (2, [1, 1])
update(B, (4, [2, 3]))

query(C) = (2, [1, 1]) ack
return 2 query(C) = (2, [1, 1])

ts := [2, 2]
update(A, (3, [2, 2]))
update(C, (3, [2, 2]))

ack
start R6(x)

query(B) = (4, [2, 3])
query(C) = (3, [2, 2])

return 4

Fig. 6. An execution of Alg ID that generates the schedule in Figure 5.
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• if op1 <co op3 and op3 <co op2, then op1 <co op2.

Given a schedule σ, and a reads-from function on σ, a permutation π of a subset

of ops(σ) is co-consistent if, for any operations o1 and o2 in π, o1 precedes o2 in π

whenever o1 <co o2. As we can see, co-consistency is stronger than σ-consistency

since <co extends <σ by taking into consideration the “read from” relations between

reads and writes2.

Lemma 4 <co is a partial order.

Proof. Suppose in contradiction <co is not a partial order. Let C be a shortest

cycle in <co. Then C is of the form op0, op1, . . . , opm−1 for some even m ≥ 2, where,

for all i, 1 ≤ i ≤ m/2,

• op2i−1, a read on variable xi, reads from op2i−2, a write on xi, and

• op2i−1 <σ op(2i) mod m.

I.e., the cycle consists of alternating reads and writes, with each read reading from

the preceding write, and each write strictly following the preceding read. Note that

read operations have odd index and write operations have even index.

For each i, 1 ≤ i ≤ m/2, op2i−2 begins before op2i−1 ends (by definition of reads-

from), and op2i−1 ends before op(2i) mod m begins (by definition of <σ). Thus op0 ends

before op0 begins, which is a contradiction.

MWWeakReg+ strengthens MWWeakReg by requiring that the permutation for

each read is co-consistent.

2Our definition of co-consistency is not the same as causal consistency ([4]), which
is weaker than real-time ordering, as operations at different processes that are not
causally related do not have to be ordered the same as they appear in real time.
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Definition 9 (MWWeakReg+) A schedule σ satisfies MWWeakReg+ if there is

a reads-from function on σ such that for all read operations r in ops(σ), there exists

a permutation πr of writes(σ) ∪ {r} such that:

• πr is legal, and

• πr is co-consistent.

A shared memory object satisfies MWWeakReg+ if all schedules on that object satisfy

MWWeakReg+.

P0

P1

P2

P3
R 2 (x,2)

R 1 (x,1)

R 4 (x,4) R 5 (x,4)

R 6 (x,3)

R 3 (x,2)

W(x,4)

W(x,3)

W(x,1)

W(x,2)

Fig. 7. Schedule that satisfies MWWeakReg+.

The schedules shown in Figure 3 and Figure 5 do not satisfy MWWeakReg+.

In both schedules, W (x, 4) <co W (x, 3), since W (x, 4) <co R4(x, 4) and R4(x, 4) <co

W (x, 3). Thus the value returned by R6 violates the causal order. Now consider the

example shown in Figure 7. The permutation for each read is given below, each of

which is legal and co-consistent.

R1: W (x, 2),W (x, 1), R1(x, 1),W (x, 4),W (x, 3)
R2: W (x, 1),W (x, 2), R2(x, 2),W (x, 4),W (x, 3)
R3: W (x, 1),W (x, 2), R3(x, 2),W (x, 4),W (x, 3)
R4: W (x, 1),W (x, 2),W (x, 4), R4(x, 4),W (x, 3)
R5: W (x, 1),W (x, 2),W (x, 4), R5(x, 4),W (x, 3)
R6: W (x, 1),W (x, 2),W (x, 4),W (x, 3), R6(x, 3)
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2. Implementing MWWeakReg+

The algorithm we use to implement MWWeakReg+, which we name Alg WB, uses

the second building block introduced in Section A, that is, to add a write-back phase

in the read operation.

The following lemma shows how the write-back building block changes the rela-

tionship between the operations and their timestamps.

Lemma 5 For any schedule σ on a shared register implemented by Alg WB, there

exists the following relationship between the operations and their timestamps:

(a) For any read operation r and any write operation w, if w <σ r, then ts(w) ≤
ts(r).

(b) For any two write operations w1 and w2, if w1 <σ w2 in σ, then ts(w1) < ts(w2).

(c) For any read operation r and any write operation w, if r <σ w in σ, then

ts(r) < ts(w).

(d) For any two read operation r1 and r2, if r1 <σ r2 in σ, then ts(r1) ≤ ts(r2).

Proof. The key is the non-empty intersection of quorums used in queries by read

and write operations and quorums used in updates by write operations. The proof of

Lemma 2 applies here to prove (a) and (b). Essentially the same argument as in (b)

is used to prove (c), and essentially the same argument as in (a) is used to prove (d).

Theorem 3 Algorithm Alg WB implements MWWeakReg+.

Proof. For any schedule σ resulting from an execution of Alg WB, we construct πr

for a given read operation r by the following method. We divide all the operations in
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writes(σ)∪{r} into two groups: G1 = {w|ts(w) ≤ ts(r)}∪{r}, and G2 = {w|ts(w) >

ts(r)}.
All the operations of G1 are followed by all the operations of G2 in πr. Within

each group, we have the following rules:

• All the write operations in G1 are arranged by their timestamp order. The write

operation that r reads from is put at the end, followed immediately by r.

• All the operations in G2 are ordered by their timestamp value. If two operations

have the same timestamp value, arrange them with arbitrary order.

πr is legal by our construction. Now we show that πr is co-consistent. For the

first bullet of our causal order definition, if op1 <σ op2, then from Lemma 5 and our

construction, op1 appears before op2 in πr. The second bullet is also satisfied by our

construction. For the third bullet, if op1 appears before op3, which appears before

op2, then op1 appears before op2.

Thus Alg WB implements a MWWeakReg+ shared variable.

Figure 8 gives an execution of algorithm Alg WB, which will generate the sched-

ule shown in Figure 7.

E. CohReg

1. Specifying CohReg

As discussed earlier, MWWeakReg is very weak in the sense that even from a single

process’s view, the write operations can be observed in different orders by different

reads. As yet another alternative to strengthen MWWeakReg, CohReg adds an ad-

ditional restriction that any two read operations by the same process must observe
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p0 p1 p2 p3

start W (x, 1)
query(A) = (0, 0) start W (x, 2)
query(B) = (0, 0) query(A) = (0, 0)
ts := 1 query(C) = (0, 0)
update(C, (1, 1)) ts := 1
update(A, (1, 1)) update(B, (2, 1))

ack update(C, (2, 1))
ack

start R1(x)
query(A) = (1, 1) start R2(x)
query(B) = (2, 1) query(B) = (2, 1)
update(B, (1, 1)) query(C) = (2, 1)
update(C, (1, 1)) update(A, (2, 1))

return 1 update(B, (2, 1))
return 2

start R3(x)
query(A) = (2, 1)
query(C) = (1, 1)
update(A, (2, 1))
update(B, (2, 1))

return 2
start R4(x)

start W (x, 4)
query(B) = (2, 1) query(A) = (2, 1)

query(B) = (2, 1)
ts := 2
update(A, (4, 2))

query(A) = (4, 2)
update(C, (4, 2))
update(A, (4, 2))

return 4

start R5(x)
query(B) = (2, 1) start W (x, 3)

query(B) = (2, 1)
update(B, (4, 2))

query(C) = (4, 2) ack
update(A, (4, 2)) query(C) = (4, 2)
update(C, (4, 2)) ts := 3

return 4 update(A, (3, 3))
update(C, (3, 3))

ack
start R6(x)

query(B) = (4, 2)
query(C) = (3, 3)
update(A, (3, 3))
update(B, (3, 3))

return 3

Fig. 8. An execution of Alg WB that generates the schedule in Figure 7.
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the write operations in the same order. Since this condition implies the previously

proposed condition known as Coherence ([10]), we name it CohReg.

Definition 10 (CohReg) A schedule σ satisfies CohReg if there exists a reads-

from function on σ such that for each process i, there exists a permutation πi of

writes(σ) ∪ ops(σ|i) such that:

• πi is legal,

• πi|i is σ-consistent,

• for any read operation r by i, πi|(writes←r(σ) ∪ {r}) is σ-consistent,

• for any read operation r and any write operation w by process i, if w <σ r and r

reads from another write w′, then w appears before w′ in πj for all j; if r <σ w,

then w appears after w′ in πj for all j, and

• for any two read operations r1 and r2 by process i, if r1 <σ r2 and they read

from different writes, w1 and w2 respectively, then w1 appears before w2 in πj

for all j.

where πi|i denotes the subsequence of πi consisting just of operations by process i, and

πi|(writes←r(σ)∪{r}) denotes the subsequence of πi consisting of the write operations

that start before r finishes. A shared memory object satisfies CohReg if all schedules

on that object satisfy CohReg.

The schedule shown in Figure 9 satisfies CohReg. The subsequence of operations

for each process is given below, which satisfies all the conditions of CohReg:

p0: W (x, 1),W (x, 2), W (x, 3),W (x, 4), R6(x, 4)
p1: W (x, 1),W (x, 2), W (x, 3),W (x, 4), R4(x, 4), R5(x, 4)
p2: W (x, 2),W (x, 1), R1(x, 1), R3(x, 1), W (x, 3),W (x, 4)
p3: W (x, 1),W (x, 2), R2(x, 2),W (x, 4),W (x, 3)

Figure 3 does not satisfy CohReg since it is impossible to construct a permutation

for process p2 that satisfies all the conditions of CohReg.
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P0

P1

P2

P3
R 2 (x,2)

R 1 (x,1)

R 4 (x,4) R 5 (x,4)

R 6 (x,4)

R 3 (x,1)

W(x,4)

W(x,3)

W(x,1)

W(x,2)

Fig. 9. Schedule that satisfies CohReg.

