

J.-B. Stefani, I. Demeure, and D. Hagimont (Eds.): DAIS 2003, LNCS 2893, pp. 167–178, 2003.
© IFIP International Federation for Information Processing 2003

DataWarp: Building Applications
Which Make Progress in an Inconsistent World

Peter Henderson, Robert John Walters, Stephen Crouch, and Qinglai Ni

Declarative Systems and Software Engineering Group,
Department of Electronics and Computer Science,

University of Southampton,
Southampton, UK. SO17 1BJ

{ph,rjw1,stc,qn}@ecs.soton.ac.uk

Abstract. The usual approach to dealing with imperfections in data is to at-
tempt to eliminate them. However, the nature of modern systems means this is
often futile. This paper describes an approach which permits applications to op-
erate notwithstanding inconsistent data. Instead of attempting to extract a sin-
gle, correct view of the world from its data, a DataWarp application constructs
a collection of interpretations. It adopts one of these and continues work. Since
it acts on assumptions, the DataWarp application considers its recent work to be
provisional, expecting eventually most of these actions will become definitive.
Should the application decide to adopt an alternative data view, it may then
need to void provisional actions before resuming work. We describe the
DataWarp architecture, discuss its implementation and describe an experiment
in which a DataWarp application in an environment containing inconsistent
data achieves better results than its conventional counterpart.

1 Introduction

With the continued fall in the cost of computer hardware and the adoption of the same
technologies for distributed computing on intranets within organisations and the
global internet [1-4], we are seeing the creation of an everything connected to every-
thing else information utility [5].

In their origins, even the largest of computer systems were comprised of a single
process. This process worked with a collection of data which could be assumed to
faithfully reflect the state of the real world. In turn, this permits applications to expect
rules which apply to the real world to be reflected in the data. As systems have
evolved they have developed into networks of communicating components which are
assembled into complete applications. Increasingly these networks are adopting asyn-
chronous architectures using a variety of technologies [6-11]. These components may
understand that the data they have is incomplete, but they expect the subset that they
have to be faithful to some notion of reality. In other words, they suppose that the data
they hold provides them with a window into some complete and accurate data store
for the whole system which is free from inconsistency as shown in Fig. 1. Here, A and
B each have a partial view of the overall state of the system. By exchanging data, they
are able to make their views of the data compatible but their assumption about the
data they hold goes further. They both suppose that there exists some definitive value

168 Peter Henderson et al.

for the true state of the system and that the data they hold is consistent with it. These
ideals are both difficult to establish and maintain.

Distribution and replication of data can impart additional resilience and perform-
ance to applications [12, 13]. However, as the accumulated mass of data grows it is
becoming ever more difficult to maintain the illusion of universal consistency which
underpins much of the reasoning applied by applications [14, 15]. Schemes, such as
distributed transactions [16, 17] can guarantee this consistency. Their operation re-
quires co-ordination and co-operation between the various locations at which the data
is held. The effort associated with this co-ordination is appropriate for some proc-
esses, such as a Bank transfer where it is essential that neither end of the transaction
can occur without the other. However they are too restrictive to be applied universally
[18, 19], especially in enterprise and inter-enterprise systems.

A B

“Reality”

Fig. 1. The view of data of a traditional application

Instead of forcing the data to fit the understanding of our applications, we need to
find ways to implement applications in such a way that they can operate in the imper-
fect data environment in which they necessarily find themselves. If we are to do this,
we need to relax the reliance on the assumption of global consistency in data.

This paper introduces DataWarp. A DataWarp application:

− Maintains many views of data
− Selects a view based on assumptions,
− Is prepared to alter its assumptions and take remedial action

2 An Example: MQ Defence

Whilst there are many real enterprise systems which are faced with inconsistent data,
these are not ideal subjects for study for two reasons. Firstly, they are so large that
describing how they operate is difficult. Secondly, their users and developers have
worked hard to prevent, or ameliorate the effects of, what we perceive as interesting
behaviour: being tolerant of inconsistency. Recognising this, we have constructed an
experimental system which uses the asynchronous technologies of enterprise systems
(specifically Message Queue) but is not crafted a priori to work around data inconsis-
tency problems.

