Meta-programming Middleware
for Distributed Object Computing

Peter Breitling

Technische Universitdat Miinchen, Fakultat fir Informatik,
Boltzmannstr. 3, D-85748 Garching, Germany
Peter .Breitling@in.tum.de
http://wwwll.in.tum.de

Abstract. A multitude of different middleware technologies exist for
distributed object computing (doc). However well-known doc-middle-
ware has practically not established itself in the context of wide—area dis-
tributed computing. Prominent examples like CORBA, COM+ or Java/
RMI use quite similar distributed object models, that can be mapped
pairwise with bridges. But they differ in their meta—programming func-
tionality including methods for object generation, distribution, location,
reflection and life-cycle management. A more high—level, abstract model
that encapsulates this functionality and that allows the integration with
existing doc—middleware and web systems can be a central prerequi-
site for emerging a web of objects. This paper introduces the design of a
meta—programming middleware and its mapping to and application with
existing doc— and web—technologies respectively.

1 Introduction

According to [1] meta—programming relates to “programming, where the data
represent programs”. Wang et al. [3] examined meta—programming mechanisms
in the CORBA distributed object computing (doc) middleware. This paper
states the term meta—programming in the context of doc as the “adaptability
of distributed applications by allowing their behaviour to be modified without
changing their existing software designs and implementations significantly”. The
adaptability of applications has a strong importance for the increasing number
of open systems that are composed of complementary technologies.

In contrast to examining meta—programming mechanisms in existing doc—
middleware we propose an independent middleware layer specifically for meta—
programming. The layer shall provide all means for object— (as data) manage-
ment and object reconfiguration and adaptation. Common meta—programming
techniques can be defined in this layer and this layer can be built upon different
doc-middleware and web-technologies.

The focus of the independent meta—programming middleware layer for doc
is on the extensible and dynamic object management including:

— Object life-cycle management: Common methods for the dynamic creation
(compiling), registration, deregistration and destruction of distributed ob-
jects.

J.-B. Stefani, I. Demeure, and D. Hagimont (Eds.): DAIS 2003, LNCS 2893, pp. 41-Eg] 2003.
© IFIP International Federation for Information Processing 2003

42 Peter Breitling

— Object distribution management: Object migration and replication between
different middleware technologies or platforms.

— Management events and handlers: Programmable handlers for observing and
reacting onto object life-cycle and distribution management events.

— Object Reflection: Reflection mechanisms for object properties including ob-
ject—type, object—state (e.g. if registered), and —class information dependent
of the type (e.g. the object interface) and further extensible meta—data.

— Object Adaption: Methods to dynamically create proxy objects for changing
an object functionality or for replacing individual objects.

— Object Reconfiguration: Manage object references with the ability to recon-
figure and dynamically map them to other target objects.

Different doc-middleware technologies in general provide a subset of the de-
scribed methods and focus on characteristic object distribution and management
methodologie. And they apply different methods and semantics for using this
functionality. We incorporate the complete life-cycle management into this mid-
dleware layer. The layer is capable of generalizing the whole object generation
process from the object—source, over the -implementation, up to the distributed
instance (service) of the object that can be mapped to different doc—middleware
technologies. Thus one result of this work is to provide a common semantic
for meta—programming, that can be used independent of the underlying doc—
middleware.

Furthermore this middleware proposes a complete isolation of objects that
are managed by this middleware. The context of an object includes proprietary
access to the underlying doc—middleware, operating system and the network. A
complete reconfiguration control over an object requires the ability to intercept
every access out of the object to the context. A common example is a simple file
access outside an object, which is a common source of problems that prevents
the successful reconfiguration and adaptation of an application without changing
its implementation. Instead of application specific configuration mechanisms,
we propose to fundamentally isolate objects with this middleware layer and
introduce the concept of an environment as a single point of access for every type
of object. The environment performs the concrete mappings between abstract
objects and concrete physical entities on a platform.

To enable these functionalities, especially the life-cycle management and ob-
ject isolation, the object model itself is refined. We introduce resources that
model basic types of objects that can represent programs as data plus the clas-
sic object model entities (interface, implementation, instances). The “isolating”
environments manage those resources equally. The environments actually pro-
vide the meta—programming functionality.

! These include specific features like object persistency, transactions, caching, etc. but
which are not in the part of the meta—programming layer.