2. Implementing CohReg

The algorithm we use to implement CohReg uses the third building block introduced

in Section A. Let us call this algorithm Alg LC. The following lemma shows how

the local cache affects the relationships between two operations and their timestamp

order.

Lemma 6 For any schedule σ on a shared register implemented by Alg LC, there

exists the following relationship between the operations and their timestamps:

(a) For any two write operations w1 and w2: if w1 <σ w2, then ts(w1) < ts(w2).

(b) For any read operation r and any write operation w: if w <σ r, then ts(w) ≤
ts(r).

(c) For any read operation r and any write operation w by the same process: if

r <σ w, then ts(r) < ts(w).

(d) For any two read operations r1 and r2 by the same process: if r1 <σ r2, then

ts(r1) ≤ ts(r2). Furthermore, if ts(r1) = ts(r2), then they read from the same

write.

Proof. The proof of Lemma 2 applies here to prove (a) and first part of (b).

(b) Second part. According to Alg LC, the local cache on each process keeps

the latest value-timestamp pair that it knows about, and the timestamp in the cache
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never decreases. When the write w finishes, the local cache should store the value

and timestamp of w. According to the read procedure, if the largest timestamp from

a read’s query is no more than what is in the local cache, the read will choose the

value in the local cache. Therefore, since r reads the same timestamp as in the local

cache, it must read the value in the local cache, which is the value of w. Thus r reads

from w.

(c) Since the timestamp never decreases in the local cache as we argued in (b),

and the write procedure will increase the timestamp, therefore w’s timestamp will be

larger than r.

(d) The first part can be proved by using the same argument as in (c). For the

second part, according to the read procedure, after r1 finishes, the local cache should

hold the value and timestamp that r1 returns. Since r2 reads the same timestamp as

r1, it must read what is in the local cache, which is what r1 reads. Therefore, r1 and

r2 read from the same write.

Theorem 4 Algorithm Alg LC implements CohReg.

Proof. Given any schedule σ resulting from an execution of Alg LC, we construct,

for each process i, a permutation πi of operations in writes(σ) ∪ ops(σ|i) as follows.

First we put all the write operations into a sequence according to the increasing

order of their timestamp value. Write operations with the same timestamp value are

arranged arbitrarily for now. Let πw be the resulting sequence. The reader can easily

verify that πw is σ-consistent.

Next, we put all the read operations by process i into πw. If a read operation r

reads from a write w and w is not the last one among all the writes that have the

same timestamp value as w in πw, then make it so first. After that, we insert r into

πw between w and the next write in πw. The read operations between any two writes
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should be arranged in order of occurrence. Now we name the final sequence πi after

inserting all the reads of pi.

For the first condition of CohReg, according to the construction method above,

for any read r and the write that r reads from, say w, there is no other write operations

between w and r in π. Thus π is legal.

For the second condition, assume there are two operations op1 and op2 by process

i and op1 <σ op2. There are four cases:

• Both are writes. Then according to Lemma 6, ts(op1) < ts(op2) and op1 will

appear before op2 in πi.

• Both are reads. According to Lemma 6, if they read from the same write, they

will be arranged after the write and op1 will be placed before op2 in πi; if they

read from different write, then ts(op1) < ts(op2), thus op1 will be placed before

op2 in πi as well.

• op1 is a write and op2 is a read. Then according to Lemma 6, ts(op1) ≤ ts(op2).

Thus op1 will appear before op2 in πi by our construction.

• op1 is a read and op2 is a write. According to item (c) of Lemma 6, op2 will

appear after op1.

Thus πi|i is σ-consistent.

For the third condition, since we have already known the order among writes is

σ-consistent in πi, we only need to prove that for a write w, if it precedes r in σ, it

will appear before r in πi. By item (b) of Lemma 6 and by our construction method,

this is true.

For the fourth condition, according to algorithm Alg LC, ts(w) < ts(w′). Thus

w will appear before w′ in πi for all i by our construction.
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Similarly for the last condition, ts(w1) < ts(w2) according to algorithm Alg LC.

Therefore, w1 will appear before w2 in πi for all i by our construction.

Therefore, Alg LC implements a CohReg shared variable.

Figure 10 shows an execution of algorithm Alg LC that will generate the schedule

shown in Figure 9. The denotation query(local) = (v, t) indicates that we fetch the

value-timestamp pair stored in the local cache, and the denotation local := (v, t)

indicates that the local cache is updated with new value-timestamp pair (v, t).

F. MWReg+

1. Specifying MWReg+

Informally, MWReg+ strengthens MWReg by placing the following additional con-

straint on the read operations: any two read operations performed by the same process

must be observed in π in the order in which they occur at that process.

This is equivalent to the requirement that once a process reads from a given

write, it never reads from an “earlier” write in the order of writes perceived by that

process, i.e., individual processes read from writes in nondecreasing order. In [19],

variables with this property are called monotone variables. Following is the formal

definition of MWReg+.

Definition 11 (MWReg+) A schedule σ satisfies MWReg+ if there exists a per-

mutation π of ops(σ) such that, for all read operations r in ops(σ), the projection πr

of π onto writes←r(σ) ∪ {r} satisfies:

• πr is legal,

• πr is σ-consistent,
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p0 p1 p2 p3

start W (x, 1)
query(A) = (0, 0) start W (x, 2)
query(B) = (0, 0) query(A) = (0, 0)
query(local) = (0, 0) query(C) = (0, 0)
ts := 1 query(local) = (0, 0)
update(C, (1, 1)) ts := 1
update(A, (1, 1)) update(B, (2, 1))
local := (1, 1) update(C, (2, 1))

ack local := (2, 1)
ack

start R1(x)
query(A) = (1, 1) start R2(x)
query(B) = (2, 1) query(B) = (2, 1)
query(local) = (0, 0) query(C) = (2, 1)
local := (1, 1) query(local) = (0, 0)

return 1 local := (2, 1)
return 2

start R3(x)
query(A) = (1, 1)
query(C) = (2, 1)
query(local) = (1, 1)

return 1
start R4(x)

start W (x, 4)
query(B) = (2, 1) query(A) = (1, 1)

query(B) = (2, 1)
query(local) = (2, 1)
ts := 2
update(A, (4, 2))

query(A) = (4, 2)
query(local) = (2, 1)
local := (4, 2)

return 4

start R5(x)
query(B) = (2, 1) start W (x, 3)

query(B) = (2, 1)
update(B, (4, 2))
local := (4, 2)

query(C) = (2, 1) ack
query(local) = (4, 2)

return 4 query(C) = (2, 1)
query(local) = (1, 1)
ts := 2
update(A, (3, 2))
update(C, (3, 2))
local := (3, 2)

ack
start R6(x)

query(B) = (4, 2)
query(C) = (3, 2)
query(local) = (1, 1)
local := (4, 2)

return 4

Fig. 10. An execution of Alg LC that generates the schedule in Figure 9.
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• if r′ is a read operation by the same process as r and r <σ r′, then for any write

w, if w appears before r in πr, then w appears before r′ in πr.

A shared memory object satisfies MWReg+ if all schedules on that object satisfy

MWReg+.

P0

P1

P2

P3
R 2 (x,2)

R 1 (x,2)

R 4 (x,4) R 5 (x,4)

R 6 (x,4)

R 3 (x,2)

W(x,4)

W(x,3)

W(x,1)

W(x,2)

Fig. 11. Schedule that satisfies MWReg+.

Figure 11 shows a schedule that satisfies MWReg+. Compared with the schedule

in Figure 5, which satisfies MWReg, the only difference is that read operation R5 now

returns the same value as the read preceding it, which is more recent than W (x, 2).

Now the permutation π is W (x, 1), W (x, 2), R1(x, 2), R2(x, 2), R3(x, 2), W (x, 3),

W (x, 4), R4(x, 4), R5(x, 4), R6(x, 4),and the projection for the read operations are:

R1: W (x, 1),W (x, 2), R1(x, 2)
R2: W (x, 1),W (x, 2), R2(x, 2)
R3: W (x, 1),W (x, 2), R3(x, 2)
R4: W (x, 1),W (x, 2),W (x, 4), R4(x, 4)
R5: W (x, 1),W (x, 2),W (x, 3),W (x, 4), R5(x, 4)
R6: W (x, 1),W (x, 2),W (x, 3),W (x, 4), R6(x, 4)

It can be easily verified that all the projections satisfy the first two bullets of

MWReg+. In addition, for the two read operations of p1 (or p2), their projections

also satisfy the third bullet.
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2. Implementing MWReg+

We name the implementation algorithm Alg ID LC. It uses both the first and the

third building blocks in Section A. Following is the proof of the correctness of the

algorithm.

Theorem 5 Algorithm Alg ID LC implements MWReg+.

Proof. We construct π as in the proof of Theorem 2, except that read operations

with identical timestamps are ordered consistently with their partial order in σ. Now

we prove that π satisfies the conditions in Definition 11.

The first two conditions can be proved using the same arguments as in the proof

of Theorem 2.

As for the third condition, consider two read operations r1 and r2 of the same

process, where r1 completes before r2 begins. Because πr1 and πr2 are projected from

the same sequence π, it is sufficient to prove that (1) r1 appears before r2 in π, and

(2) all writes that appear in πr1 also appear in πr2 .

The first claim follows from the fact that, by Alg ID LC, the timestamp of r2 is

at least that of r1, so our construction method places them in π in the order indicated.

The second claim follows from the fact that writes←r1 ⊆ writes←r2 , which is clear by

definition of writes←r (see Section C). Thus all writes that appear in πr1 also appear

in πr2 .

