
Middleware Support
for Resource-Constrained Software Deployment

Nicolas Le Sommer and Frédéric Guidec

Valoria laboratory
University of South Brittany, France

{Nicolas.Le-Sommer,Frederic.Guidec}@univ-ubs.fr

Abstract. The Jamus platform is dedicated to providing a safe runtime
environment for untrusted Java application programs, while offering each
of these programs access to the resources it needs to use at runtime. To
achieve this goal, Jamus implements a contractual approach of resource
utilisation and control, together with a reservation-based resource man-
agement scheme, and a monitoring model. When getting deployed on the
platform, a candidate program must first subscribe a contract with the
resource manager of the platform. This contract describes the resources
the program requires to be able to access at runtime, and how it plans
to behave when accessing these resources. Based on this information,
the platform can monitor programs at runtime, so that any violation of
the contracts they subscribed can be detected and sanctioned. Moreover,
since the specific needs of a program are liable to change (or to be re-
fined) dynamically while this program is running, any program hosted
by the platform can ask that its contract be re-negotiated at any time.

1 Introduction

The growing popularity of mobile and network-dependent Java application pro-
grams leads to an increased demand for deployment platforms that permit to
launch and run potentially dangerous Java application programs (such as pro-
grams downloaded from untrusted remote Internet sites) in a restrained envi-
ronment.

Sun Microsystem’s platform Java Web Start was designed in order to meet
this demand. Yet, because this platform relies on the security model of the
standard Java Runtime Environment (JRE) platform, it shows a number of lim-
itations. For example, security in Java Web Start can only be obtained by re-
straining the access to a strictly pre-defined set of system resource types (namely,
network sockets and files). Moreover, security is based solely on access permis-
sions. In our opinion, this approach does not permit sufficient control over the
behaviour of application programs.

With Jamus (Java Accommodation of Mobile Untrusted Software) we give
some solution to the above-mentioned. Resource access control in Jamus can be
applied to a larger (and easily extensible) variety of resource types (including
the CPU and memory), and this control can be performed at a finer grain (for

J.-B. Stefani, I. Demeure, and D. Hagimont (Eds.): DAIS 2003, LNCS 2893, pp. 49–60, 2003.
c© IFIP International Federation for Information Processing 2003



50 Nicolas Le Sommer and Frédéric Guidec

example, restrictions can be imposed of the amount of CPU time or memory
consumed by each Java thread).

Jamus implements a contractual approach of resource management and ac-
cess control. Application programs are expected to evaluate and specify their
own needs regarding the resources they wish to use at runtime. Based on this
information, the platform can decide whether a candidate program should be
accepted or rejected. Moreover, when a program has been accepted for running
on the platform, its behaviour is monitored, so that any violation of the contract
it subscribed with the platform can be readily detected and dealt with.

It is worth mentioning that Jamus is not exclusively dedicated to enforcing
a security policy. It also strives to meet the specific requirements of each of these
programs. To achieve this goal the platform implements a resource-reservation
scheme. Whenever a program subscribes a contract with the platform, resources
are actually reserved for this program from the platform’s viewpoint.

The remainder of this paper is organised as follows. Related work is pre-
sented in Section 2, which also discusses some of the limitations we observed
in other security-oriented projects and middleware platforms. Section 3 presents
the general architecture of the Jamus platform. Section 4 focuses on resource
contracting. It shows how contracts can be defined by application programs, and
subscribed with the platform. It also shows how the information contained in
contracts is used by a resource broker, which implements a reservation scheme
in order to satisfy the programs’ requirements. Section 5 shows how Jamus was
implemented on top of Raje (Resource-Aware Java Environment), an object-
oriented framework we designed, and which provides many facilities for resource
monitoring and control in Java. Section 7 concludes this paper, enumerating
some of the topics we plan to address in the near future.