Meta-programming Middleware for Distributed Object Computing 43
2 The Meta-programming Middleware

The independent meta—programming layer provides functions for the reconfig-
uration and adaptation of objects. A common definition for an object in doc—
middleware “is an identifiable, encapsulated entity that provides one or more ser-
vices that can be requested by a client” [4]. The question for meta—programming
that treats programs as data and converts data to objects and vice—versa arises:
Is it all about (service) objects? To effectively reconfigure interobject and data
dependencies we raise data and software objects onto the same management
level.

2.1 An Abstract Resource-Layer for Meta-programming

We identified five fundamental resource—classes for the meta—programming layer:
binaries, documents, interfaces, implementations and instances. For these classes
we define common properties that are useful for the management of and meta—
programming on these resources. Figure [[l gives an overview of the properties.

class : binary document interface implementation instance
type : mime-type doc-type doc-type interface interface
state : a subset of [serializable | registered | persistent |
name : if registered , an identifying name that is unique in the registry for the same type
attributes : type specific [life-] attributes which are managed by value to the resource.

Fig. 1. Resources and their properties

For every resource class we use a specific type systemE. Every resource has
a state, which expresses the capabilities with respect to management of an ob-
ject. If a resource is registered it can have a name, which acts as an identifier
local to the registry. Further attributes can be assigned to a resource as simple
name / value pairs to store informating along with the objectﬁ.

The binary resource encapsulates any unstructured block of data. In general
it is mapped to files or binary streams. For the content-type and subtype in-
formation on binary resources we use the MIME media type system. Any other
meta—information on the type of a binary resource could be used here, however
this system is well-known and established in the context of wide—area internet
computing. In this system binary resources can always be serialized and the

2 We decided to use well-known type systems that are established in the wide-area
internet computing.

3 The attributes remain persistent during the objects life-time. Some attributes can be
live—attributes, which are read—only and managed by the system (e.g. the content—
length of a resource).

44 Peter Breitling

result of a resource serialization from any other resource class results in this
(unregistered) binary resource class.

The document meta—object represents structured data. The eXtensible Mark-
up Language (XML) as the state—of-the—art representation for structured doc-
uments is applied in the prototype. But any other syntax for structured data
could be applied here. XML provides an analogous classification for documents
like interfaces for objects. A document meta—object can have a reference to a
document-type definition (in form of a DTD or XML-Schema). In this system
a document can always be serialized

T

interiace JZ:T nplemersation

_ document binary | instance
document file (software-)object
management management management
. = AN
kel £ | 57
meta-programming middleware

Fig. 2. Resource classes and relations

The interface of an object is a central entity in doc. In this meta-program-
ming middleware it is important for the management and adaptation of objects
and for providing reflection mechanisms.

Common RPC systems, such as the Distributed Computing Environment
(DCE), and in distributed object environments, such as CORBA define an in-
terface definition languages (IDL) as a standard set of primitive types, method
signatures and object interfaces that are mapped to existing languages. We apply
the same approach for interfaces in this middleware. However in the extended
object model we model interfaces as document resources. In fact interfaces can be
managed like documents with structured data containing meta—data for objects.
Accordingly the interface resource is subclassed of the document resource. Given
the importance of interfaces it is listed among the fundamental resource classes
here and presented as a fundamental object. However interfaces are managed
and can be accessed as documents in this middleware.

The extended model refines an object into two distinct resource classes, the
object implementation and the object instance. The implementation resource
is mapped to specific implementations in the underlying doc-middleware. In
Java this is represented by the class object, which can be distributed seperately.
CORBA in contrast does not allow the explicit distribution management of
implementationsﬂ. The classification for implementations are references to an
interface resource which defines the interface for the object—implementation.
Dependent of the doc-middleware and platform implementation resources can be

4 this matches the “object as service” view in CORBA.

Meta-programming Middleware for Distributed Object Computing 45

serialized. This is required for implementation replication, which can be modelled
with the serialization and distribution of implementation resources here.

The instance resource class represents an instantiated object. E.g. CORBA
distributed objects are mapped to instance objects. The term object is commonly
used for instances. We avoid the term “objects” to refer to resources of class
instance here to avoid a confusion with that generic name. An Instance resource
in general is represented directly by language objects. In this framework it the
base class for deriving reconfigurable application objects. An instance object
has a reference to the implementation object. Dependent of the doc-middleware
and platform implementation resources can be serialized. This is required for
object migration, which can be modelled with the serialization and distribution
of instance resources here. Figure 2| gives an overview of all resource classes and
their relations.