Figure 12 shows an execution of algorithm Alg ID LC that will generate the

schedule shown in Figure 11.
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p0 p1 p2 p3

start W (x, 1)
query(A) = (0, [0, 0]) start W (x, 2)
query(B) = (0, [0, 0]) query(A) = (0, [0, 0])
query(local) = (0, [0, 0]) query(C) = (0, [0, 0])
ts := [1, 0] query(local) = (0, [0, 0])
update(C, (1, [1, 0])) ts := [1, 1]
update(A, (1, [1, 0])) update(B, (2, [1, 1]))
local := (1, [1, 0]) update(C, (2, [1, 1]))

ack local := (2, [1, 1])
ack

start R1(x)
query(A) = (1, [1, 0]) start R2(x)
query(B) = (2, [1, 1]) query(B) = (2, [1, 1])
query(local) = (0, [0, 0]) query(C) = (2, [1, 1])
local := (2, [1, 1]) query(local) = (0, [0, 0])

return 2 local := (2, [1, 1])
return 2

start R3(x)
query(A) = (1, [1, 0])
query(C) = (2, [1, 1])
query(local) = (2, [1, 1])

return 2
start R4(x)

start W (x, 4)
query(B) = (2, [1, 1]) query(A) = (1, [1, 0])

query(B) = (2, [1, 1])
query(local) = (2, [1, 1])
ts := [2, 3]
update(A, (4, [2, 3]))

query(A) = (4, [2, 3])
query(local) = (2, [1, 1])
local := (4, [2, 3])

return 4

start R5(x)
query(B) = (2, [1, 1]) start W (x, 3)

query(B) = (2, [1, 1])
update(B, (4, [2, 3]))
local := (4, [2, 3])

query(C) = (2, [1, 1]) ack
query(local) = (4, [2, 3])

return 4 query(C) = (2, [1, 1])
query(local) = (2, [1, 1])
ts := [2, 2]
update(A, (3, [2, 2]))
update(C, (3, [2, 2]))
local := (3, [2, 2])

ack
start R6(x)

query(B) = (4, [2, 3])
query(C) = (3, [2, 2])
query(local) = (1, [1, 0])
local := (4, [2, 3])

return 4

Fig. 12. An execution of Alg ID LC that generates the schedule in Figure 11.
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G. PCGLin

1. Specifying PCGLin

PCGLin is a consistency condition that strengthens both MWWeakReg+ and CohReg.

In addition to CohReg, it requires the order of writes observed by each process to ex-

tend <co instead of just <σ. Compared to MWWeakReg+, it requires that the reads

by the same process observe the write operations in the same order3. The formal

definition is given below.

Definition 12 (PCGLin) A schedule σ satisfies PCGLin if there exists a reads-

from function on σ such that for all processes i, there exists a permutation πi of

writes(σ) ∪ ops(σ|i) such that:

• πi is legal,

• πi is co-consistent,

• for any read operation r and any write operation w by process i, if w <σ r and

r reads from another write w′, then w appears before w′ in πj for all j,

• for any two read operations r1 and r2 by process i, if r1 <σ r2 and they read

from different writes, w1 and w2 respectively, then w1 appears before w2 in πj

for all j, and

• for any two read operations r by process i and r′ by process j, if r <σ r′ and r

reads from write operation w, then w appears before r′ in πj.

A shared memory object satisfies PCGLin if all schedules on that object satisfy PCGLin.

3As is shown later in Section 3 of Chapter IV, PCGLin also strengthens the previ-
ously proposed condition PCG by requiring the order of all the writes being observed
be co-consistent.
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P0

P1

P2

P3
R 2 (x,2)

R 1 (x,1)

R 4 (x,4) R 5 (x,4)

R 6 (x,3)

R 3 (x,1)

W(x,4)

W(x,3)

W(x,1)

W(x,2)

Fig. 13. Schedule that satisfies PCGLin

Figure 13 shows a schedule that satisfies PCGLin. The permutation for each

process is listed below, each of which satisfies all the conditions of PCGLin:

p0: W (x, 1),W (x, 2), W (x, 4),W (x, 3), R6(x, 3)
p1: W (x, 1),W (x, 2), W (x, 4), R4(x, 4), R5(x, 4),W (x, 3)
p2: W (x, 2),W (x, 1), R1(x, 1), R3(x, 1), W (x, 4),W (x, 3)
p3: W (x, 1),W (x, 2), R2(x, 2),W (x, 4),W (x, 3)

The schedule in Figure 7 does not satisfy PCGLin because for process p2, there

is no way to construct a permutation that is legal and co-consistent. The schedule

in Figure 9 does not satisfy PCGLin since p0’s permutation would violate the co-

consistency among write operations.

2. Implementing PCGLin

The implementation algorithm, which we call Alg WB LC, uses the second and the

third building blocks. Both Lemma 5 and Lemma 6 will apply to Alg WB LC as well.

Theorem 6 Algorithm Alg WB LC implements a PCGLin shared variable.

Proof. For each process i, we construct a permutation πi of writes(σ) ∪ ops(σ|i)
using the following method.

We first order the write operations into a sequence πw
i according to the increasing

order of their timestamp value. Writes with the same timestamp value are arranged

arbitrarily with the exception that the write by process i itself is placed as the last
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one among those writes in πw. We then insert the read operations by process i into

πw
i . Each read operation follows the write operation it reads from and precedes the

next write in πw
i . The read operations between any two write operations are arranged

in order of the occurrence. We name the final sequence πi.

First, according to our construction, a read follows the write operation it reads

from and there is no other write between them. Therefore, πi is legal.

For the second condition, we need to prove that for any two operations op1 and

op2 in writes(σ) ∪ ops(σ|i), if op1 <co op2, then op1 appears before op2 in πi. From

the definition of <co, there are two possible cases:

• op1 <σ op2. There are four different cases:

– Both are write operations. Then according to Lemma 5, ts(op1) < ts(op2).

By our construction, op1 will appears before op2 in πi.

– Both are read operations. According to item (d) of Lemma 6, either

ts(op1) = ts(op2) or ts(op1) < ts(op2). For the first case, op1 and op2

will read from the same write and op2 will be arranged after op1; for the

second case, the write op1 reads from will appear before the write op2 reads

from, thus op1 will appear before op2 as well.

– op1 is a write operation and op2 is a read operation. Then according to

item (a) of Lemma 5, ts(op1) ≤ ts(op2). By our construction, op1 will

appear before op2 in πi.

– op1 is a read operation and op2 is a write operation. According to item

(c) of Lemma 5, ts(op1) < ts(op2). By our construction, op1 will appear

before op2 in πi.

• op2 reads from op1. According to our construction, op2 will follow op1 in πi.
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Overall, πi is co-consistent.

For the third condition, according to Alg WB LC, we have ts(w) < ts(w′). Then

for the permutation of any process j, w will appear before w′ by our construction.

For the fourth condition, we have ts(w1) < ts(w2) according to Alg WB LC. Thus

w1 will appear before w2 in the permutation of any process j by our construction.

For the last condition, according to Lemma 5 we have ts(r) ≤ ts(r′). Since

ts(w) = ts(r), thus ts(w) ≤ ts(r′). By our construction, w will be placed before r′ in

πj.

Therefore, Algorithm Alg WB LC implements a PCGLin shared avariable.

Figure 14 shows an execution of algorithm Alg WB LC that will result in the

schedule shown in Figure 13.

H. Atomicity

For the completeness of our lattice walk, it is worth mentioning that the remaining

two algorithms, one using the first and the second building blocks and the other

using all three, implement atomicity. The following theorem shows that Algorithm

Alg ID WB, which uses process ID in the timestamp and includes a write-back phase

in the read procedure, implements atomicity.

Theorem 7 Algorithm Alg ID WB implements an atomic shared variable.

Proof. We construct the permutation π of all the operations in schedule σ as in

the proof of Theorem 5 that Alg ID LC implements MWReg+. π is legal by the

construction. Furthermore, Lemma 5 and our construction ensures that for any two

operations op1 and op2 in σ, if op1 <σ op2, then op1 precedes op2 in π.

Thus π is legal and σ-consistent and the schedule is atomic.
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p0 p1 p2 p3

start W (x, 1)
query(A) = (0, 0) start W (x, 2)
query(B) = (0, 0) query(A) = (0, 0)
query(local) = (0, 0) query(C) = (0, 0)
ts := 1 query(local) = (0, 0)
update(C, (1, 1)) ts := 1
update(A, (1, 1)) update(B, (2, 1))
local := (1, 1) update(C, (2, 1))

ack local := (2, 1))
ack

start R1(x)
query(A) = (1, 1) start R2(x)
query(B) = (2, 1) query(B) = (2, 1)
query(local) = (0, 0) query(C) = (2, 1)
update(B, (1, 1)) query(local) = (0, 0)
update(C, (1, 1)) update(A, (2, 1))
local := (1, 1) update(B, (2, 1))

return 1 local := (2, 1))
return 2

start R3(x)
query(A) = (2, 1)
query(C) = (1, 1)
query(local) = (1, 1)
update(A, (1, 1))
update(B, (1, 1))

return 1
start R4(x)

start W (x, 4)
query(B) = (1, 1) query(A) = (1, 1)

query(B) = (1, 1)
query(local) = (2, 1)
ts := 2
update(A, (4, 2))

query(A) = (4, 2)
query(local) = (2, 1)
update(C, (4, 2))
update(A, (4, 2))
local := (4, 2)

return 4

start R5(x)
query(B) = (1, 1) start W (x, 3)

query(B) = (1, 1)
update(B, (4, 2))
local := (4, 2)

query(C) = (4, 2) ack
query(local) = (4, 2)
update(A, (4, 2)) query(C) = (4, 2)

query(local) = (1, 1)
update(C, (4, 2)) ts := 3

return 4 update(A, (3, 3))
update(C, (3, 3))
local := (3, 3)

ack
start R6(x)

query(B) = (4, 2)
query(C) = (3, 3)
query(local) = (1, 1)
update(A, (3, 3))
update(B, (3, 3))
local := (3, 3)

return 3

Fig. 14. An execution of Alg WB LC that generates the schedule in Figure 13.
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The argument in the proof of Theorem 7 also applies to algorithm Alg ID WB LC

to prove that it implements an atomic shared variable.