The system is a defence simulation in which ships move around a two dimensional
grid. It is implemented as a collection of applications which communicate using a

DataWarp: Building Applications Which Make Progress in an Inconsistent World 169

commercial message passing middleware product (MSMQ, [7, 20]). Each ship has its
own message queue which it is required to read promptly.

Any ship in the system is able to perform a number of actions:

− Move. Ships are artificially constrained by the edges of the grid but otherwise are
free to move in any direction at any time.

− Sense local information. Each ship has a sensor which it is able to interrogate. A
ship's sensor responds with a message containing a list of ships within its range. In-
formation supplied by sensors is similar to that which a real ship at sea might col-
lect using radar.

− Communicate. A ship may establish a communication channel between itself and
any other ship it knows, enabling it to interrogate other ships in a similar way to its
sensor. The usual response from a ship to such an enquiry is a message detailing its
present view of the entire grid. However, unlike sensors, ships may not respond to
all enquiries (see below). Channels operate in both directions, so the ship at either
end may use a channel. In establishing a channel, a ship gives away its existence,
location and identity.

The range of the sensors is limited and the ships move, so no ship can establish and
maintain a complete, up to date view of the grid using its sensor alone since at any
time there will be areas which are beyond the range of its sensor. However, by com-
municating ships can assist each other by sharing information, but at the expense of
being prepared to resolve inconsistencies. Consider three stationery ships which have
established communications when a fourth moves out of the sensor range of one ship
into the sensor range of another. In communication, the third ship will receive reports
from the two who have seen the moving ship, placing it in two locations (its true posi-
tion when last observed) leaving the third ship with a decision to make.

This environment is sufficiently simple to enable us to identify and reason about
what is happening whilst also sufficiently realistic to present many of the problems of
inter-enterprise distributed computing (not least delays and unreliability) [21].

For this experiment, the ships has have a notion of allegiance and are able to attack
one another using missiles which usually, but not always, destroy their target. A ship
which fires a missile directs it to a location on the grid which it takes time to reach.
Thus a ship may survive an attack if it is lucky or moves far enough whilst the missile
is in transit. Each ship is allocated to one of two sides and each navy assists their
side’s effort to dominate the grid by supplying information to their allies and attack-
ing their enemies. Ships don’t respond to enquiries from their enemies so a ship which
responds to an enquiry is a friend. A ship which doesn’t respond is likely to be an
enemy, although it could be a friend who has failed to respond, or whose response is
delayed or lost in transit. The information supplied by sensors does not include the
allegiance of contacts. Fig. 2 shows an example ship’s view of the world. It is aware
of four ships, itself (One), a friend (Two), an enemy out of range (Three) and a ship of
unknown allegiance (Four).

In this scenario, there is a further element to the data inconsistency problem faced
by the ships. In addition to needing a strategy to resolve conflicting reports about the
location of other ships, they now have the urgent need to decide what to do about
unidentified ships which are within reach of their weapons (and so probably close
enough to launch an attack if they are an enemy), such as a contact which has been
observed for the first time by the local sensor or one for which conflicting data has
been received.

170 Peter Henderson et al.

For the experiment, we pitched two types of ship against each other; ships follow-
ing the DataWarp philosophy and standards ship using a more traditional behaviour.

Fig. 2. A view of the world as seen by an MQDefence ship

We use rules as a universal means of describing behaviour at a suitable level of ab-
straction. Fig. 3 describes a ship not using DataWarp. The rules are divided into two
sections. The first describes the way the ship reacts to stimuli (the reactive rules), the
second describes autonomous behaviour which the ship initiates itself (the proactive
rules). This behaviour reflects the usual attitude of applications. For this example, we
will concentrate on the issue of the unidentified contact. Faced with a situation such
as that shown in Fig. 2, should the unidentified ship Four be within range, the stan-
dard ship doesn’t know what to do. Before it can proceed it must identify the ship. It
cannot do otherwise for fear of attacking a friendly ship. The ship could try asking its
ally (named Two in Fig. 2), but it may not know either. The only option certain to
give a result is to open a channel. However this is risky: in trying to communicate
with an unidentified contact, a ship gives away its own position and allegiance. If the
contact is an enemy, it might launch an immediate attack.