2 Lessons Learned from Related Work

Security in the Java Runtime Environment (JRE) relies on the so-called “sand-
box” model. With this model, any program runs in a restrained environment,
whose boundaries somehow define the evolution space of this program. In the
first versions of the standard JRE (as proposed by Sun Microsystems), two al-
ternative configurations were defined. On the one hand, plain Java applications
were considered as safe code, and were therefore granted full access to system
resources (such as network sockets and files). On the other hand, Java applets
(ie code downloaded from remote Internet sites) were considered as potentially
malicious pieces of code, and were only granted access to a strictly limited sub-
set of resources [6]. With later releases of the Java platform (up to the current
Java 2 platform), this simplistic security model was extended in order to imple-
ment the concept of protection domain [7,6]. A protection domain is a runtime
environment whose security policy can be specified as a set of permissions.

The security model implemented in the traditional JRE relies on stateless
mechanisms. A major limitation of this approach is that access to a specific



Middleware Support for Resource-Constrained Software Deployment 51

resource cannot be conditioned by whether the same resource was accessed pre-
viously, or by how much of this resource has already been consumed. As a con-
sequence, quantitative restrictions (such as shares of CPU time, or I/O quotas)
cannot be set on the resources accessed from protection domains. With this
limitation, the security mechanisms implemented in the JRE cannot prevent an
over-consumption of resources, such as that observed in denial of service attacks,
or with many faulty program codes.

In our opinion, a safe deployment environment for programs of dubious origin
should allow that access restrictions be specified in both qualitative and quan-
titative terms (ie access permissions and access quotas). Environments such as
JRes [4], GVM [2] and KaffeOS [1] extend the traditional JRE along this line.
They implement mechanisms that make it possible to evaluate how much mem-
ory and CPU time is used by an active entity (a thread for JRes, a process for
GVM and KaffeOS). With JRes, one can additionally count the number of bytes
sent and received through the network.

Although JRes, GVM, and KaffeOS provide advanced facilities for resource
consumption accounting, this accounting is only possible at a rather coarse grain.
For example, network access accounting in JRes is performed on a per thread
basis. Consequently, JRes cannot count the number of bytes exchanged with a
given remote host, or with a specific remote port number. Yet, we consider that
such fine-grain accounting would be an advantage when deploying untrusted
programs, as it would permit the definition and the enforcement of very precise
security policies.

Naccio [5] and Ariel [9] are projects that permit such fine-grain resource
access accounting. They both define a language for defining a security policy,
together with mechanisms for enforcing this policy while an application program
is running. Security policy enforcement is carried out statically, by rewriting the
application program byte-code, as well as that of the standard Java API. An
advantage of this approach is that the cost of the supervision of a program is
kept at a minimum since code segments that check the access to a particular
kind of resource are inserted in Java API classes only if the selected security
policy requires it. However, the generation of an API dedicated to a specific
security policy is a quite expensive procedure. The approach proposed in Naccio
and Ariel is thus mostly dedicated to the generation of predefined Java APIs
that each enforce a generic security policy.

In contrast, our work aims at providing each application program with a run-
time environment that fits its needs perfectly. In other words, we wish to launch
each program in a sandbox whose boundaries are defined based on information
provided by the program itself. Moreover, it must be possible to modify the
boundaries of this sandbox dynamically, thus altering the restrictions imposed
on the program’s behaviour. This condition is motivated by the observation that,
in some circumstances, the exact needs of a program can hardly be defined stat-
ically (consider for example a program that is meant to read a file whose name
will only be discovered at runtime). Another reason is that the needs of a pro-



52 Nicolas Le Sommer and Frédéric Guidec

ClassLoader
Jamus

Container

Resource Broker Resource Monitoring

Contract Manager

Contract

Framework
Resource Utilisation Profiles

JA
M

U
S

Operating System

R
A

JE

Observation and control mechanisms

System resourcesConceptual resources

Application 1 Application 2 Application 3

Fig. 1. Architecture of the Jamus platform.

gram are often liable to change at runtime, especially if this program must run
for a long time.