I. Relation to the Original Single-Writer Definition

The following lemma emphasizes the relationship between our proposed definitions

and SWReg, the single-writer definition of Lamport.

Lemma 7 Suppose there is only a single writer. Then the following are true:

(a) MWWeakReg, MWReg, and MWWeakReg+ are equivalent to SWReg.

(b) CohReg and MWReg+ are strictly stronger than SWReg but remain weaker

than atomicity. Furthermore, if there is only a single reader, then CohReg

and MWReg+ are equivalent to atomicity.

(c) PCGLin is equivalent to atomicity.

Proof. (a) We will prove that each consistency condition is equivalent to SWReg

in the presence of a single writer:

• MWWeakReg. If there is only a single writer, then Definition 7 is exactly the

same as that of SWReg. So MWWeakReg and SWReg are equivalent.

• MWReg. The definition of MWReg implies SWReg for a single writer. On

the other hand, for any schedule σ that satisfies SWReg, every read has a

permutation of all the writes and itself that is legal and σ-consistent. Since

there is only one writer, σ-consistency implies that all the writes appear in

the same order in each read’s permutation. Therefore, we can construct a

permutation of all the operations in ops(σ) by inserting each read into the total

order of writes right after the write it reads from. This permutation satisfies

MWReg. Therefore we have SWReg ⊆ MWReg. Thus SWReg = MWReg.
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• MWWeakReg+. For MWWeakReg+, since the causal order extends <σ,

the permutation for each read also satisfies the conditions for SWReg. Thus

MWWeakReg+ ⊆ SWReg. Now let us show that SWReg ⊆ MWWeakReg+.

If a schedule satisfies SWReg, then every read has a permutation of all the

writes and itself that is legal and σ-consistent. Since there is only one writer,

we have <σ=<co, which means the permutation of each read above is also co-

consistent. Thus the schedule satisfies MWWeakReg+. Therefore, SWReg ⊆
MWWeakReg+.

(b) For any single-writer schedule that satisfies MWReg+, the permutation for

each read also satisfies the conditions of SWReg. Thus MWReg+ ⊆ SWReg. Mean-

while, MWReg+ requires that a read operation cannot return something that is

“older” than what has been previously observed by the process. SWReg, on the

other hand, does not have this restriction. Consider the schedule in Figure 15. This

schedule satisfies SWReg. However, since the second read of p1 returns something

earlier than what has been observed by the first read, it does not satisfy MWReg+.

Therefore, MWReg+ is strictly stronger than SWReg.

W(x,1) W(x,2)

R(x,2) R(x,1)

P0

P1

Fig. 15. Single-writer schedule that satisfies SWReg but neither MWReg+ nor

CohReg.

Similarly, the first and third conditions of CohReg imply the two conditions

of SWReg, thus CohReg ⊆ SWReg. On the other hand, the schedule shown in

Figure 15 satisfies SWReg. However, it is impossible to construct a permutation of

all the operations that satisfies all the conditions of CohReg. Thus CohReg is strictly
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stronger than SWReg.

Now consider the schedule shown in Figure 16. This schedule satisfies both

MWReg+ and CohReg. However it is not atomic since we cannot create a sequence

of all the operations that is legal and σ-consistent.

P0

P2

P1
R 1

R 2

W(x,1)W(x,0)

(x,1)

(x,0)

Fig. 16. Single-writer schedule that satisfies MWReg+ and CohReg but not atomicity.

Now we show that if there are only two processes, one being a writer and the

other a reader, then MWReg+ = Atomicity. For any schedule that satisfies MWReg+,

there is a permutation π of all the operations in ops(σ) that satisfies the conditions in

Definition 11. π is legal, otherwise we could find some read r such that the projection

πr of π onto writes←r(σ)∪{r} is not legal. π is also σ-consistent, otherwise there are

two reads r1 and r2 by the same process, with r1 preceding r2 in σ, that appear in

π in the reverse order. If so, then the projections will violate the third condition of

MWReg+. Therefore, MWReg+ ⊆ Atomicity. On the other hand, since Atomicity is

the strongest consistency condition, we have Atomicity ⊆MWReg+. Thus MWReg+

= Atomicity.

Finally we show that CohReg = Atomicity if there are a single writer and a

single reader. Assume a schedule σ satisfies CohReg. The permutation πpr of the

reader process consists of all the operations in σ. From Definition 10, πpr is legal and

σ-consistent. Therefore σ satisfies Atomicity. Thus we have CohReg ⊆ Atomicity.

On the other hand, since Atomicity is stronger than any other consistency conditions,

we have Atomicity ⊆ CohReg. Therefore, CohReg = Atomicity.
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(c) Assume a schedule σ satisfies PCGLin. Since there is a single writer, all the

writes appear in the same order in πi for all i. Denote this total order as πw. πw is

σ-consistent. Now we insert all the read operations into πw. Each read immediately

follows the write it reads from and if there are multiple reads that follow the same

write, arrange them in an order extending <σ. We name the resulting sequence π.

For each process i, π|writes(σ) ∪ ops(σ|i) is a permutation that satisfies PCGLin.

π is legal by our construction. Now we show π is σ-consistent. Consider any two

operations op1 and op2 such that op1 <σ op2.

• If both are write operations, op1 will appear before op2 since πw is σ-consistent.

• If both are read operations, let us assume that op1 reads from write operation

w. According to the last condition of PCGLin, w appears before op2 in πj where

j is the process that performs op2. Then by our construction op2 will be placed

after op1 in π.

• If op1 is a write and op2 is a read, then op1 will have to appear before op2.

Otherwise, the projection of π|writes(σ) ∪ ops(σ|i) will violate PCGLin.

• If op1 is a read and op2 is a write, then by the same argument as the previous

bullet, op1 will appear before op2.

Thus π is σ-consistent and we have σ ∈ Atomicity. Therefore PCGLin ⊆ Atomicity.

On the other hand, since Atomicity is stronger than any other consistency conditions,

Atomicity ⊆ PCGLin. Thus we have PCGLin = Atomicity.
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CHAPTER IV

PROPERTIES OF THE DEFINITIONS

So far, all our proposed definitions and their implementation algorithms have focused

on the single-variable context. In this chapter, we will extend to the multi-variable

scenarios, in which a shared memory system consists of multiple read/write shared

variables. For each of our proposed consistency conditions, we first state the defini-

tion for the multi-variable situation, and then prove that each one has the desirable

property of being “local”. For most of the definitions, the multi-variable version is

actually the same as the single-variable version; in a couple of cases, we clarify that

certain aspects of the definition apply only on a per-variable basis.

We then compare the relative strength among our definitions, as well as with

some well-known consistency conditions already appearing in the literature.

A. Locality

We say a consistency condition C is local if a schedule σ satisfies C if and only if the

projection of σ on each shared variable satisfies C. Locality is a desirable property

of consistency conditions: as mentioned in [12], locality enhances modularity and

concurrency.

In our case, if all our proposed definitions are proved to be local, which implies

that the shared variables can be implemented independently of each other, then our

implementation algorithms can be used to implement a multi-variable shared memory

with the same consistency condition without additional costs.

In the following, we first give the multi-variable definition of our proposed con-

sistency conditions and then we prove their locality.
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1. Locality of MWWeakReg

Definition 13 (Multi-Variable MWWeakReg) A schedule σ satisfies MWWeakReg

if, for all read operations r in ops(σ), there exists a permutation πr of writes(σ)∪{r}
such that:

• πr is legal, and

• πr is σ-consistent.

A shared memory object satisfies MWWeakReg if all schedules on that object satisfy

MWWeakReg.

Theorem 8 MWWeakReg is local.

Proof. We need to show that for any schedule σ on a set of shared variables, σ

satisfies MWWeakReg iff σ|x satisfies MWWeakReg for every shared variable x. Since

the “only if” part in the definition of locality is obvious, we will only focus on the

“if” part. (Similar approaches apply to the other locality proofs later in this section.)

In other words, we want to show that we can construct for each read operation r, a

permutation πr of all the writes in ops(σ) and r (not just the writes in ops(σ|x)) such

that πr is legal and σ-consistent.

Consider any read operation r in ops(σ). Suppose the read operation is on shared

variable x. That σ|x satisfies MWWeakReg implies that there is a permutation π′r

of writes(σ|x) ∪ {r} that is legal and σ-consistent. For all the other writes, which

are not on x, we insert them into π′r according to the σ-consistent order <σ. Since

the final sequence is an extension from the partial order of <σ, thus this sequence is

σ-consistent. Furthermore, as we did not change the order of operations in π′r and

there are no reads from variables other than x, the final sequence is legal.
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2. Locality of MWReg

Definition 14 (Multi-Variable MWReg) A schedule σ satisfies MWReg if there

exists a permutation π of ops(σ) such that, for all read operations r in ops(σ), the

projection πr of π onto writes←r(σ) ∪ {r} satisfies:

• πr is legal, and

• πr is σ-consistent.1

A shared memory object satisfies MWReg if all schedules on that object satisfy MWReg.

To prove the locality of MWReg (as well as MWWeakReg+, MWReg+ and

PCGLin later in this chapter), we follow the example of proving the locality of lin-

earizability in [12]. The only difference between the proofs is the way to define a

partial order, which will be extended into a total order to construct the permutation.

Theorem 9 MWReg is local.