/* Reactive rules */
Attack any enemy ship within range.
Open a channel to any unidentified ship within range.
A ship which replies on a channel is an ally.
Store data received from sensor.
Store data received along channels.
Respond to enquiries from allies with details of our view.
Reconstruct our view of the grid when the data store changes.

/* Proactive rules */
Move according to algorithm.
Send enquiries on channels.
Read sensor.

Fig. 3. Behaviour of a Standard Ship

DataWarp: Building Applications Which Make Progress in an Inconsistent World 171

Fig. 4 outlines the alternative behaviour of a DataWarp ship. This differs from the
standard ship in that it resolves problems in its data by constructing a collection of
views of the grid and picking one to act upon. In this particular example, the problem
is the allegiance of ship Four which must be either an ally or an enemy. This leads to
the creation of a set of possible views which can be divided into two subsets: those in
which Four is an ally and those in which Four is an enemy. The ship makes its choice
by reference to the rules by which it operates. If it elects to assume Four is an enemy,
it picks a view from the set in which Four is hostile. The particular view chosen will
depend on how this DataWarp ship resolves the positional issues in its data. Should
Four come within range, it will be attacked (as an enemy), followed by an attempt at
communication. Should Four identify itself as a friend, the DataWarp ship would then
know that it chose the wrong view of the gird and abandon it in favour of an alterna-
tive in which Four is an ally. In this particular circumstance, the allegiance of Four is
now certain so those views in which Four is assumed to be hostile may be discarded.
However, in general, views which are presently discounted need to be retained. A side
effect of changing its view is that the DataWarp ship will realise that it has launched a
missile at an ally and destroy it before it can do any harm. A criticism might be that,
should a friendly contact fail to respond in time our ship would destroy an ally. This is
indeed a risk. However, the standard ship is worse – if one of its contacts fails to re-
spond, it launches an irretrievable attack.

/* Reactive rules */
Attack any ship within range known or assumed to be an enemy.
Where a ship is attacked on the assumption of hostility, open a channel
 to that ship.
Destroy a missile in flight to an ally.
A ship which replies on a channel is an ally.
Store data received from sensor.
Store data received along channels.
Respond to enquiries from allies with a details of our view.
Reconstruct candidate views of the grid when the data store changes.
If data affecting assumptions changes, reselect view of grid.
Send corrections when a change of view changes allegiances of contacts
 advised to allies.

/* Proactive rules */
Move according to algorithm.
Send enquiries on channels.
Read sensor.
Reconsider assumptions.

/* Assumptions */
An unidentified ship is an enemy.
/* Other assumptions and guidelines about resolving positional issues */

Fig. 4. Behaviour of a DataWarp Ship

Should Four be an ally, the DataWarp ship will also realise that it may have misin-

formed other allies with which it has been in communication whilst the assumption
was in force. It will attempt to correct any consequences of this by sending correc-
tions. These corrections have the potential to ripple around if they cause ships that
receive them to change views too.

172 Peter Henderson et al.

In addition to the experiments performed in the MQDefence environment which is
actually distributed and uses MSMQ for messages, we have performed further ex-
periments using a less elaborate simulation written in Java.

To run the experiments, we have needed to add some detail to the definitions given
above. This has concerned matters such as the size of the grid, the ranges of sensors
and missiles, the time a ship waits for a response to a communication before conclud-
ing another is an enemy and the time a missile takes to reach its target. The experi-
ments have been run using a 300x300 sector grid. The number of ships in each navy,
as well as the range of sensors and missiles, is a balance. More ships on the grid, and
longer ranges for the weapons and sensors mean ships find and destroy each other
more easily and lead to shorter experiments.

The pro-active rules are implemented using a simple timer which, on expiry, reads
the ship’s sensor, reads each of its channels and moves the ship a single division of
the grid in a random direction which is weighted in favour of continuing in the same
direction as the previous move. All ships use the same moving algorithm and have the
same sensor and weapon ranges. For most experiments, the range of the sensors has
been set slightly in excess of the range of weapons.