2.2 The Meta-programming Environment

While the resources are mapped to existing entities and provide a common con-
cept across different technologies, the meta—programming environment is the
functional part that has to be implemented for every doc—middleware. The en-
vironment is the middle-tier between the resources and physical entities. The
connector can be viewed from three functional perspectives:

— Provide a framework for meta—programming: Map the abstract resources
to the platform and language. Subclassing the resources can create new dis-
tributed objects. It implements the meta—programming interfaces.

— Allow arbitrary configuration of the resource mapping: The mapping of ref-
erences to resources and physical entities is transparent to the objects. De-
pendent of the configuration the mapping could be performed locally or be
delegated to other environments. The environment can provide a specific
user interface for its configuration.

— Be connected to other environments / services: Environments can be in-
terconnected or map the access for specific resource classes to other web—
systems. Inter—environment connection architectures can range from hier-
archical to peer—to—peer approaches. Existing web—services can be mapped
into the environment for specific resources (like a web—server as a binary
registry or a XML—database as a document registry and access backend).

The mapping of resources and the interconnection to other environments and
services are dependent of the concrete implementation of the environment. These
parts are transparent to an object, which requests other resources with the frame-
work. The meta—programming framework itself is specified homogeneously across
platforms: The abstract resources act as base classes for extending with applica-
tion specific, adaptable and reconfigurable objects and the application program-
ming interface (API) provides standards functions for meta—programming.

The meta—programming API consists of six interfaces that are be mapped
and implemented on top of the underlying doc—middleware and the platform. In
the following sections we describe the functionality and task of each interface.

46 Peter Breitling

resource—registry: An environment provides a registry where resources in the
environment can be registered. Every doc-middleware has a kind of a registry
where objects can be dynamically inserted. In COM+ components are regis-
tered in the Windows—Registry, while in CORBA objects are registered in the
implementation repository. In this abstract middleware we register and dereg-
ister resources to and from the resource registry of the environment. Resources
are registered with an arbitrary name and their class. The name must be unique
in the registry for that resource class. The registry can be mapped to different
technologies for each resource class. E.g. the interface or implementation registry
can be mapped to the CORBA interface or implementation repository respec-
tively. Or the binary and document registry can be simply mapped to a local file
system or a Web—server. Document resources could be ideally mapped to XML
databases. With this approach we can map different technologies into the same
semantic concepts. The prototype description will show some concrete examples.

reference—resolve: any registered resources can be located with the resource—
resolver. The resolver function takes a class, a name and optionally a type and
returns a resolved reference if it can locate a corresponding resource. The ref-
erence itself is a placeholder for a resource. A reference can have one of three
states: unresolved, resolved and mapped. The programmer in general only works
with resolved references and maps it to resources. However a reference could be
constructed manually. The namespace of a reference is not specified. An Uniform
Resource Locator (URL) could be an example representation for a reference that
is unresolved. This is dependent of the resolver implementation.

reference—map: The mapping of a reference results in an accessible resource. It
is completely transparent to the program if the resource is actually on a remote
platform or was migrated or replicated into the local environment.

resource—cast: The casting functionality is the foundation for a complete life—
cycle control including the generation of objects starting with code compilation.
A binary resource can then be casted to documents, implementations or in-
stances. The serialization operation is the inverse—function to the cast—operation.
It results into a binary resource.

registry—events: The registration and deregistration of resources in the reg-
istry is observed with an event handler. Every resource class can be individually
monitore.

resource—factory: Beside of resolving existing resources, new resources can
be created with this interface. A typical metaprogramming task would be to
create a binary or document resource source code (e.g. a script), cast it to an
implementation resource and register it in the environment.

5 modern file systems offer the concept of file system-events to monitor a path for file
creation or deletion. This can be well matched with the event—handler for a binary
resource registry.

Meta-programming Middleware for Distributed Object Computing 47

3 MetaDOC: The Java Prototype

An implementation of this middleware requires solutions for each of the three
main functional parts of the environment: Provide a meta—programming frame-
work API for the programming language, offer configuration mechanisms for the
resource mapping and provide an interconnection layer to other environments or
web—systems.