Proof. Let σ be a schedule on a set of shared variables such that σ|x satisfies

MWReg for each shared variable x. Let πx be the permutation of ops(σ|x) that

witnesses MWReg for σ|x, and denote the total order derived from πx as <x. Note

that <x orders all writes consistently with σ, and, for any individual read, orders that

read consistently with all writes, but may switch the relative order of reads.

Now we define a new relation <po according to the following rules:

1. If op1 <x op2 for any shared variable x, then op1 <po op2.

1Note that if there are only a finite number of reads in a given execution, the
writes after the last read are not constrained by MWReg to appear in any particular
order. We consider this to be acceptable, as such writes are never observed.
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2. If op1 and op2 are on different variables, op1 is a write operation, and op1 <σ op2,

then op1 <po op2.

3. If op1 <po op2 and op2 <po op3, then op1 <po op3.

Basically, <po extends the union of the <x relations to include ordering constraints

involving two operations on different variables, when the first one is a write.

Suppose <po is a partial order. Then we can choose any permutation π of all the

operations in ops(σ) that extends <po. It is easy to verify that for each read r, the

projection of π onto writes←r(σ) ∪ {r} is legal and σ-consistent. (Legality for shared

variable x is ensured by <x, and σ-consistency is ensured by <x and by condition 2.)

Now we prove that <po is a partial order. Suppose in contradiction it is not.

Let C be a shortest cycle in <po. C must involve more than one variable, since each

relation <x is a partial order and has no cycles.

Claim: C consists of at most one operation on any given variable. Why? Suppose

in contradiction there are at least two operations on some shared variable x in C. Since

there is at least one other variable occurring in C, we can represent the operations in

C as the sequence

op1, s1, s2, . . . , sk, opi, . . . opm,

where

• op1 and opi are both on variable x,

• each sj is a sequence of operations on some variable yj 6= x, where yj 6= yj+1,

• each operation in the entire sequence is <po the next operation in the sequence,

and

• opm <po op1.
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The edges between consecutive operations in each sj are due to <yj
. The edges from

op1 to the first operation in s1, from the last operation in sj to the first operation in

sj+1, and from the last operation in sk to opi are due to <σ. Thus op1 and the last

operation in each sj are all writes.

For each sj, the first operation in sj starts before the last operation in sj (a

write) ends, since otherwise πyj , on which <yj
is based, would violate σ-consistency

for those two operations, one of which is a write.

Thus op1 ends before opi begins. Since op1 is a write and op1 and opi are both

operations on variable x, op1 <x opi.

Thus we can get a shorter cycle than C by skipping directly from op1 to opi, a

contradiction.

(End of Claim)

Thus every operation in C involves a different variable, and every edge in C is

due to <σ. But it is not possible for <σ to have a cycle, a contradiction.

3. Locality of MWWeakReg+

Definition 15 (Multi-Variable MWWeakReg+) A schedule σ satisfies MWWeakReg+

if there exists a reads-from function on σ such that for all read operations r in ops(σ),

there exists a permutation πr of writes(σ) ∪ {r} such that:

• πr is legal, and

• πr is co-consistent.

A shared memory object satisfies MWWeakReg+ if all schedules on that object satisfy

MWWeakReg+.

Theorem 10 MWWeakReg+ is local.
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Proof. Consider a schedule σ and a reads-from function for σ such that, for each

shared variable x, σ|x satisfies MWWeakReg+. In other words, for each x, the

following holds: For each read r in σ|x, there exists a permutation πx
r of writes(σ|x)∪

{r} that is legal and co-consistent (note that co-consistency here refers just to the

operations in ops(σ|x).)

We must show that the original schedule σ satisfies MWWeakReg+. That is, we

must show that for each read r in σ, there exists a permutation πr of writes(σ)∪ {r}
that is legal and co-consistent (with respect to all the operations).

Consider an arbitrary read r in σ. Let x be the variable that r reads. We will

construct the desired permutation πr of writes(σ)∪{r} by first constructing a partial

order and then letting πr be any total order that is consistent with the partial order.

The desired properties of πr will follow from properties of the partial order.

Recall that for each shared variable x′, the assumed MWWeakReg+ property

of σ|x′ gives us a permutation of all the writes on x′. Informally, the relation will

consist of interleaving these permutations in a particular way that respects real-time

ordering and reads-from relationships. More formally, for variable x (the one read by

the chosen read r), consider the permutation πx
r , and for each variable x′ 6= x, choose

an arbitrary read r′ on x′ and consider the permutation πx′
r′ . (If there is no read on

x′, then simply order the write operations into a sequence that extends <σ.) Let <x′

denote the total ordering induced by πx′
r′ .

Let <po be the relation on ops(σ) ∪ {r} defined as follows:

• if op1 <x′ op2, then op1 <po op2;

• if op1 <co op2, then op1 <po op2; and

• if op1 <po op2 and op2 <po op3 then op1 <po op3.

We now show that <po is a partial order. Suppose in contradiction it is not, and let
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C = op0, op2, . . . , opm−1, op0 be a shortest cycle in <po.

Observation 1: Since C is shortest, it has the form of alternating <x′ and <co

edges.

Observation 2: Also, for any two operations opi and op(i+1) mod m, if there is a <x′

edge between them for some variable x′, then opi 6<σ op(i+1) mod m. Otherwise, we have

opi <σ op(i+1) mod m <σ op(i+2) mod m or opi <σ op(i+1) mod m 6<σ r′ <σ op(i+2) mod m,

where r′ reads from op(i+1) mod m. Either case implies opi <co op(i+2) mod m, which

yields a smaller cycle op0, ..., opi, op(i+2) mod m, ..., opm−1, op0. Contradiction.

Case 1: C consists of all writes, i.e., C = w0, w1, . . . , wm−1, w0. Without loss of

generality, assume that w1 <x′ w2 for some variable x′. By the observations above,

we have

w0 6<σ w1

6<σ r <σ

or

<σ

w2 6<σ w3 . . . wm−2 6<σ wm−1

6<σ r <σ

or

<σ

w0

As a result, either w1 <σ w0 or w1 <co w0. Either case contradicts the assumption

that w0 <x′ w1.

Case 2: C contains the unique read, r.

Case 2.1: r is at the head of a <x edge in C. Then C can be written as

r, w1, w2, . . . , wm−1, where

• r <x w1,

• w2i−1 <co w2i,

• w2i <xi
w2i+1 for some variable xi, and

• wm−1 <co r.

By a similar argument as in Case 1, we have:
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r 6<σ w1

6<σ r <σ

or

<σ

w2 6<σ w3 . . . wm−2 6<σ wm−1

6<σ r <σ

or

<σ

w1

This implies either w1 <σ r or w1 <co r, contradicting the fact that r <x′ w1.

Case 2.2: r is at the head of a <co edge in C. A similar argument as in Case 2.1

gives a contradiction here as well.

Now we know that <po is a partial order. Let πr be any total order on writes(σ)U{r}
that is consistent with <po.

This permutation is legal, since it extends πx
r , which is legal, and no further

operations on x are added. This permutation is co-consistent because <po is.

4. Locality of CohReg

For CohReg, we say a multi-variable shared memory satisfies CohReg if CohReg is

satisfied on per-variable basis. Thus the locality is inherent in its definition (just like

the locality of Coherence ([10])).

5. Locality of MWReg+

To extend MWReg+ into multi-variable context, we need to clarify that the third

bullet in Definition 11 will only apply on a per-variable basis. The formal definition

is given below.

Definition 16 (Multi-Variable MWReg+) A schedule σ satisfies MWReg+ if

there exists a permutation π of ops(σ) such that, for all read operations r in ops(σ),

the projection πr of π onto writes←r(σ) ∪ {r} satisfies:
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• πr is legal,

• πr is σ-consistent, and

• if r′ is a read operation by the same process and on the same variable as r and

r′ is performed after r, then for any write w, if w appears before r in πr, w

appears before r′ in πr′.

A multi-variable shared memory system satisfies MWReg+ if all schedules on the

shared memory satisfy MWReg+.

Theorem 11 MWReg+ is local.

Proof. We use the same partial order <po as in Theorem 9 and we then extend this

partial order into a total order to construct a permutation π of all the operations in

ops(σ).

The same argument in Theorem 9 applies here to prove that <po is indeed a

partial order and that π satisfies the first two conditions of MWReg+.

Now the only thing left is to prove that the third condition of MWReg+ is also

satisfied. Suppose there are two read operations r1 and r2 on the same variable and

they are performed by the same process, with r1 being performed before r2, we need

to show that for any two write operations w1 and w2, if w1 appears before w2 in πr1 ,

then w1 appears before w2 in πr2 . Assume that r1 and r2 are on variable x, then

r1 <x r2. Otherwise, MWReg+ on x will be violated. Since we will not change the

relative order of the two reads in π, therefore, any two write operations that are in the

projection of r1 will appear in the projection of r2 as well, and since the projection

will not alter the relative order of the operations, the two writes should be in the

same order in both projections.
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6. Locality of PCGLin

When extending PCGLin to multi-variable version, the last three conditions remain

on a per-variable basis.

Definition 17 (PCGLin) A schedule σ satisfies PCGLin if there exists a reads-

from function on σ such that for all processes i, there exists a permutation πi of

writes(σ) ∪ ops(σ|i) such that:

• πi is legal,

• πi is co-consistent,

• for a read operation r and a write operation w on shared variable x by process

i, if w <σ r and r reads from another write w′, then w appears before w′ in πi

for all i,

• for two read operations r1 and r2 on shared variable x, by process i, if r1 <σ r2

and they read from different writes, w1 and w2 respectively, then w1 appears

before w2 in πj for all j, and

• for two read operations r by process i and r′ by process j on the same shared

variable x, if r <σ r′ and r reads from write operation w, then w appears before

r′ in πj.

A shared memory object satisfies PCGLin if all schedules on that object satisfy PCGLin.

Theorem 12 PCGLin is local.