Initial experiments were performed on a number of machines in the laboratory with
six ships on each side, missile and sensor ranges of 45 and 50 respectively. These
were permitted to run until one fleet is eliminated, and show that DataWarp ships win
approaching 80% of the battles, though they do use more missiles. Even after adjust-
ing the parameters to favour the standard ships, the DataWarp side still wins convinc-
ingly, though in some configurations the number of DataWarp ships attacking their
allies is significant. Strictly limiting the number of missiles of each ship means that
the DataWarp ships are likely to run out – making them vulnerable to attack and un-
able to contribute further to the success of their side. However, they still enjoy a sig-
nificant advantage.

There is a considerable element of chance to where and when ships encounter each
other which can affect the outcome. This is clearly a consequence of the moving algo-
rithm, but we retained this algorithm since we wish to avoid the possibility that either
type of ship should enjoy an advantage as an accident of the way the ships movement
algorithm interacts with the features of the system.

Following on from the initial experiments, we have conducted several extended
experiments in which the number of ships on the grid has been maintained by replac-
ing each one which is destroyed with another of the same allegiance at a random loca-
tion at the edge of the grid. In these experiments there can be no question of either
side achieving dominance of the grid by destroying all of their opponents since they
are replaced as they are destroyed. However the objective of each of the participants
remains unchanged - to assist its side towards that goal by destroying their enemies.
Hence the relative number of ships lost by the two sides is a reasonable measure of
their relative success. The examples shown are selected from those experiments
where the DataWarp ships enjoyed the least advantage. Ironically, even in those ex-
periments the standard ships still didn’t manage to sink opponents with much of the
improvement in their apparent performance accounted for by DataWarp ships sinking
each other. Nevertheless, typically twice as many of the standard ships are destroyed
as the DataWarp ships. Table 1 and Table 2 give sample results from some extended
runs of the experiment in MQDefence.

DataWarp: Building Applications Which Make Progress in an Inconsistent World 173

Table 1. Sample results, Standard vs. Standard ships

 Experiment 1 Experiment 2

Ships destroyed: side 1 16 27

Ships destroyed: side 2 11 18

Total 27 45

Table 2. Sample results, Standard vs. DataWarp ships

 Experiment 1 Experiment 2

Standard ships destroyed 130 123

DataWarp ships destroyed by
standard ships

24 8

DataWarp ships destroyed by
DataWarp ships

28
52

35
43

Total 182 166

3 DataWarp

The traditional approach adopted by applications faced with unreliable data is to sub-
ject it to validation procedures to identify and eliminate problematic data. Once past
this verification, applications essentially accept data as being absolute and act accord-
ingly. When anomalies arise, the typical action is to report them as exceptions which
generally demand external intervention, often from human operators.

DataWarp was initially inspired by TimeWarp [22, 23], which was developed for
the implementation of distributed simulation. The processes in a TimeWarp environ-
ment do not have a synchronised notion of time. There is no central record of time in
the system at all. However, they still manage to operate in such a way that the results
of their computations are unaffected. This ability for a system without a consistent
notion of time is extended by DataWarp towards data in general.

However, our motivation is different. With TimeWarp, a consistent global notion
of the current time is traded for improved performance within a controlled environ-
ment. Our applications have no choice about their environment: they operate in the
context of the uncontrolled, asynchronous, ever changing and more connected world
of enterprise systems. This environment is increasingly polluted with poor data over
which no single application exerts control. Accepting that dirty data is inevitable,
DataWarp applications adopt local behaviours towards data which are similar in spirit
to those of a TimeWarp process towards time.

In place of the usual behaviour, in which an application develops a single view of
the world, when faced with inconsistencies in data, a DataWarp application constructs
a collection of alternative data views which it regards as candidates for the view of the
world it will use. With the passage of time and the arrival of further data, the applica-
tion maintains this view-set, adding more when additional inconsistency arises and
removing views where new data permits them to be discounted.

174 Peter Henderson et al.

Candidate "Views" of
Data

Accumulated
Observations

Observations
and other data

Adopted
View

Uncertain Data Options

Source1 Reliability
Source2 Reliability
Value1
Value2
...

Good Bad Bad Good
Good Bad Good Bad
X Y X Y
A B C D
...