MetaDOC [2] is a first implementation of this meta—programming middle-
ware. For the prototype we chose Java. The language provides reflection capa-
bilities, it can dynamically create and load objects and the CORBA technology
is an integral part of the Java 2 platform. It contains an ORB-implementation
and APT’s for the RMI and IDL programming model respectively. Figure Bl gives
an overview of the supported protocols (and technologies) in the prototype.

binary document implementation instance

IN (as server) WebDAV 1IOP (Xindice) WebDAV IIOP / RMI

OUT (as client) HTTP HTTP HTTP IIOP / RMI
INTERNAL REG. Filesystem Xindice Filesystem JNDI

Fig. 3. MetaDOC—prototype: Supported resource access protocols

The MetaDOC prototype can be used with existing or new Java applications
as:

— a reconfigurable an integrated data and object access layer: Binary and Doc-
uments can be accessed without committing to a protocol or technology (ex-
cept this middleware) in an application object. This also applies to remotely
accessing distributed objects. Abstract names can be chosen to identify re-
sources. These names can be centrally configured with the environment to
concrete resources that reside local or in the web or to dedicated ORB and
RMI servers in case of remote object access.

— a remote Java/CORBA object access layer: As an alternative to directly
programming RMI or CORBA IDL files you can use the framework and
inherit dedicated objects from the instance base class. These objects can be
registered in the environment. No commitment to one of these technologies
is needed.

— a high-level meta—programming: In Java all meta—programming and reflec-
tion mechanisms that are described could be realized proprietarily by the
application itself (in fact the prototype is built purely in Java). With this
middleware however an application can access this functionality with high—
level functions. Specific Java issues regarding the compiler, the classloader
and reflection functions are hidden. Secondly we can meta-—program remote
objects (that exist on another platform) transparently with the same mech-
anisms.

48 Peter Breitling

4 Conclusions and Outlook

To our knowledge, the design of a flexible model that integrates the file-, docu-
ment— and object—management in one layer for meta—programming is a new
approach. The focus of the system is to provide a homogenous concept for
meta—programming using the abstract resource—layer and common operations
on that model. The middleware is related to and influenced by a multitude of
technologies from different research areas including reflective middleware, sys-
tem management, web-systems and common meta—programming mechanisms in
existing doc—middleware.

This is an open system — it can be built on a number of languages and in-
tegrate different technologies. The system specifies only the environment frame-
work API and the basic resource model. All other parts including environment
implementation details, configuration methods, resolve strategies, supported pro-
tocols and environment interconnections are not fixed. This is in the sense of
meta—programming. All those parts remain adaptable and reconfigurable.

Wang et al. evaluated three meta—programming approaches in CORBA:
pluggable protocols, smart proxies and interceptors. Here we can extend the
list by pluggable technologies (with the open system approach), reconfigurable
resource resolving (resource-resolve and —map) and methods for the object gen-
eration and life-cycle control (resource—casting).

The netscape cofounder Marc Andreesen stated in the year 1996, that the
“HTTP protocol will be replaced by the IIOP protocol in just a few years”.
Behind that statement is the vision of a worldwide web of objects where appli-
cations can be dynamically composed of existing, reusable components.

No single doc—middleware will probably ever replace all existing and forth-
coming (problem oriented) protocols with a new universal protocol. In this mid-
dleware we don’t specify new protocols or doc—capabilities. We just provide
one semantic umbrella where various web— and doc—technologies can be assem-
bled. This can be a small step towards a more interoperable and visible web—of-
objects.

References

1. J. Barklund. Metaprogramming in logic. In A. Kent and J. Williams, Encyclopedia
of Computer Science and Technology., 1994.

2. P. Breitling. Metadoc homepage. http://www.metadoc.org/.

3. D. Schmidt N. Wang, K. Parameswaran and O. Othman. FEvaluating meta-
programming mechanisms for orb middleware. In IEEE Communication Magazine,
special issue on Fvolving Communications Software, volume 39, 2001.

4. OMG. The comon object request broker: Architecture and specification. Technical
Report PTC/96-03-04, Object Management Group, 1996. Version 2.0.

	1 Introduction
	2 The Meta-programming Middleware
	2.1 An Abstract Resource-Layer for Meta-programming
	2.2 The Meta-programming Environment

	3 MetaDOC: The Java Prototype
	4 Conclusions and Outlook
	References