We skip the proof for Theorem 12 since it is very similar to that of Theorem 10.

Moreover, both proofs use the same partial order definition.
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B. Comparison

In this section, we first compare the strength among our proposed consistency condi-

tions; we then explore the conjunction relationship among them; we finally compare

our definitions with other existing consistency conditions.

1. Comparison Between Proposed Definitions

Theorem 13 For any two local consistency conditions Cs and Cw, if Cs is stronger

than Cw on a single shared variable, then Cs is stronger than Cw.

Proof. We first need to prove that given any schedule σ ∈ Cs, σ also belongs to Cw.

Given any shared variable x in σ, σ|x ∈ Cs. Since Cs is stronger than Cw on a single

shared variable, we thus have σ|x ∈ Cw. By the locality property of Cw, σ ∈ Cw.

Now we need to prove that there exist a schedule that is in Cw but is not in Cs.

Since Cs is stronger than Cw on a single shared variable, say x, there is a schedule σx

that is in Cw but not in Cs.

A direct application of Theorem 13 is that the comparison among our proposed

definitions can be done on a single variable basis since all of them are local. In the

following proofs, all the schedules we discuss access only a single shared variable.

Lemma 8 MWReg+ ⊂ MWReg ⊂ MWWeakReg.

Proof. The definition of MWReg+ is identical to the definition of MWReg except

for the imposition of an additional constraint. The fact that this constraint strength-

ens the definition can be seen from the fact that the schedule in Figure 5 satisfies

MWReg but not MWReg+. Therefore MWReg+ is stronger than MWReg.

MWReg can be seen to imply MWWeakReg because the projection πr for each

read operation r under MWReg is also a permutation that satisfies the conditions in
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the definition of MWWeakReg. As we have already noted, however, the schedule in

Figure 3 does not satisfy MWReg. Thus MWReg is stronger than MWWeakReg.

Lemma 9 MWReg+ ⊂ CohReg

Proof. For a schedule σ, let π be a permutation of ops(σ) that validates MWReg+.

The write operations in π preserve the partial order of writes in σ. Otherwise, there

would be at least one projection πr that did not satisfy the second condition of

MWReg+.

For each process i, we project π onto writes(σ) ∪ ops(σ|i) and we name the

resulting subsequence πi. It is easy to verify that πi satisfies the first and third

conditions of CohReg. The third condition of MWReg+ implies that all the read

operations from the same process appear in π in the same order as in σ. Therefore,

π|i is σ-consistent. For the fourth condition of CohReg, assume there is a write w and

a read r by process i and r reads from another write w′. If w <σ r, the operations

would appear in π as ..., w, ..., w′, ..., r.... Thus w will appear before w′ for all πi’s.

If r <σ w, then the operations will appear in π as ..., w′..., r, ..., w, .... Therefore, w

appears after w′ for all πi’s. For the last condition, the operations would appear in π

as ..., w1, ..., r1, ..., w2, ..., r2, .... Thus w1 will appear before w2 in all πi’s. So we have

MWReg+ ⊆ CohReg. To see why MWReg+ is stronger than CohReg, consider the

example shown in Figure 9, in which the schedule satisfies CohReg but not MWReg+.

Lemma 10 PCGLin ⊂ MWWeakReg+ ⊂ MWWeakReg.

Proof. It is easy to verify from their definitions that for any schedule σ ∈MWWeakReg+,

σ ∈ MWWeakReg. On the other hand, there exists some schedule that belongs to

MWWeakReg but does not satisfy MWWeakReg+. Figure 3 shows such an example.
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The definition of PCGLin implies MWWeakReg+ since for any read operation r

performed by process i, we can obtain the sequence πr that satisfies MWWeakReg+

by projecting the sequence πi that satisfies PCGLin to writes(σ)∪{r}. On the other

hand, Figure 7 shows a schedule that satisfies MWWeakReg+ but not PCGLin. Thus

PCGLin ⊂ MWWeakReg+.

Lemma 11 PCGLin ⊂ CohReg ⊂ MWWeakReg.

Proof. For any read operation r, assume it is performed by process i, we obtain a

subsequence π0
r by projecting πi onto writes(σ) ∪ {r}, where πi is the subsequence

that satisfies all the conditions of CohReg. π0
r is legal since πi is legal. According

to the definition of CohReg, if π0
r is not σ-consistent, it must be that there exists a

write w such that r <σ w while w appears before r in π0
r . Assume r reads from write

wr. The operations will appear in π0
r as ..., w, ..., wr, r, .... w overlaps all the writes

between w and wr (including wr) in σ. Otherwise, if w precedes some write, then it

is impossible that r <σ w; if w succeeds some write, then πi will violate the third

condition of CohReg for some read operation. Thus we can move w after r in π0
r and

we name the resulting sequence πr. πr satisfies both conditions of MWWeakReg.

Therefore, CohReg ⊆ MWWeakReg. Figure 3 shows a schedule that satisfies

MWWeakReg. However, it does not meet all the requirement of CohReg. Thus

CohReg ⊂ MWWeakReg.

PCGLin implies CohReg according to their definitions. On the other hand,

Figure 9 gives a schedule that is CohReg but does not satisfy PCGLin. Thus PCGLin

⊂ CohReg.
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2. Conjunctions

We discover the following conjunction relationships among our proposed definitions.

Lemma 12 MWReg+ = MWReg ∩ CohReg.

Proof. From Lemma 8 and Lemma 9, we know that MWReg+ ⊆ MWReg ∩
CohReg. Now we prove that MWReg ∩ CohReg ⊆ MWReg+. We need to show

that given any schedule σ that satisfies both MWReg and CohReg, we can obtain a

sequence π of ops(σ) that satisfies MWReg+.

Since σ ∈ MWReg, we can obtain a sequence π of ops(σ) such that π satisfies the

two constraints of MWReg. Assume π does not satisfy MWReg+, then there must

exist two read operations r and r′ by the same process pi such that r gets performed

first, but r appears after r′ in π. r and r′ read from different write operations,

otherwise, π is illegal. Assume r reads from w and r′ reads from w′. w′ precedes w

in π. On the other hand, since schedule σ also satisfies CohReg, w will be observed

as preceding w′ by all read operations in σ. Assume here is a read operation r′′ that

starts after both w and w′ finish, then r′′ will read from w′ and they will appear

in π as ..., w′, r′, ...w.., which will violate MWReg. Contradiction. Thus π satisfies

MWReg+ and σ ∈ MWReg+.

Therefore we have MWReg+ = MWReg ∩ CohReg.

The following lemma shows PCGLin is the conjunction of MWWeakReg+ and

CohReg.

Lemma 13 PCGLin = MWWeakReg+ ∩ CohReg.

Proof. From Lemma 10 and Lemma 11, we have PCGLin ⊆ MWWeakReg+ ∩
CohReg.
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On the other hand, assume a schedule σ satisfies both MWWeakReg+ and

CohReg. We now prove that it also satisfies PCGLin.

For each process pi, we start from the sequence that satisfies CohReg and we

name it π0
i . Assume there are two operations op1 and op2 such that op1 <co op2 but

op1 appears after op2 in π0
i . According to the definition of <co and the definition of

CohReg, this could only happen when op1 is a read and op2 is a write. Pick the pair

with the smallest distance in π0
i . Assume op1 reads from w, then they would appear

in π0
i as ...,op2,...,w,op1,other reads that read from w,....

First, op2 overlaps w and all the writes between op2 and w in σ. Otherwise, if

op2 <σ w, then it is impossible that op1 <σ op2; if w <σ op2, π0
i will not satisfy

σ-consistency for some read after op2.

Second, there should be no reads that read from op2. Assume not, then pick one

from those reads. If the read occurs before op1 in σ, then it reads from a future write.

It is impossible; if the read occurs after op1, then π0
i violates the per-process order.

Contradiction.

Third, op2 overlaps all the read operations between op2 and w. Assume not, then

pick one read r′. If op2 <σ r′, then we have r <σ op2 <σ r′, which means π0
i violates

the per-process order. If r′ <σ op2, then op2 and op1 is not the closest pair anymore.

Both cases lead to a contradiction.

Fourth, for other reads that read from w, op2 either overlaps or follows them in

σ. Assume not, then suppose op2 proceeds r′ and r′ reads from w. Since w <co op2

and op2 <co r′, then there is no way to construct a permutation for r′ that satisfies

MWWeakReg+. Contradiction.

Therefore, we can move op2 right after all the reads that read from w and the

resulting sequence still satisfies CohReg. We continue on with other pairs that violate

co-consistency and we arrange their order the same way as above. We name the final



68

sequence πi. πi satisfies all the three conditions of PCGLin. Therefore, σ ∈ PCGLin.

Thus MWWeakReg+ ∩ CohReg ⊆ PCGLin.

Overall we have PCGLin = MWWeakReg+ ∩ CohReg.

The last conjunction relationship is given in the next Lemma.

Lemma 14 MWReg ∩ MWWeakReg+ = Atomicity.

Proof. We know that Atomicity ⊆ MWReg ∩ MWWeakReg+ for sure. So we only

need to prove that for any schedule σ, if σ ∈ MWReg ∩ MWWeakReg+, then σ ∈
Atomicity.

According to the definition of MWReg, we can obtain a sequence π of ops(σ)

such that for each read operations r, the projection of π onto writes←r(σ) ∪ {r} is

legal and σ-consistent.

If the above statement is valid for the projection on writes(σ) ∪ {r}, then it

implies that π itself is legal and σ-consistent, which means π ∈ Atomicity. So we will

have to prove that for each read operation r, the projection of π onto writes→r(σ)∪{r}
is σ-consistent, where writes→r(σ) = {w|w ∈ writes(σ) and w begins after r ends in σ}.
Assume not. Then there are two possible cases: (1) there are two writes w1 and w2

such that w1 <σ w2 and w2 proceeds w1 in π. This is not possible since for any

read operation r′ who starts after w2 finishes, the projection πr′ will violate MWReg.