Fig. 5. DataWarp

DataWarp applications act promptly on input as it is received but retain a history of

state, input and actions so that when errors come to light, they are able to re-consider
and, where necessary undo actions or make compensations. Imposing an obligation
onto applications to retain a history of actions may appear onerous, but in fact most
commercial applications already record this information in audit trails.

There are real differences between a TimeWarp process and a DataWarp applica-
tion which concern:

− The environment in which they operate
− The nature of the data which could be subject to amendment
− Identifying the need to rollback
− The actions which may be required to achieve a rollback

TimeWarp is concerned with time - a single valued data item which (in some gen-
eral sense) always progresses. The processes of a TimeWarp system may be thought
of as being distributed along a time-line. The extent to which the processes are dis-
tributed along this line will depend on the pattern of communication between them.
Since there is no co-ordination of time in the system, so long as the processes operate
in isolation their clocks will tend to drift apart. The effect of communication depends
on the relationship between the local times in the processes concerned. A side-effect
of a message which causes the receiving process to rollback is the near synchronisa-
tion of the clocks of the sending and receiving processes. More communication be-
tween processes is likely to cause the times on their local clocks to bunch together.
Additionally, despite temporary variations, in the long term the collection of proc-
esses as a whole progress along this line from the past into the future.

In contrast, DataWarp is concerned with many unordered data items. Its applica-
tions might be considered as being distributed about a multi-dimensional space in-
stead of along a line. In common with TimeWarp, it is reasonable to expect that appli-
cations which communicate will tend to approach each other in this space, but there is
no equivalent of the relentless progress of time from the past to the future so, faced
with two incompatible pieces of data there is no simple universal way for a DataWarp

DataWarp: Building Applications Which Make Progress in an Inconsistent World 175

application to choose between them. Where a TimeWarp application is able to iden-
tify situations where rollbacks are necessary by simple comparisons between the
timestamp on a message and the value on its local clock, a DataWarp application has
no such a simple test. Instead, it has to identify inconsistencies in the data it has re-
ceived (and acted upon) using application specific consistency rules. However, where
the traditional application resorts to raising an exception demanding some external
intervention, the DataWarp application will be able to cope. In the example above the
DataWarp ship, on discovering faulty data and having to change its view destroys any
missile which it has fired at an ally and sends corrections to the information it has
supplied to any of its allies.

The details of when and how DataWarp applications identify which particular data
items are at fault, and how far to rollback has to be application specific. During exe-
cution, the DataWarp application accumulates a collection of data items about which
it has made assumptions. These assumptions may be directed towards using values
which are the most likely to be true but according to the circumstances, other strate-
gies are also appropriate. For example, the application may elect to use values which
are most easily defended (should that become necessary) or the least likely to cause
damage in the event that they have to be changed. When the complexity of the uncer-
tainty being managed warrants it, technologies like belief revision (or truth mainte-
nance) [24, 25] have to be employed.

The fact that a DataWarp application works with many pieces of data does bring
one particular advantage: when an error is discovered and a roll-back is required, the
application does not need to revert fully to its state before any of the erroneous actions
were taken. Instead the application need only address those actions which may have
been affected by the data concerned. For example, on discovering an error in its re-
cord of a customer’s address, there is no need for an online store to rollback all of its
actions. It only needs to consider rolling back actions relating to that particular cus-
tomer. The remainder can be allowed to stand, making the rollback a less onerous
task.

There is one further complication which the DataWarp application has to be able to
accommodate. TimeWarp processes operate in a controlled environment. This envi-
ronment is populated with TimeWarp-aware processes, enabling a process which
needs to perform a rollback to retract actions and communications since the destina-
tion processes will be equipped to accept the retraction (and instigate their own roll-
back, if required). However, the DataWarp application does not have this luxury. It
has to be able to handle the consequences of wishing to retract messages already sent
where the receiver may not be prepared to accept message retractions or even under-
stand them. The DataWarp application needing to perform a rollback handles this by
examining the actions it needs to retract and dividing them into two categories accord-
ing to whether any evidence of the action has yet been disclosed to the outside world.
Those actions which have been disclosed are described as having hardened. Those
actions which have not yet hardened can always be reversed because they affect only
state internal to the application. Of the remainder, some aspect of the action has been
seen by another application. Where it is known that the other application will accept
message retractions, perhaps because the application advertises this facility to poten-
tial users, then this is the preferred option. Otherwise, some kind of compensating
action will have to be performed. According to the nature of the action, and possibly
how long ago the action was initially performed, the application may well have to

176 Peter Henderson et al.

accept that the effect of the compensating action may fall short of completely elimi-
nating the effects of the original action.