3 Overview of the JAMUS Platform

The architecture of the Jamus platform is shown in Figure 1. This figure shows
many elements, which cannot all be described in details in this paper for the
sake of brevity. Indeed, this paper most specifically focuses on those elements of
the figure that directly pertain to contract negotiation and contract monitoring.
These topics are discussed further in the remainder of this section, and details
about their implementation are given in the next sections.

3.1 A Contract-Based Approach of Resource Control

Jamus implements a contractual approach of resource utilisation and control.
Before getting launched on the platform, a candidate program must first sub-
scribe a contract with the contract manager of the platform, thus informing this
manager about the resources it plans to use at runtime. The contract manager
is responsible for binding contracts with candidate programs, and for the regis-
tration of all running contracts. It itself relies on a resource broker, whose role is
to keep track of the resources available on the platform at any time, to perform
some admission control on behalf of the contract manager (eg examining sub-
mitted contracts and deciding if they can be accepted), and to reserve resources
for admitted programs. The implementation of the contract manager and that
of the resource broker are detailed in Section 4, which also gives examples of
typical interactions between these elements at runtime.

Since the exact needs of a program are liable to change at runtime, any
program running on the platform can ask that its contract be re-negotiated as



Middleware Support for Resource-Constrained Software Deployment 53

and when needed. Of course, in such a case the contract manager and resource
broker are involved again, as they must decide if the modified contract can still
be supported by the platform.

3.2 Security through Contract Monitoring

The contract a program subscribes with the platform effectively defines the
boundaries of the sandbox in which this program should be launched and al-
lowed to run. It also implicitly defines how this program should be expected to
behave with respect to the resources offered by the platform. The information
contained in a program’s contract can thus be used at runtime to monitor this
program, and to detect any violation of its contract.

Notice that contract monitoring would not be necessary if the programs de-
ployed on the Jamus platform could all be considered as trustworthy. If that
was the case, then any program could reasonably be expected to behave exactly
as promised, that is, to access only those resources it required explicitly when
subscribing a contract with the platform. However, Jamus is dedicated to accom-
modating application programs of dubious origin, such as programs downloaded
from untrustable remote Internet sites. Consequently, any application program
deployed on the platform must be considered as a potential threat throughout
its execution. Once a program has been accepted by the contract manager of
the platform, the behaviour of this program must be monitored, so that any
violation of its contract can be detected and sanctioned.

Contract monitoring in Jamus relies on facilities we implemented and as-
sembled in Raje (Resource-Aware Java Environment), an open and extensible
Java-based framework for resource consumption monitoring and control. Raje
is discussed further in Section 5.

4 Resource Contracting

4.1 Specification of Resource Access Conditions

Jamus implements an object model that makes it possible to reify a program’s
basic requirements or a platform’s restrictions as so-called “resource utilisation
profiles”. In this model, an instance of class ResourceUtilisationProfile is meant
to define specific access conditions to a particular resource –or collection of
resources– in both qualitative and quantitative terms (eg access permissions and
quotas). Basically, a ResourceUtilisationProfile object simply aggregates three
objects that implement the ResourcePattern, ResourcePermission, and Resource-
Quota interfaces respectively. Jamus provides specific implementations of these
interfaces for each basic resource type (Socket, DatagramSocket, File, Thread,
CPU, etc.).