(2) it is read r and a write w that follows r in σ and w proceeds r in π. Suppose

r reads from write operation w′. Then the three operations would appear in π as

w, ..., w′, r, .... On the other hand, according to co-consistency, w′ <co w. We say we

can move w after r and all the reads that read from w′. Otherwise, there must exist

some read operation such that w has to appear before w′ in its permutation, which
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violates MWWeakReg+. Thus we can re-order sequence π such that the projection

for each read is legal and σ-consistent. Therefore, σ ∈ Atomicity.

The overall conjunction relationship can be illustrated using an Venn diagram,

as is shown in Figure 17.

Fig. 17. Venn diagram of the proposed definitions

3. Comparison with Existing Consistency Conditions

Lemma 15 CohReg ⊂ Coherence.

Proof. According to the definition of CohReg, for each process i, there is a permu-

tation πi of writes(σ) ∪ ops(σ|i) that satisfies all the conditions of CohReg. We now



70

construct a permutation π of all the operations in ops(σ) by inserting into π0, the

permutation of process p0, all the read operations performed by processes other than

p0. Each read follows the write it reads from and precedes the next write in π0. If

there are multiple reads of the same process that follow the same write, arrange them

according to the order of occurrence.

First, π is legal as all the reads follow the write it read from and there is no other

writes between a read and the write it reads from.

Second, π|i is σ-consistent for each process i. To see this, consider the following

possible cases:

• for two write operations w1 and w2 by i, if w1 <σ w2, then w1 appears before

w2 in π. Otherwise, π0 will violate the third condition of CohReg;

• for two read operations r1 and r2 by i, assume they read from w1 and w2

respectively. If r1 <σ r2, then according to the fifth condition of CohReg, w1

will appear before w2 in π0. Therefore, r1 will be placed before r2 in π;

• for a write operation w and a read operation r by i and w <σ r, if r reads from

w, then w will appear before r in π; otherwise, assume r reads from w′, then

according to the fourth condition of CohReg, w will appear before w′ in π0, thus

r will be placed after w in π;

• for a write operation w and a read operation r by i and r <σ w, assume r reads

from w′. Then the fourth condition of CohReg requires that w appear after w′

in π0. Therefore, r will be placed before w in π.

Therefore, σ ∈ Coherence and we have CohReg ⊆ Coherence.

Figure 18 gives an example schedule that does not satisfy CohReg but does satisfy

Coherence. Therefore CohReg ⊂ Coherence.
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Lemma 16 PCGLin ⊂ PCG.

Proof. The definition of PCGLin implies PRAM. Furthermore, we have PCGLin

⊂ CohReg ⊂ Coherence. Therefore PCGLin ⊂ PRAM ∩ Coherence = PCG.

All the consistency conditions given in Chapter III have been proved to be local

consistency conditions. On the other hand, sequential consistency, PCG and PRAM

are known to be not local. Our proposed conditions, except CohReg and PCGLin, do

not have constraints on the order of operations from a process’s point of view, which is

required by sequential consistency, PCG and PRAM. Thus our proposed definitions of

regularity cannot be compared with these consistency conditions in terms of strength,

as we now show.

The schedule in Figure 18 is sequentially consistent, and thus satisfies PCG and

PRAM. It does not, however, satisfy any of the proposed regularity definitions in

Chapter III.

P0

P1

W(x,2)

R 1 (x,1)

W(x,1)

Fig. 18. Schedule that is sequentially consistent but not MWWeakReg.

Now consider the schedule in Figure 19. For variable x, the permutation W (x, 2),

W (x, 1), R1(x, 1), R4(x, 1) is legal. For variable y, the permutation R2(y, 0), W (y, 1),

W (y, 2), R3(y, 2) is legal. Thus the schedule satisfies MWReg+ (as well as MWReg,

CohReg and MWWeakReg). However, in order to construct a permutation on p1’s op-

erations and all the other processes’ write operations, it is necessary to place W (y, 1)

after R(y, 0) and place W (y, 2) before R(y, 2). However, the resulting sequence is not
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legal because R(x, 1) should return 2. Therefore the schedule is not PRAM and thus

it is not PCG or sequentially consistent.

P0

P1

P2

R 1 (x,1) R 2 (y,0)

W(x,2) W(y,2)

R 3 (y,2) R 4 (x,1)

W(x,1)

W(y,1)

Fig. 19. Schedule that satisfies MWReg+ but not PRAM

The relationships between all the consistency conditions discussed above are

shown as a partial order in Figure 20.

Sequential
Consistency

PCG

Coherence PRAM

Atomicity

MWWeakReg

CohReg

MWReg+ PCGLin

MWReg MWWeakReg+

(Def 7)

(Def 9) (Def 10)(Def 8)

(Def 11) (Def 12)

Fig. 20. Partial order among existing consistency conditions
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CHAPTER V

MUTUAL EXCLUSION USING MULTI-WRITER REGULAR SHARED

VARIABLES

In this chapter, we use the mutual exclusion problem as a practical context to eval-

uate the strength of our new specifications for multi-writer regular shared variables.

Specifically, we study the correctness of two well-known algorithms for mutual exclu-

sion when the variables are implemented according to the consistency conditions we

have proposed. The algorithms we examine are Peterson’s algorithm for 2 processes

([23]) and Dijkstra’s algorithm for n processes ([24]). The algorithms are shown in

Figure 21.1

Algorithms for solving mutual exclusion are assumed to have four sections: entry,

critical, exit and remainder. The critical section is code that must be protected

from concurrent execution. The entry section is the code executed in preparation

for entering the critical section. The exit section is executed to release the critical

section. The rest of the code is in the remainder section.

A run of an algorithm (not to be confused with an execution on a shared object)

is defined as an interleaving of local operations and shared-memory operation invoca-

tions and responses performed by the participating processes, such that the following

are satisfied:

• the projection of the algorithm run onto (the actions performed by) each indi-

vidual process is consistent with the order of operations imposed by the local

algorithm for that process, and

1Although Lamport’s Bakery algorithm ([14]) and Peterson-Fischer’s algorithm
([22]) are often studied in this context, they are not of interest to us here since these
algorithms use only single-writer shared variables.
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1. Peterson’s Algorithm for 2 Processors
Code for process pi, i ∈ {0, 1}:

shared variables:
Flag[0..1] : integer /* initially 0 */
Turn : integer /* initially 0 */

/* entry section */
1 repeat
2 Flag[i] := 0;
3 wait until (Flag[1− i] = 0 or Turn = i);
4 Flag[i] := 1;
5 until (Turn = i or Flag[1− i] = 0)

6 if (Turn = i) then wait until (Flag[1− i] = 0);

Critical Section

/* exit section */
7 Turn := 1− i;
8 Flag[i] := 0;

Remainder Section

2. Dijkstra’s Algorithm for n Processors
Code for process pi, 0 ≤ i ≤ n− 1:

shared variables:
Flag[0..n− 1] : idle, requesting, in-cs /* Initially, idle */
Turn : integer /* Initially 0 */

/* entry section */
1 repeat
2 Flag[i] := requesting;
3 while (Turn 6= i) do
4 if (Flag[Turn] = idle) then Turn := i;
5 end while
6 Flag[i] := in-cs;
7 until (∀j 6= i, Flag[j] 6= in-cs)

Critical Section

/* exit section */
8 Flag[i] := idle;

Remainder Section

Fig. 21. Algorithms for mutual exclusion

• the projection of the algorithm run onto the shared-memory operations on each

variable is a schedule on that variable.

(In this context, we consider a shared-memory object “request” to be the invocation

of a request by a process , and a shared-memory object “response” to be the receipt

of a response by a process. They are thus process actions, but can nevertheless be

meaningfully projected onto the object also.) We say that an algorithm runs under

consistency condition C if its projection onto each shared variable satisfies C.

We say that an algorithm A solves mutual exclusion under consistency condition

C if, for each run of A under C, the following constraints hold:

• mutual exclusion (ME): there is at most one process in the critical section

at any point in the execution.

• eventual progress (EP):2 if there is some process waiting to enter the critical

2We use this term, rather than the more traditional ND (“no deadlock”) in order
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Table I. Correctness of mutual exclusion algorithms using multi-writer regular vari-

ables.

Peterson’s Algorithm Dijkstra’s Algorithm

MWWeakReg ME, EP, NL ME

MWReg ME, EP, NL ME, EP

MWWeakReg+ ME, EP, NL ME

CohReg ME, EP, NL ME

MWReg+ ME, EP, NL ME, EP

PCGLin ME, EP, NL ME

Atomicity ME, EP, NL ME, EP

section, then eventually some process enters the critical section.

• no lockout (NL): if some process is waiting to enter the critical section, then

eventually that process enters the critical section.3

We now examine the two mutual exclusion algorithms shown in Figure 21. Ta-

ble I shows which of the conditions of mutual exclusion described above are met by

each algorithm when implemented with variables satisfying each of our consistency

conditions. As a comparison, we also list the conditions that are guaranteed by these

algorithms when the shared variables are atomic.

to avoid ambiguity: the term “deadlock” sometimes includes “livelock” (in which
processes continue taking steps but keep one another trapped in a loop due to timing
issues) and sometimes does not. The definition of “eventual progress” explicitly
precludes either situation.

3Although NL implies EP, we include both requirements, partly for historical
reasons (e.g., [13]) but primarily because it gives us a finer gauge of the effectiveness
of various consistency conditions, viz. Dijkstra’s algorithm, which solves EP but not
NL under MWReg and MWReg+.