In deciding how to act upon data as it arrives, there is a judgement for the applica-
tion to make about how quickly to allow its actions to become externally visible and
so liable to harden (when a third party sees them) since hardened actions are more
difficult to retract. An application applying DataWarp to its processing may gain an
advantage over its competitors because, since by processing work optimistically it is
able to respond more quickly than its traditional peers. Alternatively, at least for some
transactions, it may feel that it is appropriate to conceal the effects of some transac-
tions for a short time in order to increase the probability that, should a rollback be
necessary it will not have to deal with hardened actions. Consider the situation faced
by an online bookshop receiving an order. In a traditional view of operation, the shop
will process the order as a sequence of actions, starting with checking its stock, fol-
lowed by processing the payment, sending the book and noting the sale to order re-
placement stock. The DataWarp shop can process this order differently. Instead of
carrying out the actions in sequence, it can set all of them in motion as soon as the
order arrives: it assumes the book is in stock and the clients payment will be hon-
oured. If, for example, the book is not in stock then the order needs to be rolled back
and its processing re-started. In this case, in place of sending the book the shop may
send a communication to the client informing them of the situation and requesting
confirmation that they still want to buy and cancel the request for payment (or make a
refund). The automated re-order action on the sale may not now be appropriate either.
It might be replaced as a customer specific order or cancelled completely pending
further contact from the client.

4 Conclusion

As computer systems become larger and more widespread, they are collecting huge
amounts of data. Many systems already have so much data that they struggle to keep
it up to date and consistent. The continuing trend of connecting systems into even
larger systems is making this problem more difficult and the situation is unlikely to
improve. The situation is further complicated by the mobile systems which only main-
tain intermittent contact with our connected world and the asynchronous architectures
which are being increasingly used. The traditional approach to managing problems
arising from inconsistencies in data is to avoid the problem by enforcing consistency
using strategies such as distributed transaction processing. However, the volume of
data and the complexity of the interconnections between the systems which process is
increasing whilst at the same time, the data environments are becoming less con-
trolled and more varied. Together these mean that the task of maintaining consistency
is becoming overwhelming. Contemporary systems need to be able to succeed despite
having to work with data which they know contains errors and inconsistencies. They
need to be inconsistency tolerant.

We have performed a collection of experiments both in an experimental environ-
ment built using a commercial message passing middleware product and in a simula-
tion environment which shows that an application adopting a DataWarp approach
enjoys a considerable advantage when faced with inconsistent data.

DataWarp: Building Applications Which Make Progress in an Inconsistent World 177

In DataWarp, applications proceed provisionally with their work but are prepared
to revoke actions in the event that the data which motivated them turns out to be in-
correct and re-commence operations with the new, (hopefully) better data. As time
passes, these provisional actions become more nearly permanent. Eventually they can
be regarded as definitive. In common with the attitude of TimeWarp processes to-
wards time, the DataWarp applications do not concern themselves with maintaining a
view of the world which is consistent with others using the same data unless or until
they are forced to do so by interaction. When they do acquire additional data they
decide whether if they need to adopt a different data view.