Figure 2 shows how resource utilisation profiles can be defined in Java. By
including a given type of ResourcePattern in a ResourceUtilisationProfile, one
indicates that the access conditions defined in this profile are only relevant for



54 Nicolas Le Sommer and Frédéric Guidec

int MB = 1024*1024;

ResourceUtilisationProfile P1, P2, P3,;

P1 = new ResourceUtilisationProfile(

new SocketPattern(”http://www.music.com”),

new SocketPermission(SocketPermission.ALL),

new SocketQuota(15*MB, 1*MB));

P2 = new ResourceUtilisationProfile(

new FilePattern(”/opt/music”),

new FilePermission(FilePermission.WRITE ONLY),

new FileQuota(0, 40*MB));

P3 = new ResourceUtilisationProfile

new MemoryPattern(),

new MemoryPermission(MemoryPermission.ALL),

new MemoryQuota(2*MB));

Fig. 2. Definition of resource utilisation profiles.

those resources whose characteristics match the pattern. For example, the Sock-
etPattern in profile P1 (see Figure 2) indicates that this profile defines conditions
for accessing the specified Internet site through a socket-based connection. The
SocketPermission and SocketQuota objects combined in profile P1 bring addi-
tional information: they indicate that once a connection has been established
with the remote site, the amounts of bytes sent and received through this con-
nection should remain below the limits specified. The other two profiles similarly
specify conditions for accessing a given directory in the filesystem (P2 ), and for
consuming memory (P3 ).

By defining profiles such as those shown in Figure 2, an application program
can specify its own requirements regarding the resources it plans to use at run-
time. For example, by inserting profiles P1, P2 and P3 in a contract, a program
may simultaneously require access to a remote Internet site (with specific access
permissions and quotas) and to a given part of the filesystem (again with specific
access permissions and quotas), while requiring a certain amount of memory for
its sole usage.

Besides serving as a way to describe application programs’ requirements,
resource utilisation profiles are also used in Jamus to set limitations on the
resources the platform must offer. At startup the resource broker of the platform
is given a collection of resource utilisation profiles, that describe which resources
should be made available to hosted programs, and in what conditions.

Since Jamus must be able to negotiate contracts dynamically with Java
application programs, we decided that contracts and resource utilisation profiles
(which actually serve as contract clauses) should be considered as first-class
objects in our model (as suggested in [3]). This is the reason why Jamus relies
on an object model in which contracts and profiles can be defined and managed
directly as Java objects. Yet, we also defined an XML dialect for specifying
profiles in a more human-readable form, and for storing this kind of information
in files. Jamus implements routines for parsing an XML file, and for instantiating



Middleware Support for Resource-Constrained Software Deployment 55

Contract contract1 = new Contract ({P1, P2}, {P3});

Contract contract2 = new Contract ({P1}, {P2, P3});

Fig. 3. Definition of two possible contracts that each combine several resource utili-
sation profiles.

profiles contracts based on the information found in this file. The administrator
of a Jamus platform can thus configure and manage this platform, without ever
writing any source code.

4.2 Contract Definition

Any resource utilisation profile defined by a program can be considered as ex-
pressing either a real requirement of the program (meaning, the program actually
requests guarantees about the accessibility of the resource considered in the pro-
file), or as a simple indication that the program may attempt to access the
resource considered at runtime (meaning, the program simply provides informa-
tion about the boundaries of the sandbox in which it wishes to be launched).

Since the resource broker of the platform implements a reservation scheme,
we decided to distinguish between a program’s true requirements (those that call
for both resource reservation and access monitoring), and simple indications of
the program’s planned behaviour (that call for monitoring only).

Contracts in Jamus are thus defined as collections of resource utilisation
profiles, but these profiles are assembled in two distinct sets. Profiles in the first
set call explicitely for resource reservation, whereas profiles in the second set do
not.

Figure 3 shows the definition of two alternative contracts, that each combine
several profiles. The first contract in this figure combines profiles P1, P2 and
P3, but only the first two profiles should be considered as real requirements
(meaning, they call for resource reservation, whereas P3 does not). The sec-
ond contract combines profiles P1, P4, and P5, but only P1 calls for resource
reservation.

A candidate program can thus instantiate one or several alternative Contract
objects, and submit these contracts to the platform. If one of the contracts is
declared admissible by the resource broker, then this contract can be subscribed
by the program. If several of the contracts are declared admissible by the resource
broker, then the application program can additionally choose which of these
contracts it wishes to subscribe.