76

We first consider Peterson’s algorithm for two processors ([23]). This algorithm

uses two single-writer shared variables and one multi-writer shared variable. The

proof of the next theorem is very similar to the proofs of Theorem 4.10 through

Theorem 4.12 in [6]. Although [6] assumes that all the variables are atomic, the

arguments hold unchanged for variables even with a consistency condition as weak as

MWWeakReg, and therefore all the other proposed regularity definitions.

Theorem 14 Peterson’s Algorithm solves mutual exclusion (ME, EP, and NL) under

all the proposed definitions of regularity.

Dijkstra’s algorithm for n processors uses n single-writer shared variables and

one multi-writer shared variable ([24]). Under both MWReg and MWReg+ it be-

haves the same way as under atomicity: ME and EP are guaranteed, but not NL.

Under MWWeakReg, MWWeakReg+, CohReg and PCGLin, only ME is guaranteed.

Intuitively, if a consistency condition requires a total order of write to be observed

by all processes and that total order extends σ-consistency, then it will satisfy EP of

Dijkstra’s algorithm. The proof of the corresponding theorem is shown below.

Theorem 15 Dijkstra’s Algorithm satisfies ME under all the proposed definitions

and satisfies ME and EP under both MWReg and MWReg+, but does not satisfy NL

under any of the conditions.

Proof. (Theorem 15) We first show that the algorithm satisfies ME under MWWeakReg.

Assume that two processes p0 and p1 enter the critical section simultaneously. It

follows that both perform write operation W (Flag[i], in-cs) (Line 6 of Dijkstra’s al-

gorithm in Figure 21), and that therefore neither of the read operations R(Flag[j])

(Line 7) return in-cs. Consider R0(Flag[1]) and W1(Flag[1], in-cs). As R0(Flag[1])

does not return in-cs by the argument above, it follows that R0(Flag[1]) begins be-

fore W1(Flag[1], in-cs) ends, i.e., R0(Flag[1]) 6>σ W1(Flag[1], in-cs). Therefore, as
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each process performs only one operation at a time, we have W0(Flag[0], in-cs) <σ

R0(Flag[1]) 6>σ W1(Flag[1], in-cs) <σ R1(Flag[0]). It follows from the rule above

that W0(Flag[0], in-cs) <σ R1(Flag[0]). As there are no other writes to Flag[0], it

follows from the definition of MWWeakReg that R1(Flag[0]) returns in-cs; therefore

p1 does not enter the critical section, and we have a contradiction. Since MWWeakReg

is the weakest among our proposed definitions, thus ME is satisfied under all the other

definitions.
Eventual Progress (EP) may be violated under PCGLin. To see this, consider

the following execution:

w0(Flag[0], requesting), r0(Turn, 1), r0(Flag[1], requesting), r0(Turn, 1), ...

w1(Flag[1], requesting), r1(Turn, 0), r1(Flag[0], idle), w1(Turn, 1), r1(Turn, 2), r1(Flag[2], requesting), r1(Turn, 2), ...

w2(Flag[2], requesting), r2(Turn, 0), r2(Flag[0], idle), w2(Turn, 2), r2(Turn, 3), r2(Flag[3], requesting), r2(Turn, 3), ...

......

Initially, Turn is set to 0 and Flag[i] is set to idle for all i. In this execution, p0 is

slow at the beginning, so all the processes except p0 enter the repeat loop and update

their Flag entries to requesting. Next, all the processes except p0 enter the while

loop and read Turn = 0 and Flag[0] = idle; thus they all write their ids to Turn.

Suppose that these writes are performed concurrently.

Once p0 updates its Flag to requesting, each process continues by repeatedly

reading Turn in line 3 until it receives its own id as the result of some read. How-

ever, under PCGLin, the order of concurrent writes may be observed differently by

subsequent reads of different processes; thus any of these reads may return any of

the concurrently written values of Turn, so there is no guarantee that any process

will ever read its own id. If none does so, none will pass the while loop, and EP is

violated. Since PCGLin is stronger than MWWeakReg, MWWeakReg+ and CohReg,

it follows that EP may be violated under those conditions as well.

Next we show that EP is guaranteed when the algorithm executes under MWReg.
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Note that each process writes to Turn at most once before some process enters the

critical section. By the definition of MWReg, there exists a sequence of all the write

operations on Turn such that all read operations that begin after the last write to

Turn return the id of that write. Thus, the process whose write is last in that

sequence will pass the write loop and enter the critical section. Therefore progress

occurs. As MWReg+ is stronger than MWReg, MWReg+ also guarantees EP.

Since Dijkstra’s Algorithm does not guarantee NL even with atomicity, it does

not guarantee NL under any of the proposed conditions.

From the proof above, we notice that Dijkstra’s algorithm cannot make progress

if the underlying consistency condition does not require a common view of the order

of write operations.
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CHAPTER VI

CONCLUSION

If Lamport’s consistency conditions continue to be of interest in the area of distributed

shared memory, as seems likely, it is essential that these conditions be formally ex-

tended into the multi-writer model. While this extension is simple in the case of

atomicity, it is more difficult and potentially ambiguous for the weaker condition of

regularity.

In this thesis, we attempt to obtain a formal extension of Lamport’s definition

of regularity from the single-writer model ([16]) to the more general multi-writer

model. We have shown that the extension is not trivial. While there exist various

ways to extend the single-writer definition, the resulting definitions will have different

strengths.

We started from a generic algorithm, which is a generalization of several existing

protocols that use quorum systems to implement read/write register. We then iden-

tified three building blocks from the algorithm. By applying different combination

of the building blocks, we were able to formalize the consistency conditions the algo-

rithm can yield and to identify possible candidates for multi-writer regularity. Our

results showed that six of the consistency conditions yielded are possible definitions

of multi-writer regularity. For each of the six extended consistency conditions, we

presented the formal definition, provided the implementation algorithm and proved

the correctness of the implementation algorithms.

The definitions form a lattice as respect to their strength, and the implementa-

tions have varying costs with respect to number of messages, size of messages, time

delay, and local memory requirements. Taken together, the set of definitions point

out the ambiguity of the informal notion of regularity and the algorithms suggest that
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different costs may be associated with different choices for disambiguating.

Locality is a desirable property of consistency conditions, which enhances modu-

larity and concurrency. In our study, we show that all the proposed definitions satisfy

locality.

We have also analyzed the relationships between these extended consistency con-

ditions and a number of other well-known consistency conditions. As part of this

analysis, we gave a partial order describing the relative strengths of these consistency

conditions.

Finally, we provide a practical context for our results by studying the correct-

ness of two well-known algorithms for mutual exclusion when the variables are imple-

mented under our proposed consistency conditions. We find that Peterson’s algorithm

is fully correct under all the conditions. Dijkstra’s algorithm satisfies only some of

the constraints of the mutual exclusion problem under any of the conditions.

In our work, we do not take into consideration any failures that may occur at

either server processes or client processes in the quorum system that is used to im-

plement the shared memory objects. Therefore, one direction of our future work is

to explore the fault-tolerant versions of our proposed definitions and their implemen-

tations.

Our implementation algorithms exhibits differences in cost. However, we do

not know if the differences are actually necessary. Thus another interesting topic to

explore would be to show some complexity separation between our proposed condi-

tions, i.e., if we can prove some lower bound on the cost of any algorithm for some

consistency condition C.

The still weaker condition of safeness [16] can also be extended to the multi-writer

model by means of similar techniques to those we have used here; this is one possible

avenue of future work. It might also be worthwhile to explore ways of formalizing
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the multi-writer version of consistency conditions met by the probabilistic quorum

systems of [21], which operate more efficiently than strict quorum systems at the

expense of occasionally providing outdated information.

In addition to seeking the formal specifications of those weaker consistency condi-

tions, it is worthwhile to identify certain problems that cannot be solved under those

consistency conditions, instead of just showing that some algorithm is incorrect.

Finally, exploring the semantics and consistency model of other data structures,

which is built on top of quorum systems, might also be of great interest.
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APPENDIX A

EXISTING CONSISTENCY MODELS

We give the formal definitions of several existing consistency conditions using

the model we defined in Chapter II.

Atomicity, also called Linearizability, is the strongest consistency condition ([12]).

It requires that there exist a total ordering of all the operations in a schedule that

respects both the semantics of the objects and the partial order of executions of the

operations. The formal definition is given below.

Definition 18 (Atomicity) There exists a permutation π of ops(σ) such that:

• π is legal,

• π is σ-consistent.

Sequential consistency([15]) requires that there exist a total order of all the oper-

ations in a schedule that respects the semantics of the objects and is consistent with

the order of operations executed by each process.

Definition 19 (Sequential Consistency) There exists a permutation π of ops(σ)

such that:

• π is legal,

• π|i is σ-consistent for all processes i.

PRAM was introduced in [17]. This consistency condition requires that the write

operations of a process be observed by other processes in the order in which they are

performed. Formally speaking, a memory consistency condition is PRAM if it satisfies

the following:
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Definition 20 (PRAM) For all processes i, there exists a permutation πi of (ops(σ|i)∪
writes(σ)) such that:

• πi is legal,

• πi|j is σ-consistent for all processes j.

Coherence ([10]) requires sequential consistency on a per-object basis, which

means that the operations on different objects executed by the same process may be

observed in an order other than that in which they are invoked.

Definition 21 (Coherence) For all variable x, there exists a permutation πx of

ops(σ|x) such that:

• πx is legal,

• πx|i is σ-consistent for all processes i.

Goodman’s Processor Consistency (PCG) is rigorously defined in [1]. It is a

combination of coherence and PRAM.

Definition 22 (PCG) For all processes i, there exists a permutation πi of ops(σ|i)∪
writes(σ) such that:

• πi is legal,

• πi|j is σ-consistent for all processes j,

• πi|writes(σ, x) = πj|writes(σ, x) for all processes j and all variable x,

where writes(σ, x) is the subset of writes(σ) that access variable x.
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