In summary, DataWarp is an architecture for building applications which are in-
consistency tolerant. A DataWarp application:

− Maintains many views of data
− Selects a view based on assumptions,
− Is prepared to alter its assumptions and take remedial action

References

1. Universal Description Discovery and Integration (UDDI)), Technical White Paper,
see http://www.uddi.org (2000)

2. Christensen, E., et al.: Web Services Description Language (WSDL), see
http://msdn.microsoft (2000)

3. Hunter, D., et al.: Beginning XML, Wrox Press Inc (2000)
4. Snell, J., D. Tidwell, and P. Kulchenko: Programming Web Services with SOAP. First

Edition, O'Reilly & Associates Inc. (2002)
5. Nicolle, L.: John Taylor - The Bulletin Interview, British Computer Society, The Com-

puter Bulletin. (1999)
6. Microsoft: Legacy File Integration Using Microsoft® BizTalk Server 2000, see

http://www.microsoft.com/biztalk/techinfo/LegacyFileIntegrationWP.doc,
Microsoft (2000)

7. Microsoft: Microsoft Message Queuing Services, see http://www.microsoft.com/
http://www.microsoft.com/ntserver/appservice/techdetails/overview/msmqrevguide.asp,
Microsoft (2001)

8. Object Management Group: Common Object Request Broker: Architecture Specification,
see http://www.omg.com

9. Sun Microsystems: Enterprise Java Beans, see http://www.sun.com
10. Szyperski, C.: Component Software, Longman (1998)
11. Thomas, A.: Enterprise JavaBeans Technology, Patricia Seybold Group. (1998)
12. Kemme, B. and G. Alonso: A Suite of Database Replication Protocols based on Group

Communication Primitives. Proceedings of 18th International Con-ference on Distributed
Systems (ICDCS), Amsterdam, The Netherlands (1998)

13. Wiesmann, M., et al.: Database Replication Techniques: a three parameter classification.
Proceedings of 19th IEEE Symposium on Reliable Distributed Systems (SRDS2000),
Nurenberg, Germany, IEEE Computer Society Press (2000)

14. Sircar, S. and A. Kott: Enterprise Architecture Analysis Using an Architecture Description
Language. Proceedings of DARPA Symposium on Advances in Enterprise Control, Min-
neapolis (2000)

15. Dayal, U., M. Hsu, and R. Ladin: Business Process Coordination: State of the Art, Trends,
and Open Issues. The VLDB Journal. Vol. (2001) 3-13.

178 Peter Henderson et al.

16. Gray, J.N.: The Transaction Concept: Virtues and Limitations. Proceedings of 7th Interna-
tional Conference on Very Large Data Bases, Cannes, France (1981)

17. Gray, J.N.: Notes on Database Operating Systems, in Operating Systems: An Advanced
Course. R. Bayer, R. Graham, and G. Segmuller, Editors, Springer, (1978) 391-481

18. Henderson, P., R.J. Walters, and S. Crouch: Inconsistency Tolerance across Enterprise So-
lutions. Proceedings of 8th IEEE Workshop in Future Trends of Distributed Computer
Systems (FTDCS01), Bologna, Italy (2001)

19. Henderson, P., R.J. Walters, and S. Crouch: RICES: Reasoning about Infor-mation Con-
sistency across Enterprise Solutions, in Systems Engineering for Business Process
Change: New Directions, Springer-Verlag London Limited, London, (2002) 367-371

20. IBM: MQSeries Family, see http://www-4.ibm.com/software/ts/mqseries/ (2001)
21. Henderson, P.: Reasoning about Asynchronous Behaviour in Distributed Sys-tems. Pro-

ceedings of The 8th IEEE International Conference on Engineering of Complex Computer
Systems (ICECCS'02), Greenbelt, Maryland (2002)

22. Jefferson, D.R.: Virtual Time. ACM Transactions on Programming Lan-guages and Sys-
tems. Vol. 7(3). (1985) 404-425.

23. Jefferson, D.R.: Virtual Time II: Storage Management in Distributed Simula-tion. Pro-
ceedings of 9th Annual ACM Symposium on Principles of Distrib-uted Computing, Que-
bec City, Quebec, Canada, ACM (1990)

24. Friedman, N. and J.Y. Halpern: Belief Revision: A Critique. Journal of Logic, Language
and Information. Vol. 8(4). (1999) 401-420.

25. Shaprio, S.C.: Belief Revision and Truth Maintenance Systems: An Overview and a Pro-
posal, Department of Computer Science and Engineering and Center for Multisource In-
formation Fusion and Center for Cognitive Science, State University of New York at Buf-
falo, Buffalo (1998)

	1 Introduction
	2 An Example: MQ Defence
	3 Data Warp
	4 Conclusion
	References