4.3 Contract Negotiation

Contract negotiation in Jamus is performed as a two-step process. In the first
step, several alternative contracts can be submitted to the platform by the same
program. In the second step, one of the contracts the platform has approved (as-
suming there is at least one) must be selected by the program, and subscribed



56 Nicolas Le Sommer and Frédéric Guidec

with the platform. Each contract is examined by the resource broker, whose role
it is to decide whether a contract is acceptable or not, and to reserve resources
when needed. Resource reservation is only achieved (if and where needed) by
the resource broker when a contract is subscribed by a program. By reserving
resources (or shares of a resource) a program obtains guarantees that its require-
ments will be satisfied at runtime.

Figure 4 shows a possible sequence of interactions between a program and the
platform’s contract manager. It also shows that the resource broker is consulted
whenever the contract manager receives a contract submitted by the program.
In this example the first contract submitted by the program is rejected by the
platform. Such a negative reply might be justified by the detection of a conflict
between one of the program’s requirement and one (or several) of the platform’s
restrictions. Notice that whenever a contract is rejected by the resource broker,
the candidate program is returned a detailed report that specifies which profiles
in the contract could not be accepted by the platform. This kind of information
is expected to be useful for candidate programs that are capable of choosing
between several behavioural scenarios, or for programs that can adjust their
demand about resources based on information returned by the platform.

Resource Broker

submitContract(contract1)

Contract ManagerProgram

canAdmit(profilesOfContract1)

submitContract(contract2)
canAdmit(profilesOfContract2)

reasons : null

canAdmit(profilesOfContract2)

reasons : null

reserve(profilesOfContract2)

subscribeContract(contract2)

accept: (contract2,null)

reasons :[ResourceUtilisationProfiles]
reject: (contract1,reasons)

accept: true

Fig. 4. Sequence of interactions between a candidate program and the platform’s con-
tract manager and resource broker.

In Figure 4 the second contract submitted to the platform is accepted by
the resource broker. The candidate program can try to subscribe this contract.
However, since the platform may be carrying out several negotiations concur-
rently with as many candidate programs, the status of available resources may
change between the time a submitted contract is declared acceptable by the re-
source broker, and the time this contract is subscribed. Consequently, whenever



Middleware Support for Resource-Constrained Software Deployment 57

a program subscribes a contract, the terms of this contract are examined again
by the resource broker in order to check whether they are still valid. If so, then
the resources required by the candidate program are reserved for this program,
as explained in the next section.

The reason why contract submission and contract subscription have been
differentiated in the Jamus platform is that it makes it possible for a candi-
date program to request that the platform examine several possible contracts
(corresponding to different alternative combinations of resource requirements),
before the program eventually decides which of these contracts it actually wishes
to subscribe with the platform. This approach is meant to foster the develop-
ment of application programs that can adjust their behaviour (at launch time
or dynamically), depending on the resources the platform can offer.

5 Contract Monitoring

5.1 Security through Resource Monitoring

As mentioned in Section 3, any program hosted by the Jamus platform is consid-
ered as not being trustworthy. As a consequence, the platform must monitor all
running contracts in order to detect and to sanction any violation of a contract.
Since contracts all pertain to the utilisation of resources, monitoring contracts
actually comes down to monitoring the way resources are accessed and used by
hosted programs.

Jamus is dedicated to hosting Java programs, which run in a virtual ma-
chine. In this context, resource monitoring implies that all resources are reified
as objects in the JVM. To achieve this goal, Jamus relies on the facilities offered
by Raje, an open and extensible framework we designed in order to support
the reification and the control of any kind of resource using objects in Java (see
Figure 1).

Raje can be perceived as an extension of the traditional runtime environment
of the Java 2 platform. It relies on a modified version of the standard JVM Kaffe
(version 1.0.7), which allows the accounting of memory consumption and CPU
time consumed by each Java thread. Some classes of the standard Java API
(such as Socket, DatagramSocket, File, and Thread) were augmented so that any
access to the resources they model can be monitored at runtime. New classes were
defined in order to model system resources, such as the CPU, system memory,
and system swap. Part of the code implemented in Raje thus consists of native
code that permits the extraction of information from the underlying OS, and
the interaction with inner parts of the JVM.

More details about the facilities implemented in Raje (including implemen-
tation details) can be found in [8].

By implementing Jamus on top of Raje, resource monitoring and control
can be performed in Jamus at a very fine grain. For example any socket or file
opened by a Java program can be considered as a specific resource, and any
access to such a resource can be accounted for, and restrained if needed. Any
Java thread can likewise be considered as a specific resource, and the amounts



58 Nicolas Le Sommer and Frédéric Guidec

Container

Application program

ResourceBrokerContractManager

C
on

tr
ac

t

M
on

ito
r

N
ot

if
y

Sa
nc

tio
n

ComponentMonitor

Resource

Resource Monitor

Fig. 5. Monitoring of applications.

of CPU time or memory space consumed by each Java thread can be monitored
as well. Raje also makes it possible to set locks on resources, thus preventing
any further utilisation of these resources by application programs.

5.2 Component Monitors and Resource Monitors

Every application program hosted by the Jamus platform runs under the con-
trol of a dedicated component monitor. This monitor uses the resource utilisation
profiles contained in the contract subscribed by the program in order to instan-
tiate many resource monitors. Their mission is to monitor the utilisation of the
resource –or collection of resources– considered in this profile, and to ensure
that this utilisation conforms to the access permissions and quotas defined in
the profile.

Jamus provides a specific implementation of a resource monitor for each
basic resource type considered to date in Raje. Each resource monitor admits
a resource utilisation profile as a creation parameter. The role of a resource
monitor is to supervise the utilisation of the resource –or collection of resources–
considered in this profile, and to ensure that this utilisation conforms to the
access permissions and quotas defined in the profile.

The figure 5 shows how the resource monitors, the component monitors, the
contract manager and the resource broker interact.

When a resource monitor detects a contract violation, it reports to the com-
ponent monitor, which in turn applies the sanction defined in the platform’s
configuration. In the current implementation of the platform, several kinds of
sanctions are actually applicable to faulty programs. These sanctions range from
a simple warning addressed to a faulty program (using an event based model),
up to the immediate termination of this program.

6 Performance Results

When designing a deployment platform such as Jamus, one can legitimately
worry about the overhead imposed by dynamic sandboxing and contract moni-
toring.



Middleware Support for Resource-Constrained Software Deployment 59

Table 1. Performances observed with an FTP server running either in a standard JVM
or in Jamus (with a varying number of monitors).

JVM Throughput (Mbps)
Kaffe (version 1.0.7) 89.5 (100 %)

IBM JVM (version 1.4.1) 89.3 (99.8 %)
Jamus (no monitor) 88.9 (99.3 %)
Jamus (2 monitors) 86.3 (96.4 %)
Jamus (3 monitors) 84.6 (94.5 %)
Jamus (5 monitors) 81.9 (91.5 %)

In order to evaluate how these mechanisms can impact on the performances
of the application programs launched on the platform, we recently initiated an
evaluation process. This process consists in running a series of demanding pro-
grams (that is, programs that use resources extensively), while measuring their
performances in different conditions.

For example we launched an FTP server (written in pure Java code) in Ja-
mus, and we measured the network throughput observed while downloading large
files from this server. This experiment was conducted using two workstations
(2.4 GHz Pentium 4 processor, 512 MB RAM) connected by a Fast Ethernet
link (100 Mbps, Full Duplex). The throughput observed during file transfers was
measured when running the FTP server with two standard JVMs (IBM’s and
Kaffe), and with Jamus (which relies on a modified version of Kaffe). Moreover,
in the latter case the FTP server was launched with a varying number of require-
ments, so that at runtime its behaviour was observed by a varying number of
resource monitors (typically one monitor for filesystem access, and one or several
monitors for network access).

The throughputs we observed are reported in Table 1. In this table the
throughput observed with the standard JVM Kaffe is used as a reference value.

We consider that these results are quite satisfactory. Obviously the monitor-
ing infrastructure implemented in Jamus significantly alters the performances
of the application programs launched in this platform. Yet, in our opinion the
degradation of performances observed while running the FTP server (which is
a quite demanding program as far as filesystem and network resources are con-
cerned) remain acceptable.

Besides, it is worth mentioning that the source code pertaining to resource
consumption accounting in Raje, and to contract monitoring in Jamus, was
primarily developed so as to be readable and flexible. Parts of this code could
probably be written differently, though, in order to reduce the overhead imposed
on the programs launched on the Jamus platform.

7 Conclusion

In this paper we have presented the architecture and the implementation of
the Jamus platform, which is dedicated to hosting untrusted Java application



60 Nicolas Le Sommer and Frédéric Guidec

programs, provided that these programs can specify their own needs regarding
the resources they plan to use at runtime.

Jamus actually constitutes a demonstrator platform, with which we experi-
ment with the idea of “resource-aware” programs and deployment platforms, that
is, programs that can identify and specify their own needs regarding resource
utilisation, and platforms that can use this kind of information in order to pro-
vide such programs with differentiated services. Although Jamus is specifically
dedicated to hosting non-trustable application programs, it is our conviction that
many other application domains and systems (such as agent-based systems, or
adaptive systems) could benefit of —or take inspiration from— the models and
mechanisms we develop in this particular context.

References

1. Godmar Back, Wilson C. Hsieh, and Jay Lepreau. Processes in KaffeOS: Isolation,
Resource Management, and Sharing in Java. In The 4th Symposium on Operating
Systems Design and Implementation, October 2000.

2. Godmar Back, Patrick Tullmann, Legh Stoller, Wilson C. Hsieh, and Jay Lepreau.
Techniques for the Design of Java Operating Systems. In USENIX Annual Technical
Conference, June 2000.

3. Antoine Beugnard, Jean-Marc Jézéquel, Nol Plouzeau, and Damien Watkins. Mak-
ing components contract-aware. In IEEE, editor, Computer, page 38 44. IEEE, June
1999.

4. Grzegorz Czajkowski and Thorsten von Eicken. JRes: a Resource Accounting In-
terface for Java. In ACM OOPSLA Conference, 1998.

5. David Evans and Andrew Twyman. Flexible Policy-Directed Code Safety. In IEEE
Security and Privacy, May 1999.

6. Li Gong. Java Security: Present and Near Future. IEEE Micro, -:14–19, May 1997.
7. Li Gong and Roland Schemers. Implementing Protection Domains in the Java

Development Kit 1.2. In Internet Society Symposium on Network and Distributed
System Scurity, March 1998.

8. Frédéric Guidec and Nicolas Le Sommer. Towards Resource Consumption Account-
ing and Control in Java: a Practical Experience. In ECOOP’2002 (Workshop on
Resource Management for Safe Languages), June 2002. To be published.

9. Raju Pandey and Brant Hashii. Providing Fine-Grained Access Control for Java
Programs. In The 13th Conference on Object-Oriented Programming, ECOOP’99.
Springer-Verlag, June 1999.


	1 Introduction
	2 Lessons Learned from Related Work
	3 Overview of the JAMUS Platform
	3.1 A Contract-Based Approach of Resource Control
	3.2 Security through Contract Monitoring

	4 Resource Contracting
	4.1 Specification of Resource Access Conditions
	4.2 Contract Definition
	4.3 Contract Negotiation

	5 Contract Monitoring
	5.1 Security through Resource Monitoring
	5.2 Component Monitors and Resource Monitors

	6 Performance Results
	7 Conclusion
	References